Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of...Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test.展开更多
A wide range of welding and surface treatment processes involve the use of a heat source which is moving at a constant speed over the component. The numerical simulation of such processes implies a transient analysis ...A wide range of welding and surface treatment processes involve the use of a heat source which is moving at a constant speed over the component. The numerical simulation of such processes implies a transient analysis using a very refined mesh in order to follow properly the path of the heat source. The 3D-mesh size can be very large if one consider the welds length or the heat-treated surface size in industrial components. To reduce the computational time to acceptable values, several techniques have been investigated. The first type is to use analytical methods such as Rosenthal equations. The second type of solutions consists in performing a transient analysis using adaptive meshing. But, for a large proportion of the involved processes, practical experience demonstrates the existence of quasi steady state conditions over the major part of the heat source path. Numerical algorithms have therefore been developed to directly compute the steady temperature, metallurgical phase proportion and stress distributions. This paper gives a general overview of the different numerical methods used to simulate welding and surface treatment processes with a special emphasis on the steady state calculation. The benefits and limitations of each of them are discussed and applications are presented.展开更多
Extended finite element method(XFEM) is proposed to simulate the discontinuous interface in the liquid-solid forming process.The discontinuous interface is an important phenomenon happening in the liquid-solid forming...Extended finite element method(XFEM) is proposed to simulate the discontinuous interface in the liquid-solid forming process.The discontinuous interface is an important phenomenon happening in the liquid-solid forming processes and it is difficult to be simulated accurately with conventional finite element method(CFEM) because it involves solid phase and liquid phase simultaneously.XFEM is becoming more and more popular with the need of solving the discontinuous problem happening in engineering field.The implementation method of XFEM is proposed on Abaqus code by using UEL(user element) with the flowchart.The key is to modify the element stiffness in the proposed method by using UEL on the platform of Abaqus code.In contrast to XFEM used in the simulation of solidification,the geometrical and physical properties of elements were modified at the same time in our method that is beneficial to getting smooth interface transition and precise analysis results.The analysis is simplified significantly with XFEM.展开更多
Identifying suitable processing window is necessary but difficult for achieving favorable microstructure and performance in extrusion of large thick-walled pipe with difficult-to-deform Inconel 625 alloy. In this work...Identifying suitable processing window is necessary but difficult for achieving favorable microstructure and performance in extrusion of large thick-walled pipe with difficult-to-deform Inconel 625 alloy. In this work, a method was established for identifying the extrusion process window considering temperature control using response surface methodology. Firstly, the response surface models, which correlate temperature rise and peak temperature to key extrusion parameters, have been developed by orthogonal regression based on finite element calculated data. Secondly, the coupled effects of the key extrusion parameters on the temperature rise and peak temperature have been disclosed based on the regression models. Lastly, suitable extrusion processing windows, which are described by contour map of peak temperature in the space of extrusion speed and initial billet temperature, have been established for different extrusion ratios. Using the identified process window, a suitable combination of the key extrusion parameters can be determined conveniently and quickly.展开更多
The dynamic problem of three-dimensional free surface is numerically studied in this paper. The ALE (Arbitrary Lagrange-Euler) kinematic description is introduced into the control equation system. The ALE descriptio...The dynamic problem of three-dimensional free surface is numerically studied in this paper. The ALE (Arbitrary Lagrange-Euler) kinematic description is introduced into the control equation system. The ALE description method is used to track free surface. Accurate formulations for calculating the normal vector on the free surface are presented. The discrete numerical equations by finite element method are developed by Galerkin weighted residual method. The boundary condition about free-surface tension is represented in the form of weak integration that can be computed by a differential geometry method derived in the present paper. The effect of contact angle is incorporated in the numerical algorithm. Furthermore, the numerical computations are performed and the comparison between computational and analytical results validated the effectiveness of the method. The results of this paper provide a fundamental understandings of the dynamics of liquid free surfaces, in which the surface tension and contact angle boundary conditions are taken into account. Finally, numerical simulation of largescale amplitude sloshing of liquid in a cylindrical container is performed and a numerical analysis of the effect of an annular ring-shaped rigid damping baffle on liquid sloshing oscillations in a cylindrical tank is also carried out.展开更多
