Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract li...Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract lithium from brine was obtained.The effects of the mole ratio of Al to Li and Ca content of Al-Ca alloy,the initial concentration of lithiumion ion in solution,reaction temperature and reaction time on the adsorption rate of lithium were studied,and the optimized process parameters were determined.The results show that the mole ratio of Al to Li and Ca content of Al-Ca alloy and reaction temperature have great influences on the precipitation rate of lithium.The precipitation rate of lithium reaches 94.6% under the optimal condition,indicating that Al-Ca alloy is suitable for the extraction of lithium from salt lake brine.展开更多
The extraction of lithium from salt lake brine in the Chinese Qaidam Basin is challenging due to its high Mg/Li and Na/Li ratios. Herein, we utilized a reaction-coupled separation technology to separate sodium and lit...The extraction of lithium from salt lake brine in the Chinese Qaidam Basin is challenging due to its high Mg/Li and Na/Li ratios. Herein, we utilized a reaction-coupled separation technology to separate sodium and lithium ions from a high Na/Li ratio brine(Na/Li = 48.7, w/w) and extracted lithium with Li Al-layered double hydroxides(Li Al-LDHs). The Li Al-LDHs act as lithium-ion-selective capturing materials from multication brines. That is, the lithium ions selectively enter the solid phase to form Li Al-LDHs, and the sodium ions are still retained in the liquid phase. This is because the lithium ions can be incorporated into the structural vacancies of LiAl-LDHs, whereas the sodium ions cannot. The effects of reaction conditions on lithium loss and separation efficiency were investigated at both the nucleation and the crystallization stage, e.g., the nucleation rotating speed, the Li/Al molar ratio, the crystallization temperature and time, and co-existing cations. The lithium loss is as low as 3.93% under optimal separation conditions.The sodium ions remained in the solution. Consequently, an excellent Na/Li separation efficiency was achieved by this reaction-coupled separation technology. These findings confirm that LiAl-LDHs play a critical function in selectively capturing lithium ions from brines with a high Na/Li ratio, which is useful for the extraction of lithium ions from the abundant salt lake brine resources in China.展开更多
At present,the extraction of lithium from salt lake brine is the new trend of the salt lake industrialization.The saltine lake lithium resources are extremely rich in western china,especially in Qinghai-Tibetan platea...At present,the extraction of lithium from salt lake brine is the new trend of the salt lake industrialization.The saltine lake lithium resources are extremely rich in western china,especially in Qinghai-Tibetan plateau.Brine of salt展开更多
Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines gi...Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.展开更多
Three ionic liquids(ILs), namely, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-me- thylimidazolium bis[(trifluoromethyl)sulfonyl]imide and 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sul- fony...Three ionic liquids(ILs), namely, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-me- thylimidazolium bis[(trifluoromethyl)sulfonyl]imide and 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sul- fonyl]imide with the triisobutyl phosphate(TIBP) and kerosene system were respectively used to extract lithium ion from salt lake brine with a high concentration ratio of magnesium and lithium experimentally. Results indicate that the highest extraction selectivity for lithium was obtained with IL 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)- sulfonyl]imide. The effects of solution pH and phase ratio R(O/A) on the extractive step and the influence of acid concentration of the stripping solution and R(O/A) on the back extraction step were also investigated systematically. The single-step extraction efficiency of lithium ion was 83.71% under the optimal extraction conditions, and the single-step back extraction efficiency was 85.61% with a 1.0 mol/L HCI in 1.0 mol/L NaCI medium as stripping agent at R(O/A)=2. The liquid-liquid extraction mechanism and the complex of the ligand with lithium were proposed.展开更多
The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BA...The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BAMBP). Rb+ and Cs+ were enriched and separated effectively by precipitating Mg2+ before extraction and by scrubbing out K+ and Na+ repeatedly before stripping. The effects of the volume ratio of organic phase to aqueous extraction phase(O/A), alkalinity of aqueous phase(c(OH)-), interference from K+ and Mg2+, and ratio the volume of organic phase to aqueous scrubbing phase(O/A′) were investigated. The experimental brine was extracted optimally by 5-stage extraction with 1.0 mol/L t-BAMBP in SK, c(OH-)=1 mol/L, and O/A=1:1. The scrubbing yield of rubidium was only about 10.5% when the extraction solvent was washed 3 times with 1×10-4 mol/L Na OH at O/A′=1:0.5. After 5-stage countercurrent extraction, the final extraction yields of Rb+ and Cs+ reached 95.04% and 99.80%, respectively.展开更多
