This paper introduces a computational cognitive architecture that serves as a comprehensive computational theory of the human mind,from cognitive science and computational psychology.The cognitive architecture(named C...This paper introduces a computational cognitive architecture that serves as a comprehensive computational theory of the human mind,from cognitive science and computational psychology.The cognitive architecture(named Clarion)has been justified by,and validated against,psychological data,findings,and theoretical constructs.One important theoretical background for it is the dual-process theories,which led to its overall two-level structuring in a hybrid neuro-symbolic way.Furthermore,given the recent advances in AI and computing technology,LLMs are being incorporated into the model to better capture human intuition and instinct(and implicit processes in general),in order to further enhance Clarion.Integrating Clarion and LLMs can also help to develop AI systems that are more capable,more reliable,and more human-like.Overall,the paper advocates a multidisciplinary approach towards developing better models for cognitive science and for AI.展开更多
Canopy and branch architectures in high-density orchards can be crucial in production and fruit quality. The influence of two canopy orientations (Upright and Tilted) in combination with two arm (branch) architectures...Canopy and branch architectures in high-density orchards can be crucial in production and fruit quality. The influence of two canopy orientations (Upright and Tilted) in combination with two arm (branch) architectures (Shortened or Overlapped) on tree growth, yield components, fruit quality, and leaf mineral nutrients in an “Aztec Fuji” apple (Malus domestica Bork.) high-density orchard was studied over five years. Tilted trees with shortened arm configuration (TilShArm) always had significantly larger trunk cross-sectional area (TCSA) than Upright trees with an Overlapped arm configuration (UpOverArm) every year from 2012 to 2016. Trees with a TilShArm system had more cumulative fruit per tree than those with an Upright orientation. Trees with a tilted canopy (TilShArm and TilOverArm) tended to have higher yield per tree and yield per hectare than those with an upright system. Trees with a TilShArm system were more precocious and had more yield per tree than those with an upright canopy orientation in 2012. When values were polled over five years, trees with an upright canopy-shortened arm system (UpShArm) treatment had a lower biennial bearing index (BBI) than those with an upright canopy-overlapped system (UpOverArm). Trees receiving an arm shortening (UpShArm or TilShArm) configuration often had larger fruits than those with overlapped arms (UpOverArm and TilOverArm). Fruit from trees receiving an UpOverArm had higher fruit firmness than those from trees with other canopy-branch arrangements at harvest due to their smaller size. Fruit from trees with a TilShArm and TilOverArm had significantly higher water core and bitter pit but lower sunburn than trees with an upright canopy (UpShArm and UpOverArm). Leaves from trees with an UpOverArm canopy-branch configuration had the lowest leaf Ca but the highest leaf K and Fe concentrations among all treatments.展开更多
MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite i...MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted.展开更多
In the evolving landscape of software engineering, Microservice Architecture (MSA) has emerged as a transformative approach, facilitating enhanced scalability, agility, and independent service deployment. This systema...In the evolving landscape of software engineering, Microservice Architecture (MSA) has emerged as a transformative approach, facilitating enhanced scalability, agility, and independent service deployment. This systematic literature review (SLR) explores the current state of distributed transaction management within MSA, focusing on the unique challenges, strategies, and technologies utilized in this domain. By synthesizing findings from 16 primary studies selected based on rigorous criteria, the review identifies key trends and best practices for maintaining data consistency and integrity across microservices. This SLR provides a comprehensive understanding of the complexities associated with distributed transactions in MSA, offering actionable insights and potential research directions for software architects, developers, and researchers.展开更多
With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin...With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres(HLNPs)-intercalated two-dimensional transition metal carbide(Ti_(3)C_(2)T_(x) MXene)for fabricating highly stretchable and durable supercapacitors.By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient,a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella.Moreover,the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility,thus better utilizing the pseudocapacitive property of lignin.All these strategies effectively enhanced the capacitive performance of the electrodes.In addition,HLNPs,which acted as a protective phase for MXene layer,enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes.Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600%uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm^(−2)(241 F g^(−1))and 514 mF cm^(−2)(95 F g^(−1)),respectively.Moreover,their capacitances were well preserved after 1000 times of 600%stretch-release cycling.This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials.展开更多
It’s possible for malicious operators to seize hold of electrical control systems, for instance, the engine control unit of driverless vehicles, from various vectors, e.g. autonomic control system, remote vehicle acc...It’s possible for malicious operators to seize hold of electrical control systems, for instance, the engine control unit of driverless vehicles, from various vectors, e.g. autonomic control system, remote vehicle access, or human drivers. To mitigate potential risks, this paper provides the inauguration study by proposing a theoretical framework in the physical, human and cyber triad. Its goal is to, at each time point, detect adversary control behaviors and protect control systems against malicious operations via integrating a variety of methods. This paper only proposes a theoretical framework which tries to indicate possible threats. With the support of the framework, the security system can lightly reduce the risk. The development and implementation of the system are out of scope.展开更多
