期刊文献+
共找到176篇文章
< 1 2 9 >
每页显示 20 50 100
Bridge damage identification based on convolutional autoencoders and extreme gradient boosting trees
1
作者 Duan Yuanfeng Duan Zhengteng +1 位作者 Zhang Hongmei Cheng J.J.Roger 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期221-229,共9页
To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele... To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios. 展开更多
关键词 structural health monitoring damage identification convolutional autoencoder(CAE) extreme gradient boosting tree(xgboost) machine learning
在线阅读 下载PDF
利用XGBoost模型查明土地利用格局对行人交通事故严重程度的非线性影响
2
作者 刘琪琪 陈春 匡新晖 《科学技术与工程》 北大核心 2025年第3期1253-1261,共9页
土地利用与交通安全是城市地理和交通运输领域共同关注的热点,但目前关于土地利用对行人交通事故的影响研究多纳入建成环境统一框架,并多采用土地利用混合度或土地利用类型占比来衡量,缺乏对土地利用类型的细化研究,难以有效指导设计实... 土地利用与交通安全是城市地理和交通运输领域共同关注的热点,但目前关于土地利用对行人交通事故的影响研究多纳入建成环境统一框架,并多采用土地利用混合度或土地利用类型占比来衡量,缺乏对土地利用类型的细化研究,难以有效指导设计实践。以重庆市渝中区为例,基于兴趣点(point of interest,POI)数据对土地利用类型进行精细刻画,应用极致梯度提升树(extreme gradient boosting,XGBoost)模型,探究土地利用类型以及行人、道路条件、道路环境等对行人交通事故严重程度影响的非线性关系。研究发现:①土地利用类型对行人交通事故严重程度有重要作用,其中影响较大的分别是医院、住宅和教育用地,事故点缓冲区300 m内存在医院、居民小区以及教育用地对行人交通事故严重程度有降低作用;②弯道和弯坡道的道路线形处是严重行人交通事故的高发区;路段进出口处、窄路等路口路段处对行人交通事故严重程度有降低作用。研究结论可为精细化的土地利用规划与治理以降低行人交通事故严重程度提供一定的政策启示。 展开更多
关键词 土地利用 建成环境 极致梯度提升决策树(xgboost) 交通安全
在线阅读 下载PDF
Forecasting Multi-Step Ahead Monthly Reference Evapotranspiration Using Hybrid Extreme Gradient Boosting with Grey Wolf Optimization Algorithm 被引量:1
3
作者 Xianghui Lu Junliang Fan +1 位作者 Lifeng Wu Jianhua Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期699-723,共25页
It is important for regional water resources management to know the agricultural water consumption information several months in advance.Forecasting reference evapotranspiration(ET_(0))in the next few months is import... It is important for regional water resources management to know the agricultural water consumption information several months in advance.Forecasting reference evapotranspiration(ET_(0))in the next few months is important for irrigation and reservoir management.Studies on forecasting of multiple-month ahead ET_(0) using machine learning models have not been reported yet.Besides,machine learning models such as the XGBoost model has multiple parameters that need to be tuned,and traditional methods can get stuck in a regional optimal solution and fail to obtain a global optimal solution.This