Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is ...Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is proposed to estimate the actual values of uncertainties and disturbances.Second,the NFTSM controller based on the reaching law is designed for the attitude subsystem(inner loop),and the control strategy can ensure Euler angles’fast convergence and stability of the attitude subsystem.Moreover,the NFTSMC strategy combined with backstepping is proposed for the position subsystem(outer loop),which can ensure subsystem tracking performance.Finally,comparative simulations show the trajectory tracking performance of the proposed method is superior to that of the traditional sliding mode control(SMC)and the SM integral backstepping control under uncertainties and disturbances.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
For accurate trajectory tracking and obstacle avoidance in finite time of a nonholonomic mobile robot,a trajectory tracking controller based on global fast terminal sliding mode method is proposed,which has the advant...For accurate trajectory tracking and obstacle avoidance in finite time of a nonholonomic mobile robot,a trajectory tracking controller based on global fast terminal sliding mode method is proposed,which has the advantages of chattering-free and adjustable convergence time.First of all,the kinematics model of the robot is established in mobile carrier coordinates.Secondly,the global structure including terminal attractor and exponential convergence of the fast terminal sliding mode trajectory tracking controller is proved by Lyapunov stability theory,ensuring that the trajectory and heading angle tracking error converges to a smaller zero range in finite time.Finally,the artificial potential field obstacle avoidance method is introduced to make the robot not only track the reference trajectory strictly,but also avoid the obstacles.The simulation results show that the proposed method can achieve a stable tracking control in finite time for a given reference trajectory.展开更多
Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertaint...Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking perfor-mance.To deal with these difficulties,this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interfer-ence ability.For this purpose,the nonlinear dynamic model is firstly established,where the nonlinear behaviors and modeling uncertainties are lumped as one term.Then,the extended state observer is introduced to estimate the lumped distur-bance.The system stability is proved by using the Lyapunov stability theorem.Finally,comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme.展开更多
This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior mag...This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior magnet synchronous motor(IPMSM)drive systems.The mathematical model of flux weakening(FW)control is established,and the deep flux weakening switching point is calculated accurately by analyzing the relationship between the torque curve and voltage decline curve.Next,a second-order NFTSMC is designed for the speed loop controller to ensure that the system converges to the equilibrium state in finite time.Then,an extended sliding mode disturbance observer(ESMDO)is designed to estimate the uncertainty of the system.Finally,compared with both the PI control and sliding mode control(SMC)by simulations and experiments with different working conditions,the method proposed has the merits of accelerating convergence,improving steady-state accuracy,and minimizing the current and torque pulsation.展开更多
Designing a controller to stabilize maneuvering hovercrafts is an important challenge in amphibious vehicles.Hovercrafts are implemented in several applications,such as military missions,transportation,and scientific ...Designing a controller to stabilize maneuvering hovercrafts is an important challenge in amphibious vehicles.Hovercrafts are implemented in several applications,such as military missions,transportation,and scientific tasks.Thus.to improve their performance,it is crucial to control the system and compensate uncertainties and disruptions.In this paper,both classic and intelligent approaches are combined to design an observer-based controller.The system is assumed to be both controllable and observable.An adaptive neural network observer with guaranteed stability is derived for the nonlinear dynamics of a hovercraft,which is controlled via a nonsingular super-twisting terminal sliding-mode method.The main merits of the proposed method are as follows:(1) the Lyapunov stability of the overall closed-loop system,(2) the convergence of the tracking and observer errors to zero,(3) the robustness against uncertainties and disturbances,and(4) the reduction of the chattering phenomena.The simulation results validate the excellent performance of the derived method.展开更多
In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variation...In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.展开更多
The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf O...The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf Optimization(GWO)algorithm is proposed and successfully applied to tune all effective parameters of Fast Terminal Sliding Mode(FTSM)controllers for a quadrotor UAV.A full control scheme is first established to deal with the coupled and underactuated dynamics of the drone.Controllers for altitude,attitude,and position dynamics become separately designed and tuned.To work around the repetitive and time-consuming trial-error-based procedures,all FTSM controllers’parameters for only altitude and attitude dynamics are systematically tuned thanks to the proposed GWO metaheuristic.Such a hard and complex tuning task is formulated as a nonlinear optimization problem under operational constraints.The performance and robustness of the GWO-based control strategy are compared to those based on homologous metaheuristics and standard terminal sliding mode approaches.Numerical simulations are carried out to show the effectiveness and superiority of the proposed GWO-tuned FTSM controllers for the altitude and attitude dynamics’stabilization and tracking.Nonparametric statistical analyses revealed that the GWO algorithm is more competitive with high performance in terms of fastness,non-premature convergence,and research exploration/exploitation capabilities.展开更多