1 Introduction As the lightest metal with the unique properties of energy production and storage,lithium is regarded as the new century energy metal.Lithium and its compounds were widely used in various industrial fie...1 Introduction As the lightest metal with the unique properties of energy production and storage,lithium is regarded as the new century energy metal.Lithium and its compounds were widely used in various industrial fields,especially in展开更多
In response to the rise of the energy storage industries such as new energy vehicles and the wide application of lithium in various fields worldwide,the global demand for lithium resources has been in explosive growth...In response to the rise of the energy storage industries such as new energy vehicles and the wide application of lithium in various fields worldwide,the global demand for lithium resources has been in explosive growth.In order to further comprehensively understand the global supply and demand pattern,development and utilization status,genesis of ore deposits and other characteristics of lithium resources,based on the achievements of many researchers at home and abroad,this paper systematically summarized the lithium supply and demand situation,resource endowment,deposit classification and distribution,typical geological characteristics,metallogenic factors and metallogenic regularity of terrestrial brine-type lithium deposits which are the main types of development and utilization all over the world.The review shows that brine-type lithium resource and(or)reserves in the plateau salt lakes are huge and play an important role.In addition,the mineralization potential of the underground brine-type lithium deposit is broad worldwide.The potential resources of underground brines are enormous,and the geothermal spring water type is also worthy of attention.Brine lithium deposits are mainly controlled by the subduction and collision of regional plate tectonics,arid climate and provenance conditions.Strengthening of the scientific research on underground brines in the future is expected to provide another significant support for the global demand for lithium resources.展开更多
Lithium in nature mainly exists in the forms of solid minerals and ionic liquid.More than 150 lithium minerals exist,which are mainly pegmatite mineral including triphane,lithionite and petalite.Liquid lithium mainly
Lithium-aluminum layered double hydroxides(LiAl-LDH)have been be successfully applied in commercial-scale for lithium extraction from salt lake brine,however,further advancement of their applications is hampered by su...Lithium-aluminum layered double hydroxides(LiAl-LDH)have been be successfully applied in commercial-scale for lithium extraction from salt lake brine,however,further advancement of their applications is hampered by suboptimal Li^(+)adsorption performance and ambiguous extraction process.Herein,a doping engineering strategy was developed to fabricate novel Zn^(2+)-doped LiAl-LDH(LiZnAl-LDH)with remarkable higher Li^(+)adsorption capacity(13.4 mg/g)and selectivity(separation factors of 213,834,171 for Li^(+)/K^(+),Li^(+)/Na^(+),Li^(+)/Mg^(2+),respectively),as well as lossless reusability in Luobupo brine compared to the pristine LiAl-LDH.Further,combining experiments and simulation calculations,it was revealed that the specific surface area,hydrophilic,and surface attraction for Li^(+)of LiZnAl-LDH were significantly improved,reducing the adsorption energy(Ead)and Gibbs free energy(ΔG),thus facilitating the transfer of Li^(+)from brine into interface followed by insertion into voids.Importantly,the intrinsic oxygen vacancies derived from Zn-doping depressed the diffusion energy barrier of Li^(+),which accelerated the diffusion process of Li^(+)in the internal bulk of LiZnAl-LDH.This work provides a general strategy to overcome the existing limitations of Li^(+)recovery and deepens the understanding of Li^(+)extraction on LiAl-LDH.展开更多
The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of l...The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes.However,the specific origin of lithium in these lakes is still unknown,which hinders the advancement of the lithium resource business in this region.To research this issue,this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau,encompassing samples of surface brine,cold springs,fresh lakes,and recharge rivers.The composition of anions and cations in these samples was determined.Furthermore,the analysis extensivelyutilizedthePiperthree-linediagram,Gibbs model,and ion proportion coefficient.The findings of this study indicate that as the moves from the recharge water system to salt lake,there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate,as well as Na sulfate.This research based on a similar source of both lithium and boron,utilized ion correlation analysis and boron isotope study in the Lakkor Co area,and analyzed the source and transporting process of lithium.The main origin of lithium in Lakkor Co is the dissolution of lithiumrich rocks,recharge water systems,and deep hydrothermal fluids.These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits.展开更多