study investigated the performance of the hybrid extreme gradient boosting(XGBoost)model coupled with the Grey Wolf Optimizer(GWO)algorithm for forecasting multi-step ahead ET_(0)(1-3 months ahead),compared with three conventional machine learning models,i.e.,standalone XGBoost,multi-layer perceptron(MLP)and M5 model tree(M5)models in the subtropical zone of China.The results showed that theGWO-XGB model generally performed better than the other three machine learning models in forecasting 1-3 months ahead ET_(0),followed by the XGB,M5 and MLP models with very small differences among the three models.The GWO-XGB model performed best in autumn,while the MLP model performed slightly better than the other three models in summer.It is thus suggested to apply the MLP model for ET_(0) forecasting in summer but use the GWO-XGB model in other seasons. 展开更多
关键词 Reference evapotranspiration extreme gradient boosting Grey Wolf Optimizer multi-layer perceptron M5 model tree
在线阅读 下载PDF
基于RF-XGBoost算法的无人机多回合攻防博弈决策
4
作者 邹世培 王玉惠 刘鸿睿 《系统工程与电子技术》 北大核心 2025年第2期518-526,共9页
为解决不平衡空战数据集下的无人机多回合博弈对抗问题,提出一种随机森林-极限梯度提升(random forest-eXtreme gradient boosting, RF-XGBoost)算法以进行攻防博弈决策研究。通过分析红蓝双方的运动状态和空战信息,建立支付矩阵模型,... 为解决不平衡空战数据集下的无人机多回合博弈对抗问题,提出一种随机森林-极限梯度提升(random forest-eXtreme gradient boosting, RF-XGBoost)算法以进行攻防博弈决策研究。通过分析红蓝双方的运动状态和空战信息,建立支付矩阵模型,利用线性归纳法求解当前博弈纳什均衡解和期望收益,以蓝方最终获胜作为博弈对抗是否停止的判断条件。在博弈对抗过程中,首先基于随机森林(random forest, RF)算法对空战数据集进行特征降维以提高空战决策的实时性,然后提出改进的XGBoost算法来处理不平衡数据集,将其用于确定最优机动动作以提高机动决策准确率和提升蓝方对抗态势,并得到下一回合的红蓝空战信息;之后,根据下一回合的支付矩阵模型重新计算纳什均衡解和期望收益,直至蓝方获胜;最后,通过仿真验证所提算法的可行性和有效性。 展开更多
关键词 无人机 随机森林 极限梯度提升 多回合博弈
在线阅读 下载PDF
基于XGboost和线性回归的军队体系建设“成本-能力”组合优化模型
5
作者 张玉婷 杨镜宇 《系统工程与电子技术》 北大核心 2025年第2期486-495,共10页
不确定性条件下的体系能力评估和优化是提升军事体系建设效能的重要方式和手段。着眼军队体系建设中多种“成本-能力”方案优选问题,借鉴投资组合优化理论,采用极端梯度提升(eXtreme gradient boosting, XGboost)二分类模型、线性回归... 不确定性条件下的体系能力评估和优化是提升军事体系建设效能的重要方式和手段。着眼军队体系建设中多种“成本-能力”方案优选问题,借鉴投资组合优化理论,采用极端梯度提升(eXtreme gradient boosting, XGboost)二分类模型、线性回归、三点估计等方法,构建“成本-能力”组合优化模型,汇总多个评估标准,得出备选方案的经济价值和对备选方案不确定性的敏感程度,综合分析,得到最优备选方案,并将模型应用于体系建设案例中进行验证,研究成果为“成本-能力”组合备选方案评估优选提供理论依据及实践方法。 展开更多
关键词 组合优化 xgboost二分类 线性回归 三点估计 体系能力
在线阅读 下载PDF
XGBoost-Based Power Grid Fault Prediction with Feature Enhancement: Application to Meteorology
6
作者 Kai Liu Meizhao Liu +2 位作者 Ming Tang Chen Zhang Junwu Zhu 《Computers, Materials & Continua》 2025年第2期2893-2908,共16页