Ultra-precision diamond cutting is a promising machining technique for realizing ultra-smooth surface of different kinds of materials.While fundamental understanding of the impact of workpiece material properties on c...Ultra-precision diamond cutting is a promising machining technique for realizing ultra-smooth surface of different kinds of materials.While fundamental understanding of the impact of workpiece material properties on cutting mechanisms is crucial for promoting the capability of the machining technique,numerical simulation methods at different length and time scales act as important supplements to experimental investigations.In this work,we present a compact review on recent advancements in the numerical simulations of material-oriented diamond cutting,in which representative machining phenomena are systematically summarized and discussed by multiscale simulations such as molecular dynamics simulation and finite element simulation:the anisotropy cutting behavior of polycrystalline material,the thermo-mechanical coupling tool-chip friction states,the synergetic cutting responses of individual phase in composite materials,and the impact of various external energetic fields on cutting processes.In particular,the novel physics-based numerical models,which involve the high precision constitutive law associated with heterogeneous deformation behavior,the thermo-mechanical coupling algorithm associated with tool-chip friction,the configurations of individual phases in line with real microstructural characteristics of composite materials,and the integration of external energetic fields into cutting models,are highlighted.Finally,insights into the future development of advanced numerical simulation techniques for diamond cutting of advanced structured materials are also provided.The aspects reported in this review present guidelines for the numerical simulations of ultra-precision mechanical machining responses for a variety of materials.展开更多
Three different punches are designed for the hydropiercing experiments and finite element simulations are conducted by finite element program ABAQUS-3D to investigate the influence of punch shape on the fracture surfa...Three different punches are designed for the hydropiercing experiments and finite element simulations are conducted by finite element program ABAQUS-3D to investigate the influence of punch shape on the fracture surface quality of hydropiercing holes. The results show the fracture burrs are not obvious punched by all the three punches. The collapse punched by the round punch is a little larger than the others. The fracture surface quality punched by the round punch is good with larger smooth zone and the interface between smooth zone and tear zone is even with large gradient. The size of the smooth zone is larger and the interface between smooth zone and tear zone is uneven with large gradient punched by the flat punch. The size of the smooth zone is smaller and the size of the tear zone increases from the first fractured to the last fractured punched by the inclined punch.展开更多
The processed surface contour shape is extracted with the finite element simulation software.The difference value of contour shape change is used as the parameters of balancing surface roughness to construct finite el...The processed surface contour shape is extracted with the finite element simulation software.The difference value of contour shape change is used as the parameters of balancing surface roughness to construct finite element model of supersonic vibration milling in cutting stability domain.The surface roughness trial scheme is designed in the orthogonal test design method to analyze the surface roughness test result in the response surface methodology.The surface roughness prediction model is established and optimized.Finally,the surface roughness finite element simulation prediction model is verified by experiments.The research results show that,compared with the experiment results,the error range of the finite element simulation model is 27.5%–30.9%,and the error range of the empirical model obtained by the response surface method is between 4.4%and 12.3%.So,the model in this paper is accurate and will provide the theoretical basis for the optimization study of the auxiliary milling process of supersonic vibration.展开更多
The effects of the morphologies of liquid crystal (LC) droplets left in polymer network on the performance of polymer dispersed liquid crystal composite films were investigated.By adjusting the relative content range ...The effects of the morphologies of liquid crystal (LC) droplets left in polymer network on the performance of polymer dispersed liquid crystal composite films were investigated.By adjusting the relative content range of the crosslinking and diluents,the morphologies of polymer network can be changed.Therefore,the properties of PDLC composite films with imparity polymer morphologies were obtained by experiments and the finite element simulation.Results of the experimental and finite element simulation showed that the electro-optical properties of PDLC composite films were inversely proportional to the domain size of the polymer network and the mechanical properties were proportional to the domain size of the polymer network.展开更多
文摘Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test.