Lithium production in China mainly depends on hard rock lithium ores,which has a defect in resources,environment,and economy compared with extracting lithium from brine.This paper focuses on the research progress of e...Lithium production in China mainly depends on hard rock lithium ores,which has a defect in resources,environment,and economy compared with extracting lithium from brine.This paper focuses on the research progress of extracting lithium from spodumene,lepidolite,petalite,and zinnwaldite by acid,alkali,salt roasting,and chlorination methods,and analyzes the resource intensity,environmental impact,and production cost of industrial lithium extraction from spodumene and lepidolite.It is found that the sulfuric acid method has a high lithium recovery rate,but with a complicated process and high energy consumption;alkali and chlorination methods can directly react with lithium ores,reducing energy consumption,but need to optimize reaction conditions and safety of equipment and operation;the salt roasting method has large material flux and high energy consumption,so require adjustment of sulfate ratio to increase the lithium yield and reduce production cost.Compared with extracting lithium from brine,extracting lithium from ores,calcination,roasting,purity,and other processes consume more resources and energy;and its environmental impact mainly comes from the pollutants discharged by fossil energy,9.3-60.4 times that of lithium extracted from brine.The processing cost of lithium extraction from lepidolite by sulfate roasting method is higher than that from spodumene by sulfuric acid due to the consumption of high-value sulfate.However,the production costs of both are mainly affected by the price of lithium ores,which is less competitive than that of extracting lithium from brine.Thus,the process of extracting lithium from ores should develop appropriate technology,shorten the process flow,save resources and energy,and increase the recovery rate of related elements to reduce environmental impact and improve the added value of by-products and the economy of the process.展开更多
A reasonable classification of deposits holds great significance for identifying prospecting targets and deploying exploration. The world ’s keen demand for lithium resources has expedited the discovery of numerous n...A reasonable classification of deposits holds great significance for identifying prospecting targets and deploying exploration. The world ’s keen demand for lithium resources has expedited the discovery of numerous novel lithium resources. Given the presence of varied classification criteria for lithium resources presently, this study further ascertained and classified the lithium resources according to their occurrence modes, obtaining 10 types and 5 subtypes of lithium deposits(resources) based on endogenetic and exogenetic factors. As indicated by surveys of Cenozoic exogenetic lithium deposits in China and abroad,the formation and distribution of the deposits are primarily determined by plate collision zones, their primary material sources are linked to the anatectic magmas in the deep oceanic crust, and they were formed primarily during the Miocene and Late Paleogene. The researchers ascertained that these deposits,especially those of the salt lake, geothermal, and volcanic deposit types, are formed by unique slightly acidic magmas, tend to migrate and accumulate toward low-lying areas, and display supernormal enrichment. However, the material sources of lithium deposits(resources) of the Neopaleozoic clay subtype and the deep brine type are yet to be further identified. Given the various types and complex origins of lithium deposits(resources), which were formed due to the interactions of multiple spheres, it is recommended that the mineralization of exogenetic lithium deposits(resources) be investigated by integrating tectono-geochemistry, paleoatmospheric circulation, and salinology. So far, industrialized lithium extraction is primarily achieved in lithium deposits of the salt lake, clay, and hard rock types. The lithium extraction employs different processes, with lithium extraction from salt lake-type lithium deposits proving the most energy-saving and cost-effective.展开更多
This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducte...This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li_(2)CO_(3) and their pairwise interactions.Computational Fluid Dynamics(CFD)simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization.The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ(Upper Convective Zone)thickness of 53.63 cm,an LCZ(Lower Convective Zone)direct heating temperature of 57.39℃,a CO32−concentration of 32.21 g/L,and an added soda ash concentration of 6.52 g/L.Following this optimized pathway,the Li_(2)CO_(3) precipitation increased by 7.34% compared to the initial solar pond process,with a 33.33% improvement in lithium carbonate crystallization rate.This study demonstrates the feasibility of optimizing lithium extraction solar pond structures,offering a new approach for constructing such ponds in salt lakes.It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines.展开更多
1 Introduction Lithium was used widely in batteries,lubricants,aluminium smelting,ceramics,glass,polymers and other areas due to its unique electrochemical reactivity as well as other properties(Hykawy,2010).Productio...1 Introduction Lithium was used widely in batteries,lubricants,aluminium smelting,ceramics,glass,polymers and other areas due to its unique electrochemical reactivity as well as other properties(Hykawy,2010).Production of lithium comes from both brine and mineral sources.The total resources of lithium estimated by the USGS in 2014 are to展开更多