This paper adopts the Global Workspace Theory as a neuro-scientifically plausible theory for developing conscious cognitive architecture.The Global Workspace Theory’s compatibility with the working mechanisms underne...This paper adopts the Global Workspace Theory as a neuro-scientifically plausible theory for developing conscious cognitive architecture.The Global Workspace Theory’s compatibility with the working mechanisms underneath human brains is enhanced by the implementation of different cognitive features based on this framework.Amongst the topics in the literature for intelligent systems,we start with attention,memory and learning mechanisms,and corresponding experiments are summarized here.We also discuss how other topics of cognitive robotics could be developed based on these three basic components,and their correlations.This provides a foundation for future long-term development of cognitive architectures of cognitive robots.The research in this paper follows the incremental research pathway for the architecture implementation,which is consistent with the Biologically Inspired Cognitive Architecture roadmap.展开更多
In order to solve the problems of high coupling and poor scalability of the traditional monomer early warning release system architecture,multi-level deployment in a complex network environment will lead to high inves...In order to solve the problems of high coupling and poor scalability of the traditional monomer early warning release system architecture,multi-level deployment in a complex network environment will lead to high investment in software and hardware and cannot achieve intensive multi-level deployment.This paper realizes the goal of system scalability by introducing micro service architecture and technology stack and realizes the goal of resource intensification by introducing the idea of a data forwarding agent.The designed architecture scheme has been practically applied in the“Jiangxi emergency early warning information release system software platform(phase I)project”(hereinafter referred to as“provincial emergency”),which meets the needs of flexible deployment of multi-level applications across meteorological wide area network(WAN),business private network of other commissions,offices,and bureaus,government extranet,Internet and other complex networks,and fully verifies the scientificity and rationality of the scheme.It has achieved the goal of intensive and scalable construction of provincial emergencies under the complex network environment,greatly improved the early warning capacity and communication capacity of emergencies and comprehensive disasters,provided a reliable guarantee for disaster prevention and reduction,and provided a reference for the construction of current and future early warning release system and capacity improvement project.展开更多
The Multipurpose Enhanced Cognitive Architecture(MECA)is a cognitive framework designed to model complex,human-like processes across multiple domains.Originally focusing on implementing a Dual Process Theory approach ...The Multipurpose Enhanced Cognitive Architecture(MECA)is a cognitive framework designed to model complex,human-like processes across multiple domains.Originally focusing on implementing a Dual Process Theory approach and integrating a machine consciousness mechanism based on Global Workspace Theory,MECA has been updated to integrate a dual-layer subsumption mechanism,enabling both reactive and deliberative behaviors,dynamic goal setting and a visual-spatial memory subsystem,enhancing MECA’s capacity for real-world interaction and adaptive behavior.Also,with the introduction of the new computational ideas’knowledge representation scheme,MECA proposes to organize knowledge dynamically to handle context-sensitive reasoning and flexible categorization.MECA’s implementation relies on the Cognitive Systems Toolkit(CST),facilitating its integration with cutting-edge technologies.MECA and CST are being continuously developed and updated,aligned,and open to incorporate the latest AI artifacts and methodologies.This approach ensures the delivery of organized,monitorable,auditable,and controllable AI solutions,significantly reducing reliance on“black box”cognitive processes while enhancing transparency and accountability in AI-driven systems.These updates reinforce MECA’s potential as a robust architecture for developing autonomous,adaptable,and context-aware AI systems capable of real-world interaction and adaptive learning.展开更多
Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial...Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.展开更多
The recent discovery of natural gas within the fifth member of the Xujiahe Formation(T_(3)x_(5))in the Dongfeng area within the Sichuan Basin highlights the significant exploration potential of this member.However,the...The recent discovery of natural gas within the fifth member of the Xujiahe Formation(T_(3)x_(5))in the Dongfeng area within the Sichuan Basin highlights the significant exploration potential of this member.However,the unconvincing previous understanding of the sedimentary microfacies,combined with a total lack of studies on the sand body architecture and reservoir distribution,hampers the further exploration of this member.Using core data,log curves,and seismic data,along with sedimentary microfacies analysis,this study investigated the interfaces between the sand bodies of various scales in the Dongfeng area.Furthermore,this study explored the morphological characteristics,types,and stacking patterns of these sand bodies and determined the distributions of sand bodies and reservoirs in the area.The results indicate that the first sand group of the T_(3)x_(5) member(T_(3)x^(1)_(5))exhibits delta-front deposits,including subaqueous distributary channels,sheet sands,and interdistributary bays.Seven levels of sand body interfaces are identified in the T_(3)x^(1)_(5) sand group.Among them,the interfaces of the first and second levels were identifed only in cores,those of the third and fourth levels were recog-nizable from cores combined with log curves,while those of the fifth,sixth,and seventh levels were distinguishable using seismic data.Three superimposed subaqueous distributary channel complexes are found in the Dongfeng area.Among them,complex 1 in the northwest exhibits the strongest water body energy,while complex 2 in the south displays the weakest.Complex 2 was formed earlier than com-plexes 1 and 3.Also,complex 1 is further subdivided into three vertically stacked subaqueous distrib-utary channels.The subdivision of sedimentary microfacies in the T_(3)x_(5) member reveals nine lithofacies types.Among them,stacked pancake-shaped,carbonaceous debris-bearing,massive,and cross-bedded medium-grained sandstones are considered favorable lithofacies.These four lithofacies types exhibit high porosity,as well as low natural gamma-ray(GR)values,low-to-medium deep investigate double lateral resistivity(RD),and high interval transit time(AC)on the log curves.Additionally,the reservoir distribution in the Dongfeng area was delineated based on the characterization of the favorable lith-ofacies.This study serves as a guide for future exploration and evaluation of the T_(3)x_(5) member in the Dongfeng area while also augmenting the methodologies for describing tight sandstone reservoirs.展开更多