文摘A wide range of welding and surface treatment processes involve the use of a heat source which is moving at a constant speed over the component. The numerical simulation of such processes implies a transient analysis using a very refined mesh in order to follow properly the path of the heat source. The 3D-mesh size can be very large if one consider the welds length or the heat-treated surface size in industrial components. To reduce the computational time to acceptable values, several techniques have been investigated. The first type is to use analytical methods such as Rosenthal equations. The second type of solutions consists in performing a transient analysis using adaptive meshing. But, for a large proportion of the involved processes, practical experience demonstrates the existence of quasi steady state conditions over the major part of the heat source path. Numerical algorithms have therefore been developed to directly compute the steady temperature, metallurgical phase proportion and stress distributions. This paper gives a general overview of the different numerical methods used to simulate welding and surface treatment processes with a special emphasis on the steady state calculation. The benefits and limitations of each of them are discussed and applications are presented.
基金Project(50972121) supported by the National Nature Science Foundation of ChinaProject(20080004) supported by the Foundation of Key Laboratory for Advanced Materials Processing Technology,Ministry of Education,China
文摘Extended finite element method(XFEM) is proposed to simulate the discontinuous interface in the liquid-solid forming process.The discontinuous interface is an important phenomenon happening in the liquid-solid forming processes and it is difficult to be simulated accurately with conventional finite element method(CFEM) because it involves solid phase and liquid phase simultaneously.XFEM is becoming more and more popular with the need of solving the discontinuous problem happening in engineering field.The implementation method of XFEM is proposed on Abaqus code by using UEL(user element) with the flowchart.The key is to modify the element stiffness in the proposed method by using UEL on the platform of Abaqus code.In contrast to XFEM used in the simulation of solidification,the geometrical and physical properties of elements were modified at the same time in our method that is beneficial to getting smooth interface transition and precise analysis results.The analysis is simplified significantly with XFEM.
基金Project(2009ZX04005-031-11)supported by the Major National Science and Technology Special Project of ChinaProject(318968)supported by the Marie Curie International Research Staff Exchange Scheme(IRSES,Mat Pro Future)within the 7th EC Framework Program(FP7)Project(B08040)supported by the 111 Plan,China
文摘Identifying suitable processing window is necessary but difficult for achieving favorable microstructure and performance in extrusion of large thick-walled pipe with difficult-to-deform Inconel 625 alloy. In this work, a method was established for identifying the extrusion process window considering temperature control using response surface methodology. Firstly, the response surface models, which correlate temperature rise and peak temperature to key extrusion parameters, have been developed by orthogonal regression based on finite element calculated data. Secondly, the coupled effects of the key extrusion parameters on the temperature rise and peak temperature have been disclosed based on the regression models. Lastly, suitable extrusion processing windows, which are described by contour map of peak temperature in the space of extrusion speed and initial billet temperature, have been established for different extrusion ratios. Using the identified process window, a suitable combination of the key extrusion parameters can be determined conveniently and quickly.
基金The project supported by the National Natural Science Foundation of China (10272022, 10572022) and the Basic Research Foundation of Beijing Institute of Technology (000Y07). The English text was polished by Yunming Chen.
