The failure types in gear systems vary,with typical ones mainly including pitting,cracking,wear,and broken teeth.Different modeling and stiffness calculation methods have been developed for various gear failure types....The failure types in gear systems vary,with typical ones mainly including pitting,cracking,wear,and broken teeth.Different modeling and stiffness calculation methods have been developed for various gear failure types.A unified method for typical gear failure modeling and stiffness calculation is introduced in this study by considering the deviations in the time-varying meshing stiffness(TVMS)of faulty gears resulting from the use of different methods.Specifically,a gear tooth is discretized into a large number of microelements expressed with a matrix,and unified models of typical gear failures are built by adjusting the values of the matrix microelements.The values and positions of the microelements in the tooth failure model matrix have the same physical meaning as the parameter variables in the potential energy method(PEM),so the matrix-based failure model can be perfectly matched with PEM.Afterward,a unified method for TVMS is established.Modeling of healthy and faulty gears with pitting,wear,crack,and broken tooth is performed with the matrix equation,and the corresponding TVMS values are calculated by incorporating the matrix models with PEM.On the basis of the results,the mechanism of typical fault types that affect TVMS is analyzed,and the conclusions are verified through the finite element method.The developed unified method is a promising technique for studying the dynamic response characteristics of gear systems with different failure types because of its superiority in eliminating stiffness deviations.展开更多
Modeling HIV/AIDS progression is critical for understanding disease dynamics and improving patient care. This study compares the Exponential and Weibull survival models, focusing on their ability to capture state-spec...Modeling HIV/AIDS progression is critical for understanding disease dynamics and improving patient care. This study compares the Exponential and Weibull survival models, focusing on their ability to capture state-specific failure rates in HIV/AIDS progression. While the Exponential model offers simplicity with a constant hazard rate, it often fails to accommodate the complexities of dynamic disease progression. In contrast, the Weibull model provides flexibility by allowing hazard rates to vary over time. Both models are evaluated within the frameworks of the Cox Proportional Hazards (Cox PH) and Accelerated Failure Time (AFT) models, incorporating critical covariates such as age, gender, CD4 count, and ART status. Statistical evaluation metrics, including Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), log-likelihood, and Pseudo-R2, were employed to assess model performance across diverse patient subgroups. Results indicate that the Weibull model consistently outperforms the Exponential model in dynamic scenarios, such as younger patients and those with co-infections, while maintaining robustness in stable contexts. This study highlights the trade-off between flexibility and simplicity in survival modeling, advocating for tailored model selection to balance interpretability and predictive accuracy. These findings provide valuable insights for optimizing HIV/AIDS management strategies and advancing survival analysis methodologies.展开更多
This paper presents three case studies comprising failure mechanisms in phyllite mine slopes at Quadrila- tero Ferrifero, State of Minas Gerais, Brazil. Numerical modeling techniques were used in this study. Fail- ure...This paper presents three case studies comprising failure mechanisms in phyllite mine slopes at Quadrila- tero Ferrifero, State of Minas Gerais, Brazil. Numerical modeling techniques were used in this study. Fail- ure mechanisms involving discontinuities sub parallel to the main foliation are very common in these mines. Besides, failure through the rock material has also been observed due to the low strength of phyl- lites in this site. Results of this work permitted to establish unknown geotechnical parameters which have significant influence in failure processes, like the in situ stress field and the discontinuity stiffness.展开更多
Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electro...Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electrochemical energy storage system. A novel failure prediction modeling method of lithium ion battery based on distributed parameter estimation and single particle model is proposed in this work. Lithium ion concentration in the anode of lithium ion battery is an unmeasurable distributed variable. Failure prediction system can estimate lithium ion concentration online, track the failure residual which is the difference between the estimated value and the ideal value. The precaution signal will be triggered when the failure residual is beyond the predefined failure precaution threshold, and the failure countdown prediction module will be activated. The remaining time of the severe failure threshold can be estimated by the failure countdown prediction module according to the changing rate of the failure residual. A simulation example verifies that lithium ion concentration in the anode of lithium ion battery can be estimated exactly and effectively by the failure prediction model. The precaution signal can be triggered reliably, and the remaining time of the severe failure can be forecasted accurately by the failure countdown prediction module.展开更多
Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combinat...Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.展开更多
BACKGROUND Utilizing failure mode and effects analysis(FMEA)in operating room nursing provides valuable insights for the care of patients undergoing radical gastric cancer surgery.AIM To evaluate the impact of FMEA on...BACKGROUND Utilizing failure mode and effects analysis(FMEA)in operating room nursing provides valuable insights for the care of patients undergoing radical gastric cancer surgery.AIM To evaluate the impact of FMEA on the risk of adverse events and nursing-care quality in patients undergoing radical surgery.METHODS Among 230 patients receiving radical cancer surgery between May 2019 and May 2024,115 were assigned to a control group that received standard intraoperative thermoregulation,while the observation group benefited from FMEA-modeled operating room care.Clinical indicators,stress responses,postoperative gastroin-testinal function recovery,nursing quality,and the incidence of adverse events were compared between the two groups.RESULTS Significant differences were observed in bed and hospital stay durations between the groups(P<0.05).There were no significant differences in intraoperative blood loss or postoperative body temperature(P>0.05).Stress scores improved in both groups post-nursing(P<0.05),with the observation group showing lower stress scores than the control group(P<0.05).Gastrointestinal function recovery and nursing quality scores also differed significantly(P<0.05).Additionally,the incidence of adverse events such as stress injuries and surgical infections varied notably between the groups(P<0.05).CONCLUSION Incorporating FMEA into operating room nursing significantly enhances patient care by improving safety,expediting recovery,and reducing healthcare-associated risks.展开更多
Using the characteristic of addition of information quantity and the principle of equivalence of information quantity, this paper derives the general conversion formulae of the formation theory method conversion (synt...Using the characteristic of addition of information quantity and the principle of equivalence of information quantity, this paper derives the general conversion formulae of the formation theory method conversion (synthesis) on the systems consisting of different success failure model units. According to the fundamental method of the unit reliability assessment, the general models of system reliability approximate lower limits are given. Finally, this paper analyses the application of the assessment method by examples, the assessment results are neither conservative nor radical and very satisfactory. The assessment method can be popularized to the systems which have fixed reliability structural models.展开更多
The degradation data of multi-components in missile is derived by periodical testing. How to use these data to assess the storage reliability (SR) of the whole missile is a difficult problem in current research. An SR...The degradation data of multi-components in missile is derived by periodical testing. How to use these data to assess the storage reliability (SR) of the whole missile is a difficult problem in current research. An SR assessment model based on competition failure of multi-components in missile is proposed. By analyzing the missile life profile and its storage failure feature, the key components in missile are obtained and the characteristics voltage is assumed to be its key performance parameter. When the voltage testing data of key components in missile are available, a state space model (SSM) is applied to obtain the whole missile degradation state, which is defined as the missile degradation degree (DD). A Wiener process with the time-scale model (TSM) is applied to build the degradation failure model with individual variability and nonlinearity. The Weibull distribution and proportional risk model are applied to build an outburst failure model with performance degradation effect. Furthermore, a competition failure model with the correlation between degradation failure and outburst failure is proposed. A numerical example with a set of missiles in storage is analyzed to demonstrate the accuracy and superiority of the proposed model.展开更多
In this paper, a numerical method for correlation sensitivity analysis of a nonlinear random vibration system is presented. Based on the first passage failure model, the probability perturbation method is employed to ...In this paper, a numerical method for correlation sensitivity analysis of a nonlinear random vibration system is presented. Based on the first passage failure model, the probability perturbation method is employed to determine the statistical characteristics of failure modes and the correlation between them. The sensitivity of correlation between failure modes with respect to random parameters characterizing the uncertainty of the hysteretic loop is discussed. In a numerical example, a two-DOF shear structure with uncertain hysteretic restoring force is considered. The statistical characteristics of response, failure modes and the sensitivity of random hysteretic loop parameters are provided, and also compared with a Monte Carlo simulation.展开更多