The prediction of power grid faults based on meteorological factors is of great significance to reduce economic losses caused by power grid faults. However, the existing methods fail to effectively extract key feature... The prediction of power grid faults based on meteorological factors is of great significance to reduce economic losses caused by power grid faults. However, the existing methods fail to effectively extract key features and accurately predict fault types due to the complexity of meteorological factors and their nonlinear relationships. In response to these challenges, we propose the Feature-Enhanced XGBoost power grid fault prediction method (FE-XGBoost). Specifically, we first combine the gradient boosting decision tree and recursive feature elimination method to extract essential features from meteorological data. Then, we incorporate a piecewise linear chaotic map to enhance the optimization accuracy of the sparrow search algorithm. Finally, we construct an XGBoost-based model for the classification prediction of power grid meteorological faults and optimize the hyperparameters such as the optimal tree depth, optimal learning rate, and optimal number of iterations using an enhanced sparrow search algorithm. Experimental results demonstrate that our method outperforms the baseline models in predicting power grid faults accurately. 展开更多
关键词 Meteorological factors gradient boosting decision tree sparrow search algorithm xgboost
在线阅读 下载PDF
基于BiLSTM-XGBoost混合模型的储层岩性识别 被引量:2
7
作者 杜睿山 黄玉朋 +2 位作者 孟令东 张轶楠 周长坤 《计算机系统应用》 2024年第6期108-116,共9页
储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidi... 储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidirectional long short-term memory,BiLSTM)和极端梯度提升决策树(extreme gradient boosting decision tree,XGBoost),提出双向记忆极端梯度提升(BiLSTM-XGBoost,BiXGB)模型预测储层岩性.该模型在传统XGBoost基础上融入了BiLSTM,大大增强了模型对测井数据的特征提取能力.BiXGB模型使用BiLSTM对测井数据进行特征提取,将提取到的特征传递给XGBoost分类模型进行训练和预测.将BiXGB模型应用于储层岩性数据集时,模型预测的总体精度达到了91%.为了进一步验证模型的准确性和稳定性,将模型应用于UCI公开的Occupancy序列数据集,结果显示模型的预测总体精度也高达93%.相较于其他机器学习模型,BiXGB模型能准确地对序列数据进行分类,提高了储层岩性的识别精度,满足了油气勘探的实际需要,为储层岩性识别提供了新的方法. 展开更多
关键词 神经网络 机器学习 测井数据 岩性分类 BiLSTM xgboost
在线阅读 下载PDF
结合SVM与XGBoost的链式多路径覆盖测试用例生成 被引量:1
8
作者 钱忠胜 俞情媛 +3 位作者 张丁 姚昌森 秦朗悦 成轶伟 《软件学报》 EI CSCD 北大核心 2024年第6期2795-2820,共26页