The flexible satellite batch production line is a complex discrete production system with multiple cross-disciplinary fields and mixed serial parallel tasks.As the source of the satellite batch production line process...The flexible satellite batch production line is a complex discrete production system with multiple cross-disciplinary fields and mixed serial parallel tasks.As the source of the satellite batch production line process,the warehousing system has urgent needs such as uncertain production scale and rapid iteration and optimization of business processes.Therefore,the requirements and architecture of complex discrete warehousing systems such as flexible satellite batch production lines are studied.The physical system of intelligent equipment is abstracted as a digital model to form the underlying module,and a digital fusion framework of“business domain+middleware platform+intelligent equipment information model”is constructed.The granularity of microservice splitting is calculated based on the dynamic correlation relationship between user access instances and database table structures.The general warehousing functions of the platform are divided to achieve module customization,addition,and configuration.An open discrete warehousing system based on microservices is designed.Software architecture and design develop complex discrete warehousing systems based on the SpringCloud framework.This architecture achieves the decoupling of business logic and physical hardware,enhances the maintainability and scalability of the system,and greatly improves the system’s adaptability to different complex discrete warehousing business scenarios.展开更多
End-to-end object detection Transformer(DETR)successfully established the paradigm of the Transformer architecture in the field of object detection.Its end-to-end detection process and the idea of set prediction have ...End-to-end object detection Transformer(DETR)successfully established the paradigm of the Transformer architecture in the field of object detection.Its end-to-end detection process and the idea of set prediction have become one of the hottest network architectures in recent years.There has been an abundance of work improving upon DETR.However,DETR and its variants require a substantial amount of memory resources and computational costs,and the vast number of parameters in these networks is unfavorable for model deployment.To address this issue,a greedy pruning(GP)algorithm is proposed,applied to a variant denoising-DETR(DN-DETR),which can eliminate redundant parameters in the Transformer architecture of DN-DETR.Considering the different roles of the multi-head attention(MHA)module and the feed-forward network(FFN)module in the Transformer architecture,a modular greedy pruning(MGP)algorithm is proposed.This algorithm separates the two modules and applies their respective optimal strategies and parameters.The effectiveness of the proposed algorithm is validated on the COCO 2017 dataset.The model obtained through the MGP algorithm reduces the parameters by 49%and the number of floating point operations(FLOPs)by 44%compared to the Transformer architecture of DN-DETR.At the same time,the mean average precision(mAP)of the model increases from 44.1%to 45.3%.展开更多
The burgeoning growth in electric vehicles and portable energy storage systems necessitates advances in the energy density and cost-effectiveness of lithium-ion batteries(LIBs),areas where lithium-rich manganese-based...The burgeoning growth in electric vehicles and portable energy storage systems necessitates advances in the energy density and cost-effectiveness of lithium-ion batteries(LIBs),areas where lithium-rich manganese-based oxide(LLO)materials naturally stand out.Despite their inherent advantages,these materials encounter significant practical hurdles,including low initial Coulombic efficiency(ICE),diminished cycle/rate performance,and voltage fading during cycling,hindering their widespread adoption.In response,we introduce an ionic-electronic dual-conductive(IEDC)surface control strategy that integrates an electronically conductive graphene framework with an ionically conductive heteroepitaxial spinel Li_(4)Mn_(5)O_(12)layer.Prolonged electrochemical and structural analyses demonstrate that this IEDC heterostructure effectively minimizes polarization,mitigates structural distortion,and enhances electronic/ionic diffusion.Density functional theory calculations highlight an extensive Li^(+)percolation network and lower Li^(+)migration energies at the layered-spinel interface.The designed LLO cathode with IEDC interface engineering(LMOSG)exhibits improved ICE(82.9%at 0.1 C),elevated initial discharge capacity(296.7 mAh g^(-1)at 0.1 C),exceptional rate capability(176.5 mAh g^(-1)at 5 C),and outstanding cycle stability(73.7%retention at 5 C after 500 cycles).These findings and the novel dual-conductive surface architecture design offer promising directions for advancing highperformance electrode materials.展开更多
The size of the Audio and Video(AV)content of the 8K program is four times larger than that of 4K content,providing viewers with a more ideal audiovisual experience while placing higher demands on the capability and e...The size of the Audio and Video(AV)content of the 8K program is four times larger than that of 4K content,providing viewers with a more ideal audiovisual experience while placing higher demands on the capability and efficiency of document preparation and processing,signal transmission,and scheduling.However,it is difficult to meet the high robustness requirements of 8K broadcast services because the existing broadcast system architecture is limited by efficiency,cost,and other factors.In this study,an 8K Ultra-High-Definition(UHD)TV program broadcast scheme was designed.The verification results show that the scheme is high quality,highly efficient,and robust.In particular,in the research,the file format normalizing module was first placed in the broadcast area instead of the file preparation area,and the low-compression transmission scheme of the all-IP signal JPEG XS was designed in the signal transmission area for improving the efficiency of the scheme.Next,to reduce the impact on the robustness of broadcast services,the broadcast control logic of the broadcast core components is optimized.Finally,a series of 8K TV program broadcasting systems have been implemented and their performance has been verified.The results show that the system meets the efficiency and robustness requirements of a high-quality 8K AV broadcast system,and thus has a high degree of practicability.展开更多