Forestry has played an important role in hazard mitigation associated with debris flows.Most forest mitigation measures refer to the experience of soil and water conservation,which disregard the destructive effect of ...Forestry has played an important role in hazard mitigation associated with debris flows.Most forest mitigation measures refer to the experience of soil and water conservation,which disregard the destructive effect of debris flows,causing potentially serious consequences.Determination of the effect of a forest on reducing debris-flow velocity and even stopping debris flows requires distinguishing between when the debris flow will destroy the forest and when the trees will withstand the debris-flow impact force.In this paper,we summarized two impact failure models of a single tree: stem breakage and overturning.The influences of different tree sizes characteristics(stem base diameter,tree weight,and root failure radius) and debris-flow characteristics(density,velocity,flow depth,and boulder diameter) on tree failure were analyzed.The observations obtained from the model adopted in this study show that trees are more prone to stem breakage than overturning.With an increase in tree size,the ability to resist stem breakage and overturning increases.Debris-flow density influences the critical failure conditions of trees substantially less than the debrisflow velocity,depth,and boulder diameter.The application conditions of forests in debris-flow hazard mitigation were proposed based on the analysis of the model results.The proposed models were applied in the Xiajijiehaizi Gully as a case study,and the results explain the destruction of trees in the forest dispersing zone.This work provides references for implementing forest measures for debris-flow hazard mitigation.展开更多
Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured ...Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured zone in the roadway.This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway.Using the single factor and multi-factor orthogonal test method,the evolution law of roadway surrounding rock displacements,plastic zone and stress distribution under different conditions is studied.It reveals the roadway surrounding rock burst evolution process,and obtains five kinds of failure modes in deep soft rock roadway.Using the fuzzy mathematics clustering analysis method,the deep soft surrounding rock failure model in Zhujixi mine can be classified and patterns recognized.Compared to the identification results and the results detected by geological radar of surrounding rock loose circle,the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways.展开更多
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse...The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.展开更多
In this paper both experimental and analytical approaches to provide the inputs for creep modeling of refractories including a newly developed high temperature compressive creep machine and an inverse estimation proce...In this paper both experimental and analytical approaches to provide the inputs for creep modeling of refractories including a newly developed high temperature compressive creep machine and an inverse estimation procedure of creep law parameters are briefly introduced.Besides,a modified shear test is applied to determine the cohesion and friction angle of refractories under shear state. A RH snorkel equipped with magnesia- chromite bricks is chosen for a case study of thermomechanical simulation applying the classical creep model and Drucker-Prager creep model available in the finite element code ABAQUS,respectively. Afterwards,thermal stresses and joint opening of magnesia- chromite bricks during a process cycle are compared to distinguish the impact of these two creep models.展开更多
A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the d...A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.展开更多
Network robustness is one of the core contents of complex network security research.This paper focuses on the robustness of community networks with respect to cascading failures,considering the nodes influence and com...Network robustness is one of the core contents of complex network security research.This paper focuses on the robustness of community networks with respect to cascading failures,considering the nodes influence and community heterogeneity.A novel node influence ranking method,community-based Clustering-LeaderRank(CCL)algorithm,is first proposed to identify influential nodes in community networks.Simulation results show that the CCL method can effectively identify the influence of nodes.Based on node influence,a new cascading failure model with heterogeneous redistribution strategy is proposed to describe and analyze node fault propagation in community networks.Analytical and numerical simulation results on cascading failure show that the community attribute has an important influence on the cascading failure process.The network robustness against cascading failures increases when the load is more distributed to neighbors of the same community instead of different communities.When the initial load distribution and the load redistribution strategy based on the node influence are the same,the network shows better robustness against node failure.展开更多