机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借... 机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借助遗传算法实现多路径测试数据生成.首先,利用一定样本训练若干个用于预测路径节点状态的子模型(SVM和XGBoost),通过子模型的预测精度值筛选最优子模型,并根据路径节点顺序将其依次链接,形成一个链式模型C-SVMXGBoost(chained SVM and XGBoost).在利用遗传算法生成测试用例时,使用训练好的链式模型代替插桩法获取测试数据覆盖路径(预测路径),寻找预测路径与目标路径相似的路径集,对存在相似路径集的预测路径进行插桩验证,获取精确路径,计算适应度值.在交叉变异过程中引入样本集中路径层级深度较大的优秀测试用例进行重用,生成覆盖目标路径的测试数据.最后,保留进化生成中产生的适应度较高的个体,更新链式模型C-SVMXGBoost,进一步提高测试效率.实验表明,C-SVMXGBoost较其他各对比链式模型更适合解决路径预测问题,可提高测试效率.并且通过与已有经典方法相比,所提方法在覆盖率上提高可达15%,平均进化代数也有所降低,在较大规模程序上其降低百分比可达65%. 展开更多
关键词 测试用例 SVM xgboost 链式模型 多路径覆盖
在线阅读 下载PDF
一种基于贝叶斯优化和XGBoost的膏体流变参数预测模型
9
作者 赵艳伟 胡正祥 +4 位作者 乔登攀 姚晋龙 李广涛 杨天雨 王俊 《有色金属(矿山部分)》 2024年第5期118-128,共11页
探究膏体充填料浆流变特性,对矿山合理布置充填管路,高效进行充填作业有重要意义。目的:将繁琐且影响因素众多的膏体流变参数测量试验与先进的机器学习回归预测模型相结合,实现膏体流变参数的准确预测。方法:利用不同物料配合比条件下共... 探究膏体充填料浆流变特性,对矿山合理布置充填管路,高效进行充填作业有重要意义。目的:将繁琐且影响因素众多的膏体流变参数测量试验与先进的机器学习回归预测模型相结合,实现膏体流变参数的准确预测。方法:利用不同物料配合比条件下共128组膏体流变特性试验数据作为模型数据集,选择极度梯度提升回归树(XGBoost)模型,结合贝叶斯算法(BO)对模型进行超参数寻优设置,建立了多目标参数回归预测模型。结果:研究结果表明:经贝叶斯算法优化后的BO-XGBoost模型较XGBoost模型性能显著提升,决定系数R^(2)提高6%。所构建BO-XGBoost模型真实值与预测值在屈服应力数据集上相对误差维持在0.02水平;黏度数据集维持在0.1水平。结论:BO-XGBoost模型可实现膏体流变参数的高效准确预测,创新性地使用了多目标回归模型,为矿山充填作业设计提供参考,具有一定实际工程应用意义。 展开更多
关键词 膏体充填 流变特性 机器学习 贝叶斯优化 极度提升回归树
在线阅读 下载PDF
基于STL-XGBoost-NBEATSx的小时天然气负荷预测
10
作者 邵必林 任萌 田宁 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期170-179,共10页
小时天然气负荷预测受外部特征因素与预测方法的影响,为提高其预测精度并解决其他深度学习类模型或组合模型可解释性差、训练时间过长的问题,在引入“小时影响度”这一新特征因素的同时提出一种基于极端梯度提升树(extreme gradient boo... 小时天然气负荷预测受外部特征因素与预测方法的影响,为提高其预测精度并解决其他深度学习类模型或组合模型可解释性差、训练时间过长的问题,在引入“小时影响度”这一新特征因素的同时提出一种基于极端梯度提升树(extreme gradient boosting tress,XGBoost)模型与可解释性神经网络模型NBEATSx组合预测的方法;以XGBoost模型作为特征筛选器对特征集数据进行筛选,再将筛选降维后的数据集输入到NBEATSx中训练,提高NBEATSx的训练速度与预测精度;将负荷数据与特征数据经STL(seasonal and trend decomposition using Loess)算法分解为趋势分量、季节分量与残差分量,再分别输入到XGBoost中进行预测,减弱原始数据中的噪音影响;将优化后的NBEATSx与XGBoost模型通过方差倒数法进行组合,得出STL-XGBoost-NBEATSx组合模型的预测结果。结果表明:“小时影响度”这一新特征是小时负荷预测的重要影响因素,STL-XGBoost-NBEATSx模型训练速度有所提高,具有良好的可解释性与更高的预测准确性,模型预测结果的平均绝对百分比误差、均方误差、平均绝对误差分别比其余单一模型平均降低54.20%、63.97%、49.72%,比其余组合模型平均降低24.85%、34.39%、23.41%,模型的决定系数为0.935,能够很好地拟合观测数据。 展开更多
关键词 天然气负荷预测 小时影响因素 极端梯度提升树 可解释性 NBEATSx 组合模型
在线阅读 下载PDF
Tactical intention recognition of aerial target based on XGBoost decision tree 被引量:9
11
作者 WANG Lei LI Shi-zhong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第2期148-152,共5页