This article gives an introductory exposition of the growing demands of lithium on the market against the background of current rapid S&Tprogress and booming economic development, the worldwide trend in the produc...This article gives an introductory exposition of the growing demands of lithium on the market against the background of current rapid S&Tprogress and booming economic development, the worldwide trend in the production of lithium salts and the rich lithium reserves in China’s salt lakes as well as the brilliant prospects for its exploitation in the future. The article proposes that a sustainable exploitation of the lithium trove from these salt lakes should be rooted in comprehensive utilization of the trove and take a long-term approach, emphasizing high value proliferation in developing quality lithium-based products. Also, it expresses some tentative ideas on building demonstration bases for all-round exploitation and utilization of the salt lake resources and the development of lithium cells.展开更多
There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources ...There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources in sur-rounding areas and downstream areas,resulting in environmental impact and bringing potential flood disasters,which will induce more serious issues and problems in alpine and high-altitude areas with a fragile habitat(such as the QTP in China).Generally,effective,reasonable,and scientific monitoring of large-scale water bodies can not only document the changes in water bodies intuitively,but also provide important theoretical reference for subsequent environmental impact prediction,and disaster prevention and mitigation in due course of time.The large-scale water extraction technology derived from the optical remote sensing(RS)image is seriously affected by clouds,bringing about large differences among the extracted water result products.Synthetic aperture radar(SAR)RS technology has the unique advantage characteristics of all-weather,all-day,strong penetration,and not being affected by clouds,which is hopeful in extracting water body data,especially for days with cloudy weather.The data extraction of large-scale water bodies based on SAR images can effectively avoid the errors caused by clouds that become prevalent at present.In this paper,the Hoh Xil Salt Lake on the QTP and its surrounding five lakes are taken as the research objects.The 2-scene Sentinel-1 SAR image data covering the whole area on 22 August 2022 was used to verify the feasibility of extracting water body data in permafrost zones.Furthermore,on 22 August 2022,the wealth here was cloudy,which made the optical RS images,e.g.,Sentinel-2 images full of clouds.The results show that:using the Sentinel-1 image and threshold segmentation method to extract water body data is efficient and effective with excellent results in permafrost areas.Concretely,the Sentinel-1 dual-polarized water index(SDWI),calculated by combining dual vertical–vertical(VV)polarized and verti-cal–horizontal(VH)polarized data is a useful index for water extraction and the result is better than each of the VV or VH polarized images.展开更多
The demand for lithium resources is increasing sharply with the rapid development of electric vehicles.It is of great economic significance to expand the geological resources of lithium and improve the utilization rat...The demand for lithium resources is increasing sharply with the rapid development of electric vehicles.It is of great economic significance to expand the geological resources of lithium and improve the utilization rate of lithium-containing salt lakes.In this paper,the hydrochemical types of the lithium-containing salt lakes in the Tibet Plateau were classified according to a large amount of hydrochemical data obtained from a recent investigation on the Tibet Plateau.In addition,the lithium extraction methods used in the salt lakes within each hydrochemical type area were analyzed and summarized,which provided a reference for the selection of lithium extraction processes in the same hydrochemical type of lithium-containing salt lakes in the future.The binding energies of Li(l)and anions in salt lakes with different hydrochemical types were calculated by density functional theory,which provides the theoretical basis for selecting the best lithium extraction technology in different salt lakes.We emphasize that the process with the combined characteristics of high efficiency,economy and environmental protection should be selected according to the hydrochemical type of different salt lakes.In the future,different salt lakes should focus on direct lithium extraction technology from the original brine.展开更多
基金Project(U1407137)supported by the National Natural Science Foundation of China
文摘Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract lithium from brine was obtained.The effects of the mole ratio of Al to Li and Ca content of Al-Ca alloy,the initial concentration of lithiumion ion in solution,reaction temperature and reaction time on the adsorption rate of lithium were studied,and the optimized process parameters were determined.The results show that the mole ratio of Al to Li and Ca content of Al-Ca alloy and reaction temperature have great influences on the precipitation rate of lithium.The precipitation rate of lithium reaches 94.6% under the optimal condition,indicating that Al-Ca alloy is suitable for the extraction of lithium from salt lake brine.