The brittleness generation mechanism of high strength lightweight aggregate con-crete(HSLWAC) was presented, and it was indicated that lightweight aggregate was the vulnerable spot, initiating brittleness. Based on th...The brittleness generation mechanism of high strength lightweight aggregate con-crete(HSLWAC) was presented, and it was indicated that lightweight aggregate was the vulnerable spot, initiating brittleness. Based on the analysis of the brittleness failure by the load-deflection curve, the brittleness presented by HSLWAC was more prominent compared with ordinary lightweight aggregate concrete of the same strength grade. The model of brittleness failure was also established.展开更多
The main goal of this research is to enhance the auditor's judgment ability in going concern opinion by applying bankruptcy prediction models as an analytical procedure. Data for this research have been collected thr...The main goal of this research is to enhance the auditor's judgment ability in going concern opinion by applying bankruptcy prediction models as an analytical procedure. Data for this research have been collected through questionnaires. The statistical population consists of auditors who are members of Iranian Association of Certified Public Accountants (IACPA). The research results reflect that: (1) Auditors do not use statistical techniques for assessing going concern as an analytical procedure; (2) Auditors do not use these techniques as a tool to decrease the bias of judgments in assessing the going concern assumption; (3) Auditors do not use statistical techniques to assess audit risk in the planning stage; (4) Auditors do not use statistical techniques to assess audit risk in the final stage. Furthermore this research shows that auditors believe that the "standard concerning usage of analytical procedures needs more clarification" and "statistical bankruptcy predication models can help auditors in the planning stage". The other goal of this research is to show different auditor's judgments in assessing the going concern opinion with and without applying the bankruptcy prediction models as an analytical procedure. The result shows that the judgment of auditors toward the going concern assumption has improved by using statistical bankruptcy predication models.展开更多
In this paper, we have studied the nonparameter accelerated failure time (AFT) additive regression model, whose covariates have a nonparametric effect on high-dimensional censored data. We give the asymptotic property...In this paper, we have studied the nonparameter accelerated failure time (AFT) additive regression model, whose covariates have a nonparametric effect on high-dimensional censored data. We give the asymptotic property of the penalty estimator based on GMCP in the nonparameter AFT model.展开更多
In this paper, the fuzzy theory is used to describe the uncertainty in failure definition of composite structures. The concept of structural failure level (SFL) is suggested and a method of evaluation is presented.
This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-ma...This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-macro correlation in the anti-penetration process.Finally,it outlines the constitutive models and numerical simulation studies utilized in the field of impact and penetration.From the macro perspective,nine frequent penetration failure modes of metal materials are summarized,with a focus on the analysis of the cratering,compression shear,penetration,and plugging stages of the penetration process.The reasons for the formation of adiabatic shear bands(ASBs)in metal materials with different crystal structures are elaborated,and the formation mechanism of the equiaxed grains in the ASB is explored.Both the strength and the toughness of metal materials are related to the materials’crystal structures and microstructures.The toughness is mainly influenced by the deformation mechanism,while the strength is explained by the strengthening mechanism.Therefore,the mechanical properties of metal materials depend on their microstructures,which are subject to the manufacturing process and material composition.Regarding numerical simulation,the advantages and disadvantages of different constitutive models and simulation methods are summarized based on the application characteristics of metal materials in high-speed penetration practice.In summary,this article provides a systematic overview of the macroscopic and microscopic characteristics of metal materials,along with their mechanisms and correlation during the anti-penetration and impact-resistance processes,thereby making an important contribution to the scientific understanding of anti-penetration performance and its optimization in metal materials.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant Nos.52175122 and 52075456)the Sichuan Science and Technology Program,China(Grant No.2023NSFSC0362)+1 种基金the Sichuan Province Innovative Talent Funding Project for Postdoctoral Fellows,China(Grant No.BX202214)the China Postdoctoral Science Foundation(Grant No.2023M732917).