In this study we mainly focus on the attitude control problem of a quad tilt rotor aircraft with respect to unknown external disturbance. We propose a class of control methods based on a novel logarithmic fast non sin...In this study we mainly focus on the attitude control problem of a quad tilt rotor aircraft with respect to unknown external disturbance. We propose a class of control methods based on a novel logarithmic fast non singular terminal sliding surface a new fast reaching law and extended state disturbance observer. A logarithmic non singular terminal sliding surface is used owing to its convergence in finite time and significant robustness. A fast reaching law with two order characteristics of the sliding mode is designed. This reaching law can be used reduce the convergence time of traditional reaching law. In addition the extended state disturbance observer is utilized for online estimation and to compensate for system disturbance. The simulation experiment results show that the control strategy proposed in this paper outperforms the traditional non singular fast sliding mode control.展开更多
The acceleration autopilot design for skid-to-turn (STT) missile faces a great challenge owing to coupling effect among planes, variation of missile velocity and its parameters, inexistence of a complete state vecto...The acceleration autopilot design for skid-to-turn (STT) missile faces a great challenge owing to coupling effect among planes, variation of missile velocity and its parameters, inexistence of a complete state vector, and nonlinear aerodynamics. Moreover, the autopilot should be designed for the entire flight envelope where fast variations exist. In this paper, a design of integrated roll-pitch-yaw autopilot based on global fast terminal sliding mode control (GFTSMC) with a partial state nonlinear observer (PSNLO) for STT nonlinear time-varying missile model, is employed to address these issues. GFTSMC with a novel sliding surface is proposed to nullify the integral error and the singularity problem without application of the sign function. The proposed autopilot consisting of two-loop structure, controls STT maneuver and stabilizes the rolling with a PSNLO in order to estimate the immeasurable states as an output while its inputs are missile measurable states and control signals. The missile model considers the velocity variation, gravity effect and parameters' variation. Furthermore, the environmental conditions' dynamics are mod- eled. PSNLO stability and the closed loop system stability are studied. Finally, numerical simulation is established to evaluate the proposed autopilot performance and to compare it with existing approaches in the literature.展开更多
This paper deals with the synchronization of chaotic systems with structure or parameters difference. Nonlinear differential geometry theory was applied to transform the chaotic discrepancy system into canonical form....This paper deals with the synchronization of chaotic systems with structure or parameters difference. Nonlinear differential geometry theory was applied to transform the chaotic discrepancy system into canonical form. A feedback control for synchronizing two chaotic systems is proposed based on sliding mode control design. To make this controller physically realizable, an extended state observer is used to estimate the error between the transmitter and receiver. Two illustrative examples were carried out: (1) The Chua oscillator was used to show that synchronization was achieved and the message signal was recovered in spite of parametric variations; (2) Two second-order driven oscillators were presented to show that the synchronization can be achieved and that the message can be recovered in spite of the strictly different model.展开更多
In this paper, a fuzzy sliding mode active disturbance rejection control(FSMADRC) scheme is proposed for an autonomous underwater vehicle-manipulator system(AUVMS) with a two-link and three-joint manipulator. First, t...In this paper, a fuzzy sliding mode active disturbance rejection control(FSMADRC) scheme is proposed for an autonomous underwater vehicle-manipulator system(AUVMS) with a two-link and three-joint manipulator. First, the AUVMS is separated into nine subsystems, and the combined effects of dynamic uncertainties, hydrodynamic force, unknown disturbances, and nonlinear coupling terms on each subsystem are lumped into a single total disturbance. Next, a linear extended state observer(LESO) is presented to estimate the total disturbance. Then, a sliding mode active disturbance rejection control(SMADRC) scheme is proposed to enhance the robustness of the control system. The stability of the SMADRC and the estimation errors of the LESO are analyzed. Because it is difficult to simultaneously adjust several parameters for a LESO-based SMADRC scheme, a fuzzy logic control(FLC) scheme is used to formulate the FSMADRC to determine the appropriate parameters adaptively for practical applications. Finally, two AUVMS tasks are illustrated to test the trajectory tracking performance of the closed-loop system and its ability to reject and attenuate the total disturbance. The simulation results show that the proposed FSMADRC scheme achieves better performance and consume less energy than conventional PID and FLC techniques.展开更多