In order to improve the accuracy of target intent recognition,a recognition method based on XGBoost(eXtreme Gradient Boosting)decision tree is proposed.This paper adopts relevant data and program of python to calculat... In order to improve the accuracy of target intent recognition,a recognition method based on XGBoost(eXtreme Gradient Boosting)decision tree is proposed.This paper adopts relevant data and program of python to calculate the probability of tactical intention.Then the sequence intention probability is obtained by applying Dempster-Shafer rule of combination.To verify the accuracy of recognition results,we compare the experimental results of this paper with the results in the literatures.The experiment shows that the probability of tactical intention recognition through this method is improved,so this method is feasible. 展开更多
关键词 tactical intention recognition of target xgboost(extreme gradient boosting)decision tree Dempster-Shafer combination rule
在线阅读 下载PDF
基于改进XGBoost的金融客户投资行为特征选择方法 被引量:1
12
作者 吴成英 马东方 《计算机应用》 CSCD 北大核心 2024年第S01期330-336,共7页
金融客户投资购买行为是投资者动态购买理财产品交易决策的综合结果,受到客户自身属性、产品因素、行情信息和历史交易等多个不同因素的影响,原始因子属性的特征维度庞大、拟合风险偏高。现有研究主要通过不同的算法提高特征选择的准确... 金融客户投资购买行为是投资者动态购买理财产品交易决策的综合结果,受到客户自身属性、产品因素、行情信息和历史交易等多个不同因素的影响,原始因子属性的特征维度庞大、拟合风险偏高。现有研究主要通过不同的算法提高特征选择的准确率,忽略了不同群体的差异化特征及动态因素的影响。因此,提出一种改进XGBoost(eXtreme Gradient Boosting)的特征选择算法,并在金融客户投资行为上应用研究。针对客户群体投资行为的差异性,多维度综合量化分析投资行为,以解决单一投资行为指标不合理问题;对不同客户群体通过主成分分析(PCA)降维和优化的K-均值(K-means)聚类算法进行多属性融合聚类,然后分别对聚类后的不同群体使用改进XGBoost进行多分类预测,并通过修剪特征因子提升预测准确率。实验结果表明,使用改进XGBoost后,金融客户投资行为的特征因子维度更贴近实际,准确率更高。 展开更多
关键词 特征选择 xgboost 多类别分类 主成分分析 K-MEANS聚类 投资行为
在线阅读 下载PDF
基于WKPCA与IEDO-XGBoost的变压器故障诊断方法研究 被引量:1
13
作者 张容槟 徐耀松 牛元平 《电工电能新技术》 CSCD 北大核心 2024年第10期24-42,共19页
针对变压器故障的特点,将加权核主成分分析技术与IEDO-XGBoost相结合,提出了一种新的变压器故障诊断模型。该方法主要将溶解气体分析技术与无编码比值法相结合,获取变压器的故障特征,利用WKPCA对其进行降维处理,并将归一化处理后的故障... 针对变压器故障的特点,将加权核主成分分析技术与IEDO-XGBoost相结合,提出了一种新的变压器故障诊断模型。该方法主要将溶解气体分析技术与无编码比值法相结合,获取变压器的故障特征,利用WKPCA对其进行降维处理,并将归一化处理后的故障样本数据作为IEDO-XGBoost模型的输入,输出变压器故障诊断类型及其诊断准确率。选取20维变压器故障特征数据进行WKPCA降维处理,加快了模型的收敛速度;采用自适应正余弦策略和高斯变异策略对指数分布优化器算法进行改进,并用10个典型测试函数对改进后的指数分布优化算法性能进行了测试,结果表明改进后的指数分布优化算法具有更快的收敛速度和全局搜索能力。然后,利用改进的指数分布算法来确定XGBoost模型中的多个最优参数。仿真结果表明,该模型的诊断准确率为91.82%,分别比EDO-XGBoost、NGO-XGBoost、GJO-XGBoost、GWO-XGBoost和WOA-XGBoost故障诊断模型高2.73%、3.64%、5.46%、8.18%和10.91%,验证了本文所提方法能够有效提高变压器故障诊断性能。 展开更多
关键词 变压器 加权核主成分分析 故障诊断 溶解气体分析 指数分布优化算法 极端梯度提升
在线阅读 下载PDF