文摘The failure types in gear systems vary,with typical ones mainly including pitting,cracking,wear,and broken teeth.Different modeling and stiffness calculation methods have been developed for various gear failure types.A unified method for typical gear failure modeling and stiffness calculation is introduced in this study by considering the deviations in the time-varying meshing stiffness(TVMS)of faulty gears resulting from the use of different methods.Specifically,a gear tooth is discretized into a large number of microelements expressed with a matrix,and unified models of typical gear failures are built by adjusting the values of the matrix microelements.The values and positions of the microelements in the tooth failure model matrix have the same physical meaning as the parameter variables in the potential energy method(PEM),so the matrix-based failure model can be perfectly matched with PEM.Afterward,a unified method for TVMS is established.Modeling of healthy and faulty gears with pitting,wear,crack,and broken tooth is performed with the matrix equation,and the corresponding TVMS values are calculated by incorporating the matrix models with PEM.On the basis of the results,the mechanism of typical fault types that affect TVMS is analyzed,and the conclusions are verified through the finite element method.The developed unified method is a promising technique for studying the dynamic response characteristics of gear systems with different failure types because of its superiority in eliminating stiffness deviations.
文摘Modeling HIV/AIDS progression is critical for understanding disease dynamics and improving patient care. This study compares the Exponential and Weibull survival models, focusing on their ability to capture state-specific failure rates in HIV/AIDS progression. While the Exponential model offers simplicity with a constant hazard rate, it often fails to accommodate the complexities of dynamic disease progression. In contrast, the Weibull model provides flexibility by allowing hazard rates to vary over time. Both models are evaluated within the frameworks of the Cox Proportional Hazards (Cox PH) and Accelerated Failure Time (AFT) models, incorporating critical covariates such as age, gender, CD4 count, and ART status. Statistical evaluation metrics, including Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), log-likelihood, and Pseudo-R2, were employed to assess model performance across diverse patient subgroups. Results indicate that the Weibull model consistently outperforms the Exponential model in dynamic scenarios, such as younger patients and those with co-infections, while maintaining robustness in stable contexts. This study highlights the trade-off between flexibility and simplicity in survival modeling, advocating for tailored model selection to balance interpretability and predictive accuracy. These findings provide valuable insights for optimizing HIV/AIDS management strategies and advancing survival analysis methodologies.
文摘This paper presents three case studies comprising failure mechanisms in phyllite mine slopes at Quadrila- tero Ferrifero, State of Minas Gerais, Brazil. Numerical modeling techniques were used in this study. Fail- ure mechanisms involving discontinuities sub parallel to the main foliation are very common in these mines. Besides, failure through the rock material has also been observed due to the low strength of phyl- lites in this site. Results of this work permitted to establish unknown geotechnical parameters which have significant influence in failure processes, like the in situ stress field and the discontinuity stiffness.
基金This work was supported by the Fundamental Research Funds for the Central Universities (No.2017JBM003), the National Natural Science Foundation of China (No.61575053, No.61504008), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20130009120042).
文摘Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electrochemical energy storage system. A novel failure prediction modeling method of lithium ion battery based on distributed parameter estimation and single particle model is proposed in this work. Lithium ion concentration in the anode of lithium ion battery is an unmeasurable distributed variable. Failure prediction system can estimate lithium ion concentration online, track the failure residual which is the difference between the estimated value and the ideal value. The precaution signal will be triggered when the failure residual is beyond the predefined failure precaution threshold, and the failure countdown prediction module will be activated. The remaining time of the severe failure threshold can be estimated by the failure countdown prediction module according to the changing rate of the failure residual. A simulation example verifies that lithium ion concentration in the anode of lithium ion battery can be estimated exactly and effectively by the failure prediction model. The precaution signal can be triggered reliably, and the remaining time of the severe failure can be forecasted accurately by the failure countdown prediction module.