An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, an...An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, and high quality transient characteristics of the integral terminal sliding mode control with the estimation properties of disturbance observers. The controller gains were auto-tuned using a fuzzy logic approach.The effectiveness of the proposed design was assessed under deep voltage sag conditions and parameter variations. Its dynamic response was also compared to that of a standard SMC approach.The performance analysis and simulation results confirmed the ability of the proposed approach to maintain the active power,currents, DC-link voltage and electromagnetic torque within their acceptable ranges even under the most severe unbalanced voltage conditions. It was also shown to be robust to uncertainties and parameter variations, while effectively mitigating chattering in comparison with the standard SMC.展开更多
This paper proposes a novel composite dual-control bycombing the integral sliding mode control (ISMC) method basedon the finite time convergence theory with extended state observer(ESO) for a tracking problem of a...This paper proposes a novel composite dual-control bycombing the integral sliding mode control (ISMC) method basedon the finite time convergence theory with extended state observer(ESO) for a tracking problem of a missile with tail fins and reactionjetcontrol system (RCS). First, the ISMC method based on finitetime convergence is utilized to design the control law of tail fins andthe pulse control of RCS for the dual-control system, ensuring thesystem with rapid response and high accuracy of tracking. Then,ESO is employed for the estimation of aerodynamic disturbancesinfluenced by the airflow of thruster jets. With the characteristicof high accuracy estimation of ESO, the chattering free trackingperformance of the attack angle command and the robustnessof the control law are achieved. Meanwhile, the stability of thedual-control system is analyzed based on finite time convergencestability theorem and Lyapunov’s theorem. Finally, numerical simulationsdemonstrate the effectiveness of the proposed design.展开更多
In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators...In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method.展开更多
基金the National Natural Science Foundation of China(No.52175100)the Natural Science Foundation of Jiangsu Province(No.BK20201379)+2 种基金the 2020 Industrial Transformation and Upgrading Project of Industry and Information Technology Department of Jiangsu Province(No.JITC-2000AX0676-71)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(No.NY221076)the Scientific and Technological Achievements Transformation Project of Jiangsu Province(No.BA2020004)。
文摘Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is proposed to estimate the actual values of uncertainties and disturbances.Second,the NFTSM controller based on the reaching law is designed for the attitude subsystem(inner loop),and the control strategy can ensure Euler angles’fast convergence and stability of the attitude subsystem.Moreover,the NFTSMC strategy combined with backstepping is proposed for the position subsystem(outer loop),which can ensure subsystem tracking performance.Finally,comparative simulations show the trajectory tracking performance of the proposed method is superior to that of the traditional sliding mode control(SMC)and the SM integral backstepping control under uncertainties and disturbances.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
基金National Natural Science Foundation of China(No.61673042)Shanxi Province Science Foundation for Youths(No.201701D221123)。
文摘For accurate trajectory tracking and obstacle avoidance in finite time of a nonholonomic mobile robot,a trajectory tracking controller based on global fast terminal sliding mode method is proposed,which has the advantages of chattering-free and adjustable convergence time.First of all,the kinematics model of the robot is established in mobile carrier coordinates.Secondly,the global structure including terminal attractor and exponential convergence of the fast terminal sliding mode trajectory tracking controller is proved by Lyapunov stability theory,ensuring that the trajectory and heading angle tracking error converges to a smaller zero range in finite time.Finally,the artificial potential field obstacle avoidance method is introduced to make the robot not only track the reference trajectory strictly,but also avoid the obstacles.The simulation results show that the proposed method can achieve a stable tracking control in finite time for a given reference trajectory.
基金Thework issupportedby the Key Scienceand Technology Programof Henan Province(Grant No.222102220104)the Science and Technology Key Project Foundation of Henan Provincial Education Department(Grant No.23A460014)the High Level Talent Foundation of Henan University of Technology(Grant No.2020BS043).
文摘Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking perfor-mance.To deal with these difficulties,this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interfer-ence ability.For this purpose,the nonlinear dynamic model is firstly established,where the nonlinear behaviors and modeling uncertainties are lumped as one term.Then,the extended state observer is introduced to estimate the lumped distur-bance.The system stability is proved by using the Lyapunov stability theorem.Finally,comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme.
基金supported by the Natural Science Foundation of China under Grant No.61733004the Scientific Research Fund of the Hunan Provincial Education Department under Grand No.18A267.