基于SC-XGBoost的电站燃煤低位发热量软测量方法
14
作者 乔世超 王轶男 +4 位作者 吕佳阳 陈衡 刘涛 徐钢 翟融融 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第S01期332-340,共9页
随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据... 随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据,对燃煤发热量进行准确预测能够有效地控制电厂运行采购成本。为了实现燃煤发热量的高效预测,采用Pearson系数对相关变量进行特征选取,采用基于密度的噪点空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法对某电厂自备煤厂近2年1733条化验数据进行去噪,对去噪后数据进行谱聚类(Spectral Clustering,SC)分析。将分类后的子样本集采用极致梯度提升(Extreme Gradient Boosting,XGBoost)算法分别建立预测模型,并与最小二乘法回归(Ordinary Least Squares,OLS)、支持向量机(Support Vector Machines,SVM)模型进行性能比较。结果表明,基于XGBoost的电站燃煤发热量预测模型相较于其他算法准确性有明显提升,泛化能力更强。对经过SC算法分类后的燃煤分别建立预测模型能够进一步提高模型的精细化水平,为燃煤电站发热量预测提供一种可靠高效的方法。 展开更多
关键词 低位发热量 机器学习 谱聚类 极致梯度提升(xgboost) 软测量
在线阅读 下载PDF
基于WOA-XGBoost的膜下滴灌棉花蒸散量预测模型
15
作者 曹缘 王振华 +3 位作者 张继红 刘宁宁 李文昊 张金珠 《排灌机械工程学报》 CSCD 北大核心 2024年第12期1280-1286,共7页
为了科学准确地预测膜下滴灌棉花蒸散量,基于鲸鱼优化算法(whale optimization algorithm,WOA)和极端梯度提升树(XGBoost),提出了WOA-XGBoost棉花蒸散量预测模型.采用最大互信息系数(maximal information coefficient,MIC)筛选影响棉花... 为了科学准确地预测膜下滴灌棉花蒸散量,基于鲸鱼优化算法(whale optimization algorithm,WOA)和极端梯度提升树(XGBoost),提出了WOA-XGBoost棉花蒸散量预测模型.采用最大互信息系数(maximal information coefficient,MIC)筛选影响棉花蒸散量的关键因素,依据相关系数排序构建输入组合,代入WOA-XGBoost模型进行模拟.并与XGBoost,SVM,WOA-SVM和PSO-XGBoost预测结果进行对比验证.结果表明:太阳辐射、最低气温、最高气温、相对湿度、风速和土壤温度与棉花蒸散量相关性较大,其MIC值分别为0.722,0.546,0.496,0.475,0.379和0.219,基于上述6个因素构建的WOA-XGBoost模型综合性能最优,R^(2),MAE,RMSE和MAPE分别为0.922,0.038 mm/h,0.064 mm/h和0.221,预测精度均优于相同输入参数下的其他4种模型.因此,推荐使用WOA-XGBoost模型模拟相关因素与膜下滴灌棉花蒸散量之间的非线性关系.研究可为精确计算膜下滴灌棉花蒸散量提供科学依据,为灌溉决策优化提供参考. 展开更多
关键词 蒸散量 棉花 极端梯度提升树模型 鲸鱼优化算法 预测模型
在线阅读 下载PDF
基于PCA-GA-XGBoost模型的吉林省水资源 承载力评价 被引量:2
16
作者 庞博文 李治军 《人民珠江》 2024年第4期98-106,共9页
为了提高水资源承载力评价的效率和准确性,提出了一种基于主成分分析(PCA)、遗传算法(GA)和极限梯度提升树(XGBoost)的指标评价模型。定义了以水资源、社会经济、生态环境为子系统的14项评价指标;采用主成分分析法对评价指标进行降维处... 为了提高水资源承载力评价的效率和准确性,提出了一种基于主成分分析(PCA)、遗传算法(GA)和极限梯度提升树(XGBoost)的指标评价模型。定义了以水资源、社会经济、生态环境为子系统的14项评价指标;采用主成分分析法对评价指标进行降维处理;基于梯度提升决策树对吉林省2011—2021年的水资源承载力进行评价分析,并利用遗传算法对极限梯度提升树中4个参数进行优化。结果表明:经主成分分析简化评价指标后,PCA-GA-XGBoost模型的相关系数等指标均优于GA-BP、GA-SVM、GA-XGBoost和XGBoost;2011—2021年吉林省水资源承载力位于0.192~0.724,为先上升后下降再上升趋势,承载力状况逐年改善;利用模型内置的特征值重要度排序功能,识别得出重要度最大的指标为每公顷化肥施用量(0.5307),是影响吉林省水资源承载力的关键因素。 展开更多
关键词 主成分分析 遗传算法 极限梯度提升树 水资源承载力 吉林省
在线阅读 下载PDF
基于XGBoost模型的路段交通流量短时预测 被引量:3
17
作者 蒋源 陈小鸿 胡松华 《武汉理工大学学报(交通科学与工程版)》 2024年第1期25-30,36,共7页