基金supported by the Natural Science Foundation of Hunan Province(2023JJ40078)the Scientific Research Project of Hunan Provincial Education Department(No.22C0573)+2 种基金the National Natural Science Foundation of China(51478477,51878668)Guizhou Provincial Department of Transportation Foundation(2017-122058)Foundation of Guizhou Provincial Science and Technology Department([2018]2815).
文摘Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.
文摘BACKGROUND Utilizing failure mode and effects analysis(FMEA)in operating room nursing provides valuable insights for the care of patients undergoing radical gastric cancer surgery.AIM To evaluate the impact of FMEA on the risk of adverse events and nursing-care quality in patients undergoing radical surgery.METHODS Among 230 patients receiving radical cancer surgery between May 2019 and May 2024,115 were assigned to a control group that received standard intraoperative thermoregulation,while the observation group benefited from FMEA-modeled operating room care.Clinical indicators,stress responses,postoperative gastroin-testinal function recovery,nursing quality,and the incidence of adverse events were compared between the two groups.RESULTS Significant differences were observed in bed and hospital stay durations between the groups(P<0.05).There were no significant differences in intraoperative blood loss or postoperative body temperature(P>0.05).Stress scores improved in both groups post-nursing(P<0.05),with the observation group showing lower stress scores than the control group(P<0.05).Gastrointestinal function recovery and nursing quality scores also differed significantly(P<0.05).Additionally,the incidence of adverse events such as stress injuries and surgical infections varied notably between the groups(P<0.05).CONCLUSION Incorporating FMEA into operating room nursing significantly enhances patient care by improving safety,expediting recovery,and reducing healthcare-associated risks.
文摘Using the characteristic of addition of information quantity and the principle of equivalence of information quantity, this paper derives the general conversion formulae of the formation theory method conversion (synthesis) on the systems consisting of different success failure model units. According to the fundamental method of the unit reliability assessment, the general models of system reliability approximate lower limits are given. Finally, this paper analyses the application of the assessment method by examples, the assessment results are neither conservative nor radical and very satisfactory. The assessment method can be popularized to the systems which have fixed reliability structural models.
基金supported by the National Defense Foundation of China(71601183)
文摘The degradation data of multi-components in missile is derived by periodical testing. How to use these data to assess the storage reliability (SR) of the whole missile is a difficult problem in current research. An SR assessment model based on competition failure of multi-components in missile is proposed. By analyzing the missile life profile and its storage failure feature, the key components in missile are obtained and the characteristics voltage is assumed to be its key performance parameter. When the voltage testing data of key components in missile are available, a state space model (SSM) is applied to obtain the whole missile degradation state, which is defined as the missile degradation degree (DD). A Wiener process with the time-scale model (TSM) is applied to build the degradation failure model with individual variability and nonlinearity. The Weibull distribution and proportional risk model are applied to build an outburst failure model with performance degradation effect. Furthermore, a competition failure model with the correlation between degradation failure and outburst failure is proposed. A numerical example with a set of missiles in storage is analyzed to demonstrate the accuracy and superiority of the proposed model.
基金National Natural Science Foundation of ChinaUnder Grant No: 50535010
文摘In this paper, a numerical method for correlation sensitivity analysis of a nonlinear random vibration system is presented. Based on the first passage failure model, the probability perturbation method is employed to determine the statistical characteristics of failure modes and the correlation between them. The sensitivity of correlation between failure modes with respect to random parameters characterizing the uncertainty of the hysteretic loop is discussed. In a numerical example, a two-DOF shear structure with uncertain hysteretic restoring force is considered. The statistical characteristics of response, failure modes and the sensitivity of random hysteretic loop parameters are provided, and also compared with a Monte Carlo simulation.