Root system architecture has often been overlooked in plant research despite its critical role in plant adaptation to environmental conditions.This study focused on the root system architecture of the desert shrub Rea...Root system architecture has often been overlooked in plant research despite its critical role in plant adaptation to environmental conditions.This study focused on the root system architecture of the desert shrub Reaumuria soongorica in the Alxa steppe desert,Northwest China.Plant samples were collected during May-September 2019.Using excavation methods,in situ measurements,and root scanning techniques,we analyzed the root distribution,topology,and branching patterns of R.soongorica across an age sequence of 7-51 a.Additionally,we investigated the allometric relationships of root collar diameter with total coarse root length,biomass,and topological parameters.The results showed that the roots of R.soongorica were predominantly concentrated in shallow soil layers(10-50 cm),with lateral root branching and biomass allocation increasing with shrub age.The root topology exhibited a herringbone-like structure,with average topological and modified topological indices of 0.89 and 0.96,respectively,both of which adjusted with shrub age.The root system displayed a self-similar branching pattern,maintaining a constant cross-sectional area ratio of 1.13 before and after branching,deviating from the area-preserving rule.These adaptive traits allow R.soongorica to efficiently expand its nutrient acquisition zone,minimize internal competition,and optimize resource uptake from the upper soil layers.Furthermore,significant linear relationships were observed between log10-transformed root collar diameter and log10-transformed total coarse root length,biomass,and topological parameters.These findings advance non-destructive approaches for studying root characteristics and contribute to the development of root-related models.Besides,this study provides new insights into the adaptive strategies of R.soongorica under extreme drought conditions,offering valuable guidance for species selection and cultivation in desert restoration efforts.展开更多
The off situ accurate reconstruction of the core neutron field is an important step in realizing real-time reactor monitoring.The existing off situ reconstruction method of the neutron field is only applicable to case...The off situ accurate reconstruction of the core neutron field is an important step in realizing real-time reactor monitoring.The existing off situ reconstruction method of the neutron field is only applicable to cases wherein a single region changes at a specified location of the core.However,when the neutron field changes are complex,the accurate identification of the individual changed regions becomes challenging,which seriously affects the accuracy and stability of the neutron field recon-struction.Therefore,this study proposed a dual-task hybrid network architecture(DTHNet)for off situ reconstruction of the core neutron field,which trained the outermost assembly reconstruction task and the core reconstruction task jointly such that the former could assist the latter in the reconstruction of the core neutron field under core complex changes.Furthermore,to exploit the characteristics of the ex-core detection signals,this study designed a global-local feature upsampling module that efficiently distributed the ex-core detection signals to each reconstruction unit to improve the accuracy and stability of reconstruction.Reconstruction experiments were performed on the simulation datasets of the CLEAR-I reactor to verify the accuracy and stability of the proposed method.The results showed that when the location uncertainty of a single region did not exceed nine and the number of multiple changed regions did not exceed five.Further,the reconstructed ARD was within 2%,RD_(max)was maintained within 17.5%,and the number of RD≥10%was maintained within 10.Furthermore,when the noise interference of the ex-core detection signals was within±2%,although the average number of RD≥10%increased to 16,the average ARD was still within in 2%,and the average RD_(max)was within 22%.Collectively,these results show that,theoretically,the DTHNet can accurately and stably reconstruct most of the neutron field under certain complex core changes.展开更多
This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA f...This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.展开更多
The network on chip(NoC)is used as a solution for the communication problems in a complex system on chip(SoC)design.To further enhance performances,the NoC architectures,a high level modeling and an evaluation met...The network on chip(NoC)is used as a solution for the communication problems in a complex system on chip(SoC)design.To further enhance performances,the NoC architectures,a high level modeling and an evaluation method based on OPNET are proposed to analyze their performances on different injection rates and traffic patterns.Simulation results for general NoC in terms of the average latency and the throughput are analyzed and used as a guideline to make appropriate choices for a given application.Finally,a MPEG4 decoder is mapped on different NoC architectures.Results prove the effectiveness of the evaluation method.展开更多
In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinfor...In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinforcement learning schemes. We introduce features of the states of the original problem, and we formulate a smaller "aggregate" Markov decision problem, whose states relate to the features. We discuss properties and possible implementations of this type of aggregation, including a new approach to approximate policy iteration. In this approach the policy improvement operation combines feature-based aggregation with feature construction using deep neural networks or other calculations. We argue that the cost function of a policy may be approximated much more accurately by the nonlinear function of the features provided by aggregation, than by the linear function of the features provided by neural networkbased reinforcement learning, thereby potentially leading to more effective policy improvement.展开更多
文摘This paper introduces a computational cognitive architecture that serves as a comprehensive computational theory of the human mind,from cognitive science and computational psychology.The cognitive architecture(named Clarion)has been justified by,and validated against,psychological data,findings,and theoretical constructs.One important theoretical background for it is the dual-process theories,which led to its overall two-level structuring in a hybrid neuro-symbolic way.Furthermore,given the recent advances in AI and computing technology,LLMs are being incorporated into the model to better capture human intuition and instinct(and implicit processes in general),in order to further enhance Clarion.Integrating Clarion and LLMs can also help to develop AI systems that are more capable,more reliable,and more human-like.Overall,the paper advocates a multidisciplinary approach towards developing better models for cognitive science and for AI.