文中利用上海杨浦区雷达设备采集的城市道路流量数据,基于XGBoost模型对路段流量进行预测.考虑城市道路交通流量的复杂性与随机性,选用包括整体特征、时间相关特征、空间相关特征等31个特征变量,并通过格网搜索对模型主要参数进行调整.... 文中利用上海杨浦区雷达设备采集的城市道路流量数据,基于XGBoost模型对路段流量进行预测.考虑城市道路交通流量的复杂性与随机性,选用包括整体特征、时间相关特征、空间相关特征等31个特征变量,并通过格网搜索对模型主要参数进行调整.结果显示:在不同时间粒度上,XGBoost模型的RMSE精度皆优于其余五个对比模型,且在效率上也具有优势.以5 min为时间粒度时,RMSE值为14.22,MAPE值为0.153,耗时23.84 s.此外,XGBoost具有较高可解释性.通过对不同特征变量的组合预测及特征变量重要度分析发现,以时间粒度为单元,1、2、3阶滞后流量及彼此间的差值可明显提高模型预测精度,随时间粒度增大,流周期性增强,随机性减弱. 展开更多
关键词 路段流量 短时预测 机器学习 xgboost模型
在线阅读 下载PDF
井下动态环境基于DAE的XGBoost自适应定位算法研究
18
作者 洪金祥 崔丽珍 窦占树 《传感器与微系统》 CSCD 北大核心 2024年第10期23-26,30,共5页
针对煤矿井下高动态环境导致WiFi定位模型的精度降低的问题,提出极端梯度提升(XGBoost)的指纹定位算法,利用其高维数据特征的学习能力完成定位。与传统的梯度提升树(GBDT)算法相比,在完成更好定位效果的同时,速度也大大提升。同时针对W... 针对煤矿井下高动态环境导致WiFi定位模型的精度降低的问题,提出极端梯度提升(XGBoost)的指纹定位算法,利用其高维数据特征的学习能力完成定位。与传统的梯度提升树(GBDT)算法相比,在完成更好定位效果的同时,速度也大大提升。同时针对WiFi数据的波动性和XGBoost算法面对动态环境模型漂移问题,分别提出融合降噪自编码器(DAE)和自适应机制的D-XGBoost算法和Z-XGBoost算法。实验结果表明:XGBoost算法的定位精度比GBDT算法提高了,效率提高了5倍多。融合DAE的D-XG-Boost算法的定位准确率比XGBoost算法提高了17%;融合了自适应机制的Z-XGBoost算法有效降低了模型漂移造成的误差。所提改进算法更好地改善了WiFi定位模型精度降低和模型漂移问题。 展开更多
关键词 极端梯度提升 井下指纹定位 模型漂移 降噪自编码器 误差补偿
在线阅读 下载PDF
融合SHAP和TSO-XGBoost模型的水路货运量预测
19
作者 温泉 余玉欢 +1 位作者 庄尚德 牟军敏 《水利水运工程学报》 CSCD 北大核心 2024年第6期86-96,共11页
水路货运量需求受诸多因素影响,长江干线中游“645”工程实施后,航道通航条件得到了明显改善,为了更好分析工程实施后货运量变化趋势,提出一种新的水路货运量预测模型。首先,采用二次插值法和KNN反距离权重插值法解决高维面板数据中时... 水路货运量需求受诸多因素影响,长江干线中游“645”工程实施后,航道通航条件得到了明显改善,为了更好分析工程实施后货运量变化趋势,提出一种新的水路货运量预测模型。首先,采用二次插值法和KNN反距离权重插值法解决高维面板数据中时间粒度不统一与缺失问题,利用层次聚类和SHAP值的可解释性综合筛选关键影响因素特征序列,降低预测模型输入数据的维度和规模,引入Halton低差异序列和准反射学习策略(QRBL)大幅提升金枪鱼群优化算法(TSO)的寻优效能,增强TSO算法对极限梯度提升(XGBoost)模型中决策树数量、决策树的深度、学习速率等决定模型拟合能力的超参组合寻优效果。结果表明,新模型预测精度显著优于对比模型,可更好地适用于多特征影响因素下的水路货运量预测研究。 展开更多
关键词 金枪鱼群优化算法(TSO) 极限梯度提升(xgboost) 水路货运量
在线阅读 下载PDF
基于XGBoost的城市污水管道缺陷发生概率预测
20
作者 马辉 贺鹰霞 陈杨杨 《中国安全科学学报》 CAS CSCD 北大核心 2024年第11期163-171,共9页
为提高城市污水管道缺陷检测效率,减少地毯式检测带来的资源浪费,降低环境安全风险,利用极致梯度提升(XGBoost)模型预测城市污水管道缺陷发生概率。首先,统计分析污水管道缺陷成因,筛选出能够表征管道缺陷状况的关键性指标,作为XGBoost... 为提高城市污水管道缺陷检测效率,减少地毯式检测带来的资源浪费,降低环境安全风险,利用极致梯度提升(XGBoost)模型预测城市污水管道缺陷发生概率。首先,统计分析污水管道缺陷成因,筛选出能够表征管道缺陷状况的关键性指标,作为XGBoost模型的输入;其次,选择合适的目标函数和基学习器参数,利用网格搜索算法寻优基学习器的关键参数,完成模型训练和优化;最后,以广东省中山市某区域污水管网数据为例,验证XGBoost模型的有效性,根据模型输出寻找影响缺陷发生的主要因素和路径,并将区域内污水管网的缺陷发生概率划分出4个不同等级后进行可视化展示。结果表明:XGBoost模型在10折交叉验证下的曲线下面积(AUC)均值达到0.97,模型的预测准确率为93%;管道埋深、坡度和长度3个特征对管道缺陷发生概率变化的影响程度最高;当管长增加,坡度越大、埋深越浅,污水管道发生缺陷的概率会随之增长。 展开更多
关键词 极致梯度提升(xgboost) 城市污水管道 缺陷发生概率 决策树 预测模型
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部