基金supported by the National Natural Science Foundation of China (Grant No.41925030)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA23090403)+2 种基金the Youth Innovation Promotion Association of the CAS (Grant No.2017426)the National Natural Science Foundation of China (Grant No.51709259)the CAS “Light of West China” Program。
文摘Forestry has played an important role in hazard mitigation associated with debris flows.Most forest mitigation measures refer to the experience of soil and water conservation,which disregard the destructive effect of debris flows,causing potentially serious consequences.Determination of the effect of a forest on reducing debris-flow velocity and even stopping debris flows requires distinguishing between when the debris flow will destroy the forest and when the trees will withstand the debris-flow impact force.In this paper,we summarized two impact failure models of a single tree: stem breakage and overturning.The influences of different tree sizes characteristics(stem base diameter,tree weight,and root failure radius) and debris-flow characteristics(density,velocity,flow depth,and boulder diameter) on tree failure were analyzed.The observations obtained from the model adopted in this study show that trees are more prone to stem breakage than overturning.With an increase in tree size,the ability to resist stem breakage and overturning increases.Debris-flow density influences the critical failure conditions of trees substantially less than the debrisflow velocity,depth,and boulder diameter.The application conditions of forests in debris-flow hazard mitigation were proposed based on the analysis of the model results.The proposed models were applied in the Xiajijiehaizi Gully as a case study,and the results explain the destruction of trees in the forest dispersing zone.This work provides references for implementing forest measures for debris-flow hazard mitigation.
基金provided by the National Natural Science Foundation of China(Nos.51322401,51309222,51323004,51579239 and 51574223)the Opening Project Fund of Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(No.CDPM2014KF03)+2 种基金the State Key Laboratory for GeoMechanics Opening Project Fund of Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and MitigationDeep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK1305)China Postdoctoral Science Foundation(Nos.2014M551700and 2013M531424)
文摘Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured zone in the roadway.This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway.Using the single factor and multi-factor orthogonal test method,the evolution law of roadway surrounding rock displacements,plastic zone and stress distribution under different conditions is studied.It reveals the roadway surrounding rock burst evolution process,and obtains five kinds of failure modes in deep soft rock roadway.Using the fuzzy mathematics clustering analysis method,the deep soft surrounding rock failure model in Zhujixi mine can be classified and patterns recognized.Compared to the identification results and the results detected by geological radar of surrounding rock loose circle,the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways.
基金supported by the National Natural Science Foundation of China(51175502)
文摘The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.
基金supported by the Austrian competence centre programme COMET ( Competence Center for Excellent Technologies) with funds from the Federal Ministry for Transport,Innovation and Technology,the Federal Ministry of Economy,the provinces of Upper Austria and Styria,the Styrian Business Promotion Agency,and the Tyrolian Future Foundation
文摘In this paper both experimental and analytical approaches to provide the inputs for creep modeling of refractories including a newly developed high temperature compressive creep machine and an inverse estimation procedure of creep law parameters are briefly introduced.Besides,a modified shear test is applied to determine the cohesion and friction angle of refractories under shear state. A RH snorkel equipped with magnesia- chromite bricks is chosen for a case study of thermomechanical simulation applying the classical creep model and Drucker-Prager creep model available in the finite element code ABAQUS,respectively. Afterwards,thermal stresses and joint opening of magnesia- chromite bricks during a process cycle are compared to distinguish the impact of these two creep models.
基金Project(51275205)supported by the National Natural Science Foundation of China
文摘A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.