文摘Canopy and branch architectures in high-density orchards can be crucial in production and fruit quality. The influence of two canopy orientations (Upright and Tilted) in combination with two arm (branch) architectures (Shortened or Overlapped) on tree growth, yield components, fruit quality, and leaf mineral nutrients in an “Aztec Fuji” apple (Malus domestica Bork.) high-density orchard was studied over five years. Tilted trees with shortened arm configuration (TilShArm) always had significantly larger trunk cross-sectional area (TCSA) than Upright trees with an Overlapped arm configuration (UpOverArm) every year from 2012 to 2016. Trees with a TilShArm system had more cumulative fruit per tree than those with an Upright orientation. Trees with a tilted canopy (TilShArm and TilOverArm) tended to have higher yield per tree and yield per hectare than those with an upright system. Trees with a TilShArm system were more precocious and had more yield per tree than those with an upright canopy orientation in 2012. When values were polled over five years, trees with an upright canopy-shortened arm system (UpShArm) treatment had a lower biennial bearing index (BBI) than those with an upright canopy-overlapped system (UpOverArm). Trees receiving an arm shortening (UpShArm or TilShArm) configuration often had larger fruits than those with overlapped arms (UpOverArm and TilOverArm). Fruit from trees receiving an UpOverArm had higher fruit firmness than those from trees with other canopy-branch arrangements at harvest due to their smaller size. Fruit from trees with a TilShArm and TilOverArm had significantly higher water core and bitter pit but lower sunburn than trees with an upright canopy (UpShArm and UpOverArm). Leaves from trees with an UpOverArm canopy-branch configuration had the lowest leaf Ca but the highest leaf K and Fe concentrations among all treatments.
基金supported by the Fundamental Research Grant Scheme by Ministry of Higher Education Malaysia(FRGS/1/2021/STG04/XMU/02/1 and FRGS/1/2022/TK09/XMU/03/2)the Xiamen University Malaysia Research Fund(XMUMRF/2023-C11/IENG/0056)。
文摘MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted.
文摘In the evolving landscape of software engineering, Microservice Architecture (MSA) has emerged as a transformative approach, facilitating enhanced scalability, agility, and independent service deployment. This systematic literature review (SLR) explores the current state of distributed transaction management within MSA, focusing on the unique challenges, strategies, and technologies utilized in this domain. By synthesizing findings from 16 primary studies selected based on rigorous criteria, the review identifies key trends and best practices for maintaining data consistency and integrity across microservices. This SLR provides a comprehensive understanding of the complexities associated with distributed transactions in MSA, offering actionable insights and potential research directions for software architects, developers, and researchers.
基金supported by Natural Science and Engineering Research Council of Canada(RGPIN-2017-06737)Canada Research Chairs program,the National Key Research and Development Program of China(2017YFD0601005,2022YFD0904201)+1 种基金the National Natural Science Foundation of China(51203075)the China Scholarship Council(Grant No.CSC202208320361).
文摘With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres(HLNPs)-intercalated two-dimensional transition metal carbide(Ti_(3)C_(2)T_(x) MXene)for fabricating highly stretchable and durable supercapacitors.By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient,a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella.Moreover,the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility,thus better utilizing the pseudocapacitive property of lignin.All these strategies effectively enhanced the capacitive performance of the electrodes.In addition,HLNPs,which acted as a protective phase for MXene layer,enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes.Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600%uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm^(−2)(241 F g^(−1))and 514 mF cm^(−2)(95 F g^(−1)),respectively.Moreover,their capacitances were well preserved after 1000 times of 600%stretch-release cycling.This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials.
文摘It’s possible for malicious operators to seize hold of electrical control systems, for instance, the engine control unit of driverless vehicles, from various vectors, e.g. autonomic control system, remote vehicle access, or human drivers. To mitigate potential risks, this paper provides the inauguration study by proposing a theoretical framework in the physical, human and cyber triad. Its goal is to, at each time point, detect adversary control behaviors and protect control systems against malicious operations via integrating a variety of methods. This paper only proposes a theoretical framework which tries to indicate possible threats. With the support of the framework, the security system can lightly reduce the risk. The development and implementation of the system are out of scope.
基金Supported by the European Union’s Horizon Europe research and innovation program(101120727-PRIMI).