基金supported by the National Natural Science Foundation of China (Grant U1507202, U1707603)the Innovative Research Groups of National Natural Science Foundation of China (Grant 21521005)the Key R&D Program of Qinghai Province (Grant 2017-GX-144)
文摘The extraction of lithium from salt lake brine in the Chinese Qaidam Basin is challenging due to its high Mg/Li and Na/Li ratios. Herein, we utilized a reaction-coupled separation technology to separate sodium and lithium ions from a high Na/Li ratio brine(Na/Li = 48.7, w/w) and extracted lithium with Li Al-layered double hydroxides(Li Al-LDHs). The Li Al-LDHs act as lithium-ion-selective capturing materials from multication brines. That is, the lithium ions selectively enter the solid phase to form Li Al-LDHs, and the sodium ions are still retained in the liquid phase. This is because the lithium ions can be incorporated into the structural vacancies of LiAl-LDHs, whereas the sodium ions cannot. The effects of reaction conditions on lithium loss and separation efficiency were investigated at both the nucleation and the crystallization stage, e.g., the nucleation rotating speed, the Li/Al molar ratio, the crystallization temperature and time, and co-existing cations. The lithium loss is as low as 3.93% under optimal separation conditions.The sodium ions remained in the solution. Consequently, an excellent Na/Li separation efficiency was achieved by this reaction-coupled separation technology. These findings confirm that LiAl-LDHs play a critical function in selectively capturing lithium ions from brines with a high Na/Li ratio, which is useful for the extraction of lithium ions from the abundant salt lake brine resources in China.
基金the funds of Hunan Engineering Research Center of Potassium and its Coexisted Resources for supporting our work
文摘At present,the extraction of lithium from salt lake brine is the new trend of the salt lake industrialization.The saltine lake lithium resources are extremely rich in western china,especially in Qinghai-Tibetan plateau.Brine of salt
基金financially supported by the National Natural Science Foundation of China(No.52072322)the Department of Science and Technology of Sichuan Province,China(Nos.23GJHZ0147,23ZDYF0262,2022YFG0294,and 2019-GH02-00052-HZ)。
文摘Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.
基金Supported by the National Natural Science Foundation of China(Nos.21276194, U1407113), the Training Program for Changjiang Scholars and Innovative Research Team in University, China(No.[2013]373) and the Innovative Research Team of Tianjin Municipal Education Commission, China(No.TD12-5004).
文摘Three ionic liquids(ILs), namely, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-me- thylimidazolium bis[(trifluoromethyl)sulfonyl]imide and 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sul- fonyl]imide with the triisobutyl phosphate(TIBP) and kerosene system were respectively used to extract lithium ion from salt lake brine with a high concentration ratio of magnesium and lithium experimentally. Results indicate that the highest extraction selectivity for lithium was obtained with IL 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)- sulfonyl]imide. The effects of solution pH and phase ratio R(O/A) on the extractive step and the influence of acid concentration of the stripping solution and R(O/A) on the back extraction step were also investigated systematically. The single-step extraction efficiency of lithium ion was 83.71% under the optimal extraction conditions, and the single-step back extraction efficiency was 85.61% with a 1.0 mol/L HCI in 1.0 mol/L NaCI medium as stripping agent at R(O/A)=2. The liquid-liquid extraction mechanism and the complex of the ligand with lithium were proposed.
基金Project(20606008)supported by the National Natural Science Foundation of ChinaProject(11070210)supported by the Fundamental Research Funds for the Central Universities of China
文摘The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BAMBP). Rb+ and Cs+ were enriched and separated effectively by precipitating Mg2+ before extraction and by scrubbing out K+ and Na+ repeatedly before stripping. The effects of the volume ratio of organic phase to aqueous extraction phase(O/A), alkalinity of aqueous phase(c(OH)-), interference from K+ and Mg2+, and ratio the volume of organic phase to aqueous scrubbing phase(O/A′) were investigated. The experimental brine was extracted optimally by 5-stage extraction with 1.0 mol/L t-BAMBP in SK, c(OH-)=1 mol/L, and O/A=1:1. The scrubbing yield of rubidium was only about 10.5% when the extraction solvent was washed 3 times with 1×10-4 mol/L Na OH at O/A′=1:0.5. After 5-stage countercurrent extraction, the final extraction yields of Rb+ and Cs+ reached 95.04% and 99.80%, respectively.