基金the National Natural Science Foundation of China(Grant Nos.62203229,61672298,61873326,and 61802155)the Philosophy and Social Sciences Research of Universities in Jiangsu Province(Grant No.2018SJZDI142)+2 种基金the Natural Science Research Projects of Universities in Jiangsu Province(Grant No.20KJB120007)the Jiangsu Natural Science Foundation Youth Fund Project(Grant No.BK20200758)Qing Lan Project and the Science and Technology Project of Market Supervision Administration of Jiangsu Province(Grant No.KJ21125027)。
文摘Network robustness is one of the core contents of complex network security research.This paper focuses on the robustness of community networks with respect to cascading failures,considering the nodes influence and community heterogeneity.A novel node influence ranking method,community-based Clustering-LeaderRank(CCL)algorithm,is first proposed to identify influential nodes in community networks.Simulation results show that the CCL method can effectively identify the influence of nodes.Based on node influence,a new cascading failure model with heterogeneous redistribution strategy is proposed to describe and analyze node fault propagation in community networks.Analytical and numerical simulation results on cascading failure show that the community attribute has an important influence on the cascading failure process.The network robustness against cascading failures increases when the load is more distributed to neighbors of the same community instead of different communities.When the initial load distribution and the load redistribution strategy based on the node influence are the same,the network shows better robustness against node failure.
文摘The brittleness generation mechanism of high strength lightweight aggregate con-crete(HSLWAC) was presented, and it was indicated that lightweight aggregate was the vulnerable spot, initiating brittleness. Based on the analysis of the brittleness failure by the load-deflection curve, the brittleness presented by HSLWAC was more prominent compared with ordinary lightweight aggregate concrete of the same strength grade. The model of brittleness failure was also established.
文摘The main goal of this research is to enhance the auditor's judgment ability in going concern opinion by applying bankruptcy prediction models as an analytical procedure. Data for this research have been collected through questionnaires. The statistical population consists of auditors who are members of Iranian Association of Certified Public Accountants (IACPA). The research results reflect that: (1) Auditors do not use statistical techniques for assessing going concern as an analytical procedure; (2) Auditors do not use these techniques as a tool to decrease the bias of judgments in assessing the going concern assumption; (3) Auditors do not use statistical techniques to assess audit risk in the planning stage; (4) Auditors do not use statistical techniques to assess audit risk in the final stage. Furthermore this research shows that auditors believe that the "standard concerning usage of analytical procedures needs more clarification" and "statistical bankruptcy predication models can help auditors in the planning stage". The other goal of this research is to show different auditor's judgments in assessing the going concern opinion with and without applying the bankruptcy prediction models as an analytical procedure. The result shows that the judgment of auditors toward the going concern assumption has improved by using statistical bankruptcy predication models.
文摘In this paper, we have studied the nonparameter accelerated failure time (AFT) additive regression model, whose covariates have a nonparametric effect on high-dimensional censored data. We give the asymptotic property of the penalty estimator based on GMCP in the nonparameter AFT model.
文摘In this paper, the fuzzy theory is used to describe the uncertainty in failure definition of composite structures. The concept of structural failure level (SFL) is suggested and a method of evaluation is presented.
基金funded by Qin Chuang Yuan Talent Project in Shaanxi Province,China(QCYRCXM-2022-274).
文摘This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-macro correlation in the anti-penetration process.Finally,it outlines the constitutive models and numerical simulation studies utilized in the field of impact and penetration.From the macro perspective,nine frequent penetration failure modes of metal materials are summarized,with a focus on the analysis of the cratering,compression shear,penetration,and plugging stages of the penetration process.The reasons for the formation of adiabatic shear bands(ASBs)in metal materials with different crystal structures are elaborated,and the formation mechanism of the equiaxed grains in the ASB is explored.Both the strength and the toughness of metal materials are related to the materials’crystal structures and microstructures.The toughness is mainly influenced by the deformation mechanism,while the strength is explained by the strengthening mechanism.Therefore,the mechanical properties of metal materials depend on their microstructures,which are subject to the manufacturing process and material composition.Regarding numerical simulation,the advantages and disadvantages of different constitutive models and simulation methods are summarized based on the application characteristics of metal materials in high-speed penetration practice.In summary,this article provides a systematic overview of the macroscopic and microscopic characteristics of metal materials,along with their mechanisms and correlation during the anti-penetration and impact-resistance processes,thereby making an important contribution to the scientific understanding of anti-penetration performance and its optimization in metal materials.