文摘This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior magnet synchronous motor(IPMSM)drive systems.The mathematical model of flux weakening(FW)control is established,and the deep flux weakening switching point is calculated accurately by analyzing the relationship between the torque curve and voltage decline curve.Next,a second-order NFTSMC is designed for the speed loop controller to ensure that the system converges to the equilibrium state in finite time.Then,an extended sliding mode disturbance observer(ESMDO)is designed to estimate the uncertainty of the system.Finally,compared with both the PI control and sliding mode control(SMC)by simulations and experiments with different working conditions,the method proposed has the merits of accelerating convergence,improving steady-state accuracy,and minimizing the current and torque pulsation.
文摘Designing a controller to stabilize maneuvering hovercrafts is an important challenge in amphibious vehicles.Hovercrafts are implemented in several applications,such as military missions,transportation,and scientific tasks.Thus.to improve their performance,it is crucial to control the system and compensate uncertainties and disruptions.In this paper,both classic and intelligent approaches are combined to design an observer-based controller.The system is assumed to be both controllable and observable.An adaptive neural network observer with guaranteed stability is derived for the nonlinear dynamics of a hovercraft,which is controlled via a nonsingular super-twisting terminal sliding-mode method.The main merits of the proposed method are as follows:(1) the Lyapunov stability of the overall closed-loop system,(2) the convergence of the tracking and observer errors to zero,(3) the robustness against uncertainties and disturbances,and(4) the reduction of the chattering phenomena.The simulation results validate the excellent performance of the derived method.
基金supported by the National Natural Science Foundation of China(No.11372210 and No.51405343)the Research Fund for the Doctoral Program of Higher Education of China(No.20120032110010)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC28000 and No.15JCQNJC05000)
基金Supported by the National Natural Science Foundation of China(No.11603024)
文摘In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.
文摘The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf Optimization(GWO)algorithm is proposed and successfully applied to tune all effective parameters of Fast Terminal Sliding Mode(FTSM)controllers for a quadrotor UAV.A full control scheme is first established to deal with the coupled and underactuated dynamics of the drone.Controllers for altitude,attitude,and position dynamics become separately designed and tuned.To work around the repetitive and time-consuming trial-error-based procedures,all FTSM controllers’parameters for only altitude and attitude dynamics are systematically tuned thanks to the proposed GWO metaheuristic.Such a hard and complex tuning task is formulated as a nonlinear optimization problem under operational constraints.The performance and robustness of the GWO-based control strategy are compared to those based on homologous metaheuristics and standard terminal sliding mode approaches.Numerical simulations are carried out to show the effectiveness and superiority of the proposed GWO-tuned FTSM controllers for the altitude and attitude dynamics’stabilization and tracking.Nonparametric statistical analyses revealed that the GWO algorithm is more competitive with high performance in terms of fastness,non-premature convergence,and research exploration/exploitation capabilities.
文摘In this study we mainly focus on the attitude control problem of a quad tilt rotor aircraft with respect to unknown external disturbance. We propose a class of control methods based on a novel logarithmic fast non singular terminal sliding surface a new fast reaching law and extended state disturbance observer. A logarithmic non singular terminal sliding surface is used owing to its convergence in finite time and significant robustness. A fast reaching law with two order characteristics of the sliding mode is designed. This reaching law can be used reduce the convergence time of traditional reaching law. In addition the extended state disturbance observer is utilized for online estimation and to compensate for system disturbance. The simulation experiment results show that the control strategy proposed in this paper outperforms the traditional non singular fast sliding mode control.
基金co-supported by the National Natural Science Foundation of China (No.61304077)International Science & Technology Cooperation Program of China (No.2015DFA01710)+3 种基金the Natural Science Foundation of Jiangsu Province of China (No.BK20130765)the Chinese Ministry of Education Project of Humanities and Social Sciences (No.13YJCZH171)the 11th Jiangsu Province Six Talent Peaks of High Level Talents Project of China (No.2014_ZBZZ_005)the Jiangsu Province Project Blue: Young Academic Leaders Project
文摘The acceleration autopilot design for skid-to-turn (STT) missile faces a great challenge owing to coupling effect among planes, variation of missile velocity and its parameters, inexistence of a complete state vector, and nonlinear aerodynamics. Moreover, the autopilot should be designed for the entire flight envelope where fast variations exist. In this paper, a design of integrated roll-pitch-yaw autopilot based on global fast terminal sliding mode control (GFTSMC) with a partial state nonlinear observer (PSNLO) for STT nonlinear time-varying missile model, is employed to address these issues. GFTSMC with a novel sliding surface is proposed to nullify the integral error and the singularity problem without application of the sign function. The proposed autopilot consisting of two-loop structure, controls STT maneuver and stabilizes the rolling with a PSNLO in order to estimate the immeasurable states as an output while its inputs are missile measurable states and control signals. The missile model considers the velocity variation, gravity effect and parameters' variation. Furthermore, the environmental conditions' dynamics are mod- eled. PSNLO stability and the closed loop system stability are studied. Finally, numerical simulation is established to evaluate the proposed autopilot performance and to compare it with existing approaches in the literature.