文摘This paper adopts the Global Workspace Theory as a neuro-scientifically plausible theory for developing conscious cognitive architecture.The Global Workspace Theory’s compatibility with the working mechanisms underneath human brains is enhanced by the implementation of different cognitive features based on this framework.Amongst the topics in the literature for intelligent systems,we start with attention,memory and learning mechanisms,and corresponding experiments are summarized here.We also discuss how other topics of cognitive robotics could be developed based on these three basic components,and their correlations.This provides a foundation for future long-term development of cognitive architectures of cognitive robots.The research in this paper follows the incremental research pathway for the architecture implementation,which is consistent with the Biologically Inspired Cognitive Architecture roadmap.
文摘In order to solve the problems of high coupling and poor scalability of the traditional monomer early warning release system architecture,multi-level deployment in a complex network environment will lead to high investment in software and hardware and cannot achieve intensive multi-level deployment.This paper realizes the goal of system scalability by introducing micro service architecture and technology stack and realizes the goal of resource intensification by introducing the idea of a data forwarding agent.The designed architecture scheme has been practically applied in the“Jiangxi emergency early warning information release system software platform(phase I)project”(hereinafter referred to as“provincial emergency”),which meets the needs of flexible deployment of multi-level applications across meteorological wide area network(WAN),business private network of other commissions,offices,and bureaus,government extranet,Internet and other complex networks,and fully verifies the scientificity and rationality of the scheme.It has achieved the goal of intensive and scalable construction of provincial emergencies under the complex network environment,greatly improved the early warning capacity and communication capacity of emergencies and comprehensive disasters,provided a reliable guarantee for disaster prevention and reduction,and provided a reference for the construction of current and future early warning release system and capacity improvement project.
基金Supported by the Sao Paulo Research Foundation(FAPESP),CPE SMARTNESS(2021/00199-8)and CEPID/BRAINN(2013/07559-3).
文摘The Multipurpose Enhanced Cognitive Architecture(MECA)is a cognitive framework designed to model complex,human-like processes across multiple domains.Originally focusing on implementing a Dual Process Theory approach and integrating a machine consciousness mechanism based on Global Workspace Theory,MECA has been updated to integrate a dual-layer subsumption mechanism,enabling both reactive and deliberative behaviors,dynamic goal setting and a visual-spatial memory subsystem,enhancing MECA’s capacity for real-world interaction and adaptive behavior.Also,with the introduction of the new computational ideas’knowledge representation scheme,MECA proposes to organize knowledge dynamically to handle context-sensitive reasoning and flexible categorization.MECA’s implementation relies on the Cognitive Systems Toolkit(CST),facilitating its integration with cutting-edge technologies.MECA and CST are being continuously developed and updated,aligned,and open to incorporate the latest AI artifacts and methodologies.This approach ensures the delivery of organized,monitorable,auditable,and controllable AI solutions,significantly reducing reliance on“black box”cognitive processes while enhancing transparency and accountability in AI-driven systems.These updates reinforce MECA’s potential as a robust architecture for developing autonomous,adaptable,and context-aware AI systems capable of real-world interaction and adaptive learning.
基金the financial support from the Guangxi Natural Science Foundation(grant no.2021GXNSFDA075012,2023GXNSFGA026002)National Natural Science Foundation of China(52104298,22075073,52362027,52462029)Fundamental Research Funds for the Central Universities(531107051077).
文摘Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.
基金funded by a SINOPEC project entitled Exploration Potential and Target Evaluation of Xujiahe Formation in the Northeastern Sichuan Basin(No.P23130).
文摘The recent discovery of natural gas within the fifth member of the Xujiahe Formation(T_(3)x_(5))in the Dongfeng area within the Sichuan Basin highlights the significant exploration potential of this member.However,the unconvincing previous understanding of the sedimentary microfacies,combined with a total lack of studies on the sand body architecture and reservoir distribution,hampers the further exploration of this member.Using core data,log curves,and seismic data,along with sedimentary microfacies analysis,this study investigated the interfaces between the sand bodies of various scales in the Dongfeng area.Furthermore,this study explored the morphological characteristics,types,and stacking patterns of these sand bodies and determined the distributions of sand bodies and reservoirs in the area.The results indicate that the first sand group of the T_(3)x_(5) member(T_(3)x^(1)_(5))exhibits delta-front deposits,including subaqueous distributary channels,sheet sands,and interdistributary bays.Seven levels of sand body interfaces are identified in the T_(3)x^(1)_(5) sand group.Among them,the interfaces of the first and second levels were identifed only in cores,those of the third and fourth levels were recog-nizable from cores combined with log curves,while those of the fifth,sixth,and seventh levels were distinguishable using seismic data.Three superimposed subaqueous distributary channel complexes are found in the Dongfeng area.Among them,complex 1 in the northwest exhibits the strongest water body energy,while complex 2 in the south displays the weakest.Complex 2 was formed earlier than com-plexes 1 and 3.Also,complex 1 is further subdivided into three vertically stacked subaqueous distrib-utary channels.The subdivision of sedimentary microfacies in the T_(3)x_(5) member reveals nine lithofacies types.Among them,stacked pancake-shaped,carbonaceous debris-bearing,massive,and cross-bedded medium-grained sandstones are considered favorable lithofacies.These four lithofacies types exhibit high porosity,as well as low natural gamma-ray(GR)values,low-to-medium deep investigate double lateral resistivity(RD),and high interval transit time(AC)on the log curves.Additionally,the reservoir distribution in the Dongfeng area was delineated based on the characterization of the favorable lith-ofacies.This study serves as a guide for future exploration and evaluation of the T_(3)x_(5) member in the Dongfeng area while also augmenting the methodologies for describing tight sandstone reservoirs.