基金Financial support from the National Natural Science Foundation of China (21276194)the Specialized Research Fund for the Doctoral Program of Chinese Higher Education (20101208110003)the Key Pillar Program of Tianjin Municipal Science and Technology (11ZCKGX02800)
文摘1 Introduction As the lightest metal with the unique properties of energy production and storage,lithium is regarded as the new century energy metal.Lithium and its compounds were widely used in various industrial fields,especially in
基金This study was jointly supported by Central Welfare Basic Scientific Research Business Expenses(KK2005,YYWF201607)the project of the industrial leading talant of Wuhan municipality of Hubei Province,the Editor of China Geology,Rui-qin Li,and many thanks for a nice review by anonymous reviewers.
文摘In response to the rise of the energy storage industries such as new energy vehicles and the wide application of lithium in various fields worldwide,the global demand for lithium resources has been in explosive growth.In order to further comprehensively understand the global supply and demand pattern,development and utilization status,genesis of ore deposits and other characteristics of lithium resources,based on the achievements of many researchers at home and abroad,this paper systematically summarized the lithium supply and demand situation,resource endowment,deposit classification and distribution,typical geological characteristics,metallogenic factors and metallogenic regularity of terrestrial brine-type lithium deposits which are the main types of development and utilization all over the world.The review shows that brine-type lithium resource and(or)reserves in the plateau salt lakes are huge and play an important role.In addition,the mineralization potential of the underground brine-type lithium deposit is broad worldwide.The potential resources of underground brines are enormous,and the geothermal spring water type is also worthy of attention.Brine lithium deposits are mainly controlled by the subduction and collision of regional plate tectonics,arid climate and provenance conditions.Strengthening of the scientific research on underground brines in the future is expected to provide another significant support for the global demand for lithium resources.
文摘Lithium in nature mainly exists in the forms of solid minerals and ionic liquid.More than 150 lithium minerals exist,which are mainly pegmatite mineral including triphane,lithionite and petalite.Liquid lithium mainly
基金supports for this work from National Key R&D Program of China(No.2022YFC2906300)the National Natural Science Foundation of China(No.52204283)+2 种基金the Natural Science Foundation of Hubei Province of China(No.2021CFB554)the Key Project of the Science and Technology Research of Hubei Provincial Department of Education(No.D20221605)the CONACYT through the project A1-S-8817.L.J.Z.would like to thank CONACYT for the scholarship for granting his the scholarship No.847199 during his Ph.D study.
文摘Lithium-aluminum layered double hydroxides(LiAl-LDH)have been be successfully applied in commercial-scale for lithium extraction from salt lake brine,however,further advancement of their applications is hampered by suboptimal Li^(+)adsorption performance and ambiguous extraction process.Herein,a doping engineering strategy was developed to fabricate novel Zn^(2+)-doped LiAl-LDH(LiZnAl-LDH)with remarkable higher Li^(+)adsorption capacity(13.4 mg/g)and selectivity(separation factors of 213,834,171 for Li^(+)/K^(+),Li^(+)/Na^(+),Li^(+)/Mg^(2+),respectively),as well as lossless reusability in Luobupo brine compared to the pristine LiAl-LDH.Further,combining experiments and simulation calculations,it was revealed that the specific surface area,hydrophilic,and surface attraction for Li^(+)of LiZnAl-LDH were significantly improved,reducing the adsorption energy(Ead)and Gibbs free energy(ΔG),thus facilitating the transfer of Li^(+)from brine into interface followed by insertion into voids.Importantly,the intrinsic oxygen vacancies derived from Zn-doping depressed the diffusion energy barrier of Li^(+),which accelerated the diffusion process of Li^(+)in the internal bulk of LiZnAl-LDH.This work provides a general strategy to overcome the existing limitations of Li^(+)recovery and deepens the understanding of Li^(+)extraction on LiAl-LDH.
基金supported by Shaanxi Provincial Natural Science Foundation for Distinguished Young Scholars(2022JC)NSFC(41930863,42173023)The Science and Technology Plan Project of Qinghai Province Incentive Fund 2023。
文摘The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes.However,the specific origin of lithium in these lakes is still unknown,which hinders the advancement of the lithium resource business in this region.To research this issue,this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau,encompassing samples of surface brine,cold springs,fresh lakes,and recharge rivers.The composition of anions and cations in these samples was determined.Furthermore,the analysis extensivelyutilizedthePiperthree-linediagram,Gibbs model,and ion proportion coefficient.The findings of this study indicate that as the moves from the recharge water system to salt lake,there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate,as well as Na sulfate.This research based on a similar source of both lithium and boron,utilized ion correlation analysis and boron isotope study in the Lakkor Co area,and analyzed the source and transporting process of lithium.The main origin of lithium in Lakkor Co is the dissolution of lithiumrich rocks,recharge water systems,and deep hydrothermal fluids.These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits.