文摘The dynamic problem of three-dimensional free surface is numerically studied in this paper. The ALE (Arbitrary Lagrange-Euler) kinematic description is introduced into the control equation system. The ALE description method is used to track free surface. Accurate formulations for calculating the normal vector on the free surface are presented. The discrete numerical equations by finite element method are developed by Galerkin weighted residual method. The boundary condition about free-surface tension is represented in the form of weak integration that can be computed by a differential geometry method derived in the present paper. The effect of contact angle is incorporated in the numerical algorithm. Furthermore, the numerical computations are performed and the comparison between computational and analytical results validated the effectiveness of the method. The results of this paper provide a fundamental understandings of the dynamics of liquid free surfaces, in which the surface tension and contact angle boundary conditions are taken into account. Finally, numerical simulation of largescale amplitude sloshing of liquid in a cylindrical container is performed and a numerical analysis of the effect of an annular ring-shaped rigid damping baffle on liquid sloshing oscillations in a cylindrical tank is also carried out.
基金support from the National Natural Science Foundation of China(52275416 and 51905194)National Key Research and Development Program(2021YFC2202303)Science Challenge Project(No.TZ2018006-0201-02)。
文摘Ultra-precision diamond cutting is a promising machining technique for realizing ultra-smooth surface of different kinds of materials.While fundamental understanding of the impact of workpiece material properties on cutting mechanisms is crucial for promoting the capability of the machining technique,numerical simulation methods at different length and time scales act as important supplements to experimental investigations.In this work,we present a compact review on recent advancements in the numerical simulations of material-oriented diamond cutting,in which representative machining phenomena are systematically summarized and discussed by multiscale simulations such as molecular dynamics simulation and finite element simulation:the anisotropy cutting behavior of polycrystalline material,the thermo-mechanical coupling tool-chip friction states,the synergetic cutting responses of individual phase in composite materials,and the impact of various external energetic fields on cutting processes.In particular,the novel physics-based numerical models,which involve the high precision constitutive law associated with heterogeneous deformation behavior,the thermo-mechanical coupling algorithm associated with tool-chip friction,the configurations of individual phases in line with real microstructural characteristics of composite materials,and the integration of external energetic fields into cutting models,are highlighted.Finally,insights into the future development of advanced numerical simulation techniques for diamond cutting of advanced structured materials are also provided.The aspects reported in this review present guidelines for the numerical simulations of ultra-precision mechanical machining responses for a variety of materials.
基金Sponsored by the High-End CNC Machine Tools and Basic Manufacturing Equipment Technology Major Project(Grant No.2011ZX04001-011)partly supported by Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1229)
文摘Three different punches are designed for the hydropiercing experiments and finite element simulations are conducted by finite element program ABAQUS-3D to investigate the influence of punch shape on the fracture surface quality of hydropiercing holes. The results show the fracture burrs are not obvious punched by all the three punches. The collapse punched by the round punch is a little larger than the others. The fracture surface quality punched by the round punch is good with larger smooth zone and the interface between smooth zone and tear zone is even with large gradient. The size of the smooth zone is larger and the interface between smooth zone and tear zone is uneven with large gradient punched by the flat punch. The size of the smooth zone is smaller and the size of the tear zone increases from the first fractured to the last fractured punched by the inclined punch.
基金National Natural Science Foundation of China(Grant No.52175393).
文摘The processed surface contour shape is extracted with the finite element simulation software.The difference value of contour shape change is used as the parameters of balancing surface roughness to construct finite element model of supersonic vibration milling in cutting stability domain.The surface roughness trial scheme is designed in the orthogonal test design method to analyze the surface roughness test result in the response surface methodology.The surface roughness prediction model is established and optimized.Finally,the surface roughness finite element simulation prediction model is verified by experiments.The research results show that,compared with the experiment results,the error range of the finite element simulation model is 27.5%–30.9%,and the error range of the empirical model obtained by the response surface method is between 4.4%and 12.3%.So,the model in this paper is accurate and will provide the theoretical basis for the optimization study of the auxiliary milling process of supersonic vibration.
文摘The effects of the morphologies of liquid crystal (LC) droplets left in polymer network on the performance of polymer dispersed liquid crystal composite films were investigated.By adjusting the relative content range of the crosslinking and diluents,the morphologies of polymer network can be changed.Therefore,the properties of PDLC composite