文摘The flexible satellite batch production line is a complex discrete production system with multiple cross-disciplinary fields and mixed serial parallel tasks.As the source of the satellite batch production line process,the warehousing system has urgent needs such as uncertain production scale and rapid iteration and optimization of business processes.Therefore,the requirements and architecture of complex discrete warehousing systems such as flexible satellite batch production lines are studied.The physical system of intelligent equipment is abstracted as a digital model to form the underlying module,and a digital fusion framework of“business domain+middleware platform+intelligent equipment information model”is constructed.The granularity of microservice splitting is calculated based on the dynamic correlation relationship between user access instances and database table structures.The general warehousing functions of the platform are divided to achieve module customization,addition,and configuration.An open discrete warehousing system based on microservices is designed.Software architecture and design develop complex discrete warehousing systems based on the SpringCloud framework.This architecture achieves the decoupling of business logic and physical hardware,enhances the maintainability and scalability of the system,and greatly improves the system’s adaptability to different complex discrete warehousing business scenarios.
基金Shanghai Municipal Commission of Economy and Information Technology,China(No.202301054)。
文摘End-to-end object detection Transformer(DETR)successfully established the paradigm of the Transformer architecture in the field of object detection.Its end-to-end detection process and the idea of set prediction have become one of the hottest network architectures in recent years.There has been an abundance of work improving upon DETR.However,DETR and its variants require a substantial amount of memory resources and computational costs,and the vast number of parameters in these networks is unfavorable for model deployment.To address this issue,a greedy pruning(GP)algorithm is proposed,applied to a variant denoising-DETR(DN-DETR),which can eliminate redundant parameters in the Transformer architecture of DN-DETR.Considering the different roles of the multi-head attention(MHA)module and the feed-forward network(FFN)module in the Transformer architecture,a modular greedy pruning(MGP)algorithm is proposed.This algorithm separates the two modules and applies their respective optimal strategies and parameters.The effectiveness of the proposed algorithm is validated on the COCO 2017 dataset.The model obtained through the MGP algorithm reduces the parameters by 49%and the number of floating point operations(FLOPs)by 44%compared to the Transformer architecture of DN-DETR.At the same time,the mean average precision(mAP)of the model increases from 44.1%to 45.3%.
基金National Natural Science Foundation of China,Grant/Award Numbers:22179008,21875022Yibin“Jie Bang Gua Shuai”,Grant/Award Number:2022JB004+2 种基金Beijing Nova Program,Grant/Award Number:20230484241Postdoctoral Fellowship Program of CPSF,Grant/Award Number:GZB20230931Special Support of Chongqing Postdoctoral Research Project,Grant/Award Number:2023CQBSHTB2041。
文摘The burgeoning growth in electric vehicles and portable energy storage systems necessitates advances in the energy density and cost-effectiveness of lithium-ion batteries(LIBs),areas where lithium-rich manganese-based oxide(LLO)materials naturally stand out.Despite their inherent advantages,these materials encounter significant practical hurdles,including low initial Coulombic efficiency(ICE),diminished cycle/rate performance,and voltage fading during cycling,hindering their widespread adoption.In response,we introduce an ionic-electronic dual-conductive(IEDC)surface control strategy that integrates an electronically conductive graphene framework with an ionically conductive heteroepitaxial spinel Li_(4)Mn_(5)O_(12)layer.Prolonged electrochemical and structural analyses demonstrate that this IEDC heterostructure effectively minimizes polarization,mitigates structural distortion,and enhances electronic/ionic diffusion.Density functional theory calculations highlight an extensive Li^(+)percolation network and lower Li^(+)migration energies at the layered-spinel interface.The designed LLO cathode with IEDC interface engineering(LMOSG)exhibits improved ICE(82.9%at 0.1 C),elevated initial discharge capacity(296.7 mAh g^(-1)at 0.1 C),exceptional rate capability(176.5 mAh g^(-1)at 5 C),and outstanding cycle stability(73.7%retention at 5 C after 500 cycles).These findings and the novel dual-conductive surface architecture design offer promising directions for advancing highperformance electrode materials.
文摘The size of the Audio and Video(AV)content of the 8K program is four times larger than that of 4K content,providing viewers with a more ideal audiovisual experience while placing higher demands on the capability and efficiency of document preparation and processing,signal transmission,and scheduling.However,it is difficult to meet the high robustness requirements of 8K broadcast services because the existing broadcast system architecture is limited by efficiency,cost,and other factors.In this study,an 8K Ultra-High-Definition(UHD)TV program broadcast scheme was designed.The verification results show that the scheme is high quality,highly efficient,and robust.In particular,in the research,the file format normalizing module was first placed in the broadcast area instead of the file preparation area,and the low-compression transmission scheme of the all-IP signal JPEG XS was designed in the signal transmission area for improving the efficiency of the scheme.Next,to reduce the impact on the robustness of broadcast services,the broadcast control logic of the broadcast core components is optimized.Finally,a series of 8K TV program broadcasting systems have been implemented and their performance has been verified.The results show that the system meets the efficiency and robustness requirements of a high-quality 8K AV broadcast system,and thus has a high degree of practicability.
基金funded by the Guangxi Science and Technology Plan Project(Guike AD22080050)the Basic Research Ability Improvement Project of Young and Middle-aged Teachers of Universities in Guangxi(2022KY0386)+1 种基金the Opening Foundation of Key Laboratory of Environment Change and Resources Use in Beibu Gulf,Ministry of Education,Nanning Normal University(NNNU-KLOP-K2202)the National Natural Science Foundation of China(42471055).
文摘Root system architecture has often been overlooked in plant research despite its critical role in plant adaptation to environmental conditions.This study focused on the root system architecture of the desert shrub Reaumuria soongorica in the Alxa steppe desert,Northwest China.Plant samples were collected during May-September 2019.Using excavation methods,in situ measurements,and root scanning techniques,we analyzed the root distribution,topology,and branching patterns of R.soongorica across an age sequence of 7-51 a.Additionally,we investigated the allometric relationships of root collar diameter with total coarse root length,biomass,and topological parameters.The results showed that the roots of R.soongorica were predominantly concentrated in shallow soil layers(10-50 cm),with lateral root branching and biomass allocation increasing with shrub age.The root topology exhibited a herringbone-like structure,with average topological and modified topological indices of 0.89 and 0.96,respectively,both of which adjusted with shrub age.The root system displayed a self-similar branching pattern,maintaining a constant cross-sectional area ratio of 1.13 before and after branching,deviating from the area-preserving rule.These adaptive traits allow R.soongorica to efficiently expand its nutrient acquisition zone,minimize internal competition,and optimize resource uptake from the upper soil layers.Furthermore,significant linear relationships were observed between log10-transformed root collar diameter and log10-transformed total coarse root length,biomass,and topological parameters.These findings advance non-destructive approaches for studying root characteristics and contribute to the development of root-related models.Besides,this study provides new insights into the adaptive strategies of R.soongorica under extreme drought conditions,offering valuable guidance for species selection and cultivation in desert restoration efforts.
基金supported by the National Natural Science Foundation of China(No.12305344)the 2023 Anhui university research project of China(No.2023AH052179).
文摘The off situ accurate reconstruction of the core neutron field is an important step in realizing real-time reactor monitoring.The existing off situ reconstruction method of the neutron field is only applicable to cases wherein a single region changes at a specified location of the core.However,when the neutron field changes are complex,the accurate identification of the individual changed regions becomes challenging,which seriously affects the accuracy and stability of the neutron field recon-struction.Therefore,this study proposed a dual-task hybrid network architecture(DTHNet)for off situ reconstruction of the core neutron field,which trained the outermost assembly reconstruction task and the core reconstruction task jointly such that the former could assist the latter in the reconstruction of the core neutron field under core complex changes.Furthermore,to exploit the characteristics of the ex-core detection signals,this study designed a global-local feature upsampling module that efficiently distributed the ex-core detection signals to each reconstruction unit to improve the accuracy and stability of reconstruction.Reconstruction experiments were performed on the simulation datasets of the CLEAR-I reactor to verify the accuracy and stability of the proposed method.The results showed that when the location uncertainty of a single region did not exceed nine and the number of multiple changed regions did not exceed five.Further,the reconstructed ARD was within 2%,RD_(max)was maintained within 17.5%,and the number of RD≥10%was maintained within 10.Furthermore,when the noise interference of the ex-core detection signals was within±2%,although the average number of RD≥10%increased to 16,the average ARD was still within in 2%,and the average RD_(max)was within 22%.Collectively,these results show that,theoretically,the DTHNet can accurately and stably reconstruct most of the neutron field under certain complex core changes.
基金funded by the Office of Gas and Electricity Markets(Ofgem)and supported by De Montfort University(DMU)and Nottingham Trent University(NTU),UK.
文摘This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.
基金Supported by the Natural Science Foundation of China(61076019)the China Postdoctoral Science Foundation(20100481134)+1 种基金the Natural Science Foundation of Jiangsu Province(BK2008387)the Graduate Student Innovation Foundation of Jiangsu Province(CX07B-105z)~~
文摘The network on chip(NoC)is used as a solution for the communication problems in a complex system on chip(SoC)design.To further enhance performances,the NoC architectures,a high level modeling and an evaluation method based on OPNET are proposed to analyze their performances on different injection rates and traffic patterns.Simulation results for general NoC in terms of the average latency and the throughput are analyzed and used as a guideline to make appropriate choices for a given application.Finally,a MPEG4 decoder is mapped on different NoC architectures.Results prove the effectiveness of the evaluation method.
文摘In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinforcement learning schemes. We introduce features of the states of the original problem, and we formulate a smaller "aggregate" Markov decision problem, whose states relate to the features. We discuss properties and possible implementations of this type of aggregation, including a new approach to approximate policy iteration. In this approach the policy improvement operation combines feature-based aggregation with feature construction using deep neural networks or other calculations. We argue that the cost function of a policy may be approximated much more accurately by the nonlinear function of the features provided by aggregation, than by the linear function of the features provided by neural networkbased reinforcement learning, thereby potentially leading to more effective policy improvement.