基金financially supported by the National Natural Science Foundation of China(71991484,41971265,72088101,and 71991480)the National Key R&D program of China(2021YFC2901801)。
文摘Lithium production in China mainly depends on hard rock lithium ores,which has a defect in resources,environment,and economy compared with extracting lithium from brine.This paper focuses on the research progress of extracting lithium from spodumene,lepidolite,petalite,and zinnwaldite by acid,alkali,salt roasting,and chlorination methods,and analyzes the resource intensity,environmental impact,and production cost of industrial lithium extraction from spodumene and lepidolite.It is found that the sulfuric acid method has a high lithium recovery rate,but with a complicated process and high energy consumption;alkali and chlorination methods can directly react with lithium ores,reducing energy consumption,but need to optimize reaction conditions and safety of equipment and operation;the salt roasting method has large material flux and high energy consumption,so require adjustment of sulfate ratio to increase the lithium yield and reduce production cost.Compared with extracting lithium from brine,extracting lithium from ores,calcination,roasting,purity,and other processes consume more resources and energy;and its environmental impact mainly comes from the pollutants discharged by fossil energy,9.3-60.4 times that of lithium extracted from brine.The processing cost of lithium extraction from lepidolite by sulfate roasting method is higher than that from spodumene by sulfuric acid due to the consumption of high-value sulfate.However,the production costs of both are mainly affected by the price of lithium ores,which is less competitive than that of extracting lithium from brine.Thus,the process of extracting lithium from ores should develop appropriate technology,shorten the process flow,save resources and energy,and increase the recovery rate of related elements to reduce environmental impact and improve the added value of by-products and the economy of the process.
基金funded by the major research program of the of National Natural Science Foundation of China entitled Metallogenic Mechanisms and Regularity of the Lithium Ore Concentration Area in the Zabuye Salt Lake, Tibet (91962219)Science and Technology Major Project of the Tibet Autonomous Region ’s Science and Techonlogy Plan (XZ202201ZD0004G01)a geological survey project of China Geological Survey (DD20230037)。
文摘A reasonable classification of deposits holds great significance for identifying prospecting targets and deploying exploration. The world ’s keen demand for lithium resources has expedited the discovery of numerous novel lithium resources. Given the presence of varied classification criteria for lithium resources presently, this study further ascertained and classified the lithium resources according to their occurrence modes, obtaining 10 types and 5 subtypes of lithium deposits(resources) based on endogenetic and exogenetic factors. As indicated by surveys of Cenozoic exogenetic lithium deposits in China and abroad,the formation and distribution of the deposits are primarily determined by plate collision zones, their primary material sources are linked to the anatectic magmas in the deep oceanic crust, and they were formed primarily during the Miocene and Late Paleogene. The researchers ascertained that these deposits,especially those of the salt lake, geothermal, and volcanic deposit types, are formed by unique slightly acidic magmas, tend to migrate and accumulate toward low-lying areas, and display supernormal enrichment. However, the material sources of lithium deposits(resources) of the Neopaleozoic clay subtype and the deep brine type are yet to be further identified. Given the various types and complex origins of lithium deposits(resources), which were formed due to the interactions of multiple spheres, it is recommended that the mineralization of exogenetic lithium deposits(resources) be investigated by integrating tectono-geochemistry, paleoatmospheric circulation, and salinology. So far, industrialized lithium extraction is primarily achieved in lithium deposits of the salt lake, clay, and hard rock types. The lithium extraction employs different processes, with lithium extraction from salt lake-type lithium deposits proving the most energy-saving and cost-effective.
基金This study was supported by the National Natural Science Foundation of China(U20A20148)the Major Science and Technology Projects of the Xizang(Tibet)Autonomous Region(XZ202201ZD0004G and XZ202201ZD0004G01).