基金Project (No. 20040146) supported by Zhejiang Provincial Edu-cation Department Foundation, China
文摘This paper deals with the synchronization of chaotic systems with structure or parameters difference. Nonlinear differential geometry theory was applied to transform the chaotic discrepancy system into canonical form. A feedback control for synchronizing two chaotic systems is proposed based on sliding mode control design. To make this controller physically realizable, an extended state observer is used to estimate the error between the transmitter and receiver. Two illustrative examples were carried out: (1) The Chua oscillator was used to show that synchronization was achieved and the message signal was recovered in spite of parametric variations; (2) Two second-order driven oscillators were presented to show that the synchronization can be achieved and that the message can be recovered in spite of the strictly different model.
基金supported in part by the Fundamental Research Funds for the Central Universities (No. 201964012)the Open Foundation of Henan Key Laboratory of Underwater Intelligent Equipment (No. KL02A1802)+1 种基金the National Natural Science Foundations of China (Nos. 61603361 and 51979256)the Shandong Provincial Natural Science Foundation (No. ZR2017MEE015)。
文摘In this paper, a fuzzy sliding mode active disturbance rejection control(FSMADRC) scheme is proposed for an autonomous underwater vehicle-manipulator system(AUVMS) with a two-link and three-joint manipulator. First, the AUVMS is separated into nine subsystems, and the combined effects of dynamic uncertainties, hydrodynamic force, unknown disturbances, and nonlinear coupling terms on each subsystem are lumped into a single total disturbance. Next, a linear extended state observer(LESO) is presented to estimate the total disturbance. Then, a sliding mode active disturbance rejection control(SMADRC) scheme is proposed to enhance the robustness of the control system. The stability of the SMADRC and the estimation errors of the LESO are analyzed. Because it is difficult to simultaneously adjust several parameters for a LESO-based SMADRC scheme, a fuzzy logic control(FLC) scheme is used to formulate the FSMADRC to determine the appropriate parameters adaptively for practical applications. Finally, two AUVMS tasks are illustrated to test the trajectory tracking performance of the closed-loop system and its ability to reject and attenuate the total disturbance. The simulation results show that the proposed FSMADRC scheme achieves better performance and consume less energy than conventional PID and FLC techniques.
文摘An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, and high quality transient characteristics of the integral terminal sliding mode control with the estimation properties of disturbance observers. The controller gains were auto-tuned using a fuzzy logic approach.The effectiveness of the proposed design was assessed under deep voltage sag conditions and parameter variations. Its dynamic response was also compared to that of a standard SMC approach.The performance analysis and simulation results confirmed the ability of the proposed approach to maintain the active power,currents, DC-link voltage and electromagnetic torque within their acceptable ranges even under the most severe unbalanced voltage conditions. It was also shown to be robust to uncertainties and parameter variations, while effectively mitigating chattering in comparison with the standard SMC.
基金supported by the National Natural Science Foundation of China(11202024)
文摘This paper proposes a novel composite dual-control bycombing the integral sliding mode control (ISMC) method basedon the finite time convergence theory with extended state observer(ESO) for a tracking problem of a missile with tail fins and reactionjetcontrol system (RCS). First, the ISMC method based on finitetime convergence is utilized to design the control law of tail fins andthe pulse control of RCS for the dual-control system, ensuring thesystem with rapid response and high accuracy of tracking. Then,ESO is employed for the estimation of aerodynamic disturbancesinfluenced by the airflow of thruster jets. With the characteristicof high accuracy estimation of ESO, the chattering free trackingperformance of the attack angle command and the robustnessof the control law are achieved. Meanwhile, the stability of thedual-control system is analyzed based on finite time convergencestability theorem and Lyapunov’s theorem. Finally, numerical simulationsdemonstrate the effectiveness of the proposed design.
基金the Vietnam National Foundation for Science and Technology Development(NAFOSTED)Vietnam under Grant No.(107.01-2019.311).
文摘In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method.