文摘This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li_(2)CO_(3) and their pairwise interactions.Computational Fluid Dynamics(CFD)simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization.The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ(Upper Convective Zone)thickness of 53.63 cm,an LCZ(Lower Convective Zone)direct heating temperature of 57.39℃,a CO32−concentration of 32.21 g/L,and an added soda ash concentration of 6.52 g/L.Following this optimized pathway,the Li_(2)CO_(3) precipitation increased by 7.34% compared to the initial solar pond process,with a 33.33% improvement in lithium carbonate crystallization rate.This study demonstrates the feasibility of optimizing lithium extraction solar pond structures,offering a new approach for constructing such ponds in salt lakes.It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines.
基金supported by National Natural Science Fund projects of China (Grant No. 41273032 and No.41073050)
文摘1 Introduction Lithium was used widely in batteries,lubricants,aluminium smelting,ceramics,glass,polymers and other areas due to its unique electrochemical reactivity as well as other properties(Hykawy,2010).Production of lithium comes from both brine and mineral sources.The total resources of lithium estimated by the USGS in 2014 are to
文摘This article gives an introductory exposition of the growing demands of lithium on the market against the background of current rapid S&Tprogress and booming economic development, the worldwide trend in the production of lithium salts and the rich lithium reserves in China’s salt lakes as well as the brilliant prospects for its exploitation in the future. The article proposes that a sustainable exploitation of the lithium trove from these salt lakes should be rooted in comprehensive utilization of the trove and take a long-term approach, emphasizing high value proliferation in developing quality lithium-based products. Also, it expresses some tentative ideas on building demonstration bases for all-round exploitation and utilization of the salt lake resources and the development of lithium cells.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program,grant number 2019QZKK0905the National Natural Science Foundation of China,grant number 42272339,42201162,42101121the Research Project of the State Key Laboratory of Frozen Soils Engineering,grant number SKLFSE-ZQ-58,SKLFSE-ZT-202203,SKLFSE-ZY-20.
文摘There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources in sur-rounding areas and downstream areas,resulting in environmental impact and bringing potential flood disasters,which will induce more serious issues and problems in alpine and high-altitude areas with a fragile habitat(such as the QTP in China).Generally,effective,reasonable,and scientific monitoring of large-scale water bodies can not only document the changes in water bodies intuitively,but also provide important theoretical reference for subsequent environmental impact prediction,and disaster prevention and mitigation in due course of time.The large-scale water extraction technology derived from the optical remote sensing(RS)image is seriously affected by clouds,bringing about large differences among the extracted water result products.Synthetic aperture radar(SAR)RS technology has the unique advantage characteristics of all-weather,all-day,strong penetration,and not being affected by clouds,which is hopeful in extracting water body data,especially for days with cloudy weather.The data extraction of large-scale water bodies based on SAR images can effectively avoid the errors caused by clouds that become prevalent at present.In this paper,the Hoh Xil Salt Lake on the QTP and its surrounding five lakes are taken as the research objects.The 2-scene Sentinel-1 SAR image data covering the whole area on 22 August 2022 was used to verify the feasibility of extracting water body data in permafrost zones.Furthermore,on 22 August 2022,the wealth here was cloudy,which made the optical RS images,e.g.,Sentinel-2 images full of clouds.The results show that:using the Sentinel-1 image and threshold segmentation method to extract water body data is efficient and effective with excellent results in permafrost areas.Concretely,the Sentinel-1 dual-polarized water index(SDWI),calculated by combining dual vertical–vertical(VV)polarized and verti-cal–horizontal(VH)polarized data is a useful index for water extraction and the result is better than each of the VV or VH polarized images.
基金the National Natural Science Foundation of China for financial support(No.91962219).
文摘The demand for lithium resources is increasing sharply with the rapid development of electric vehicles.It is of great economic significance to expand the geological resources of lithium and improve the utilization rate of lithium-containing salt lakes.In this paper,the hydrochemical types of the lithium-containing salt lakes in the Tibet Plateau were classified according to a large amount of hydrochemical data obtained from a recent investigation on the Tibet Plateau.In addition,the lithium extraction methods used in the salt lakes within each hydrochemical type area were analyzed and summarized,which provided a reference for the selection of lithium extraction processes in the same hydrochemical type of lithium-containing salt lakes in the future.The binding energies of Li(l)and anions in salt lakes with different hydrochemical types were calculated by density functional theory,which provides the theoretical basis for selecting the best lithium extraction technology in different salt lakes.We emphasize that the process with the combined characteristics of high efficiency,economy and environmental protection should be selected according to the hydrochemical type of different salt lakes.In the future,different salt lakes should focus on direct lithium extraction technology from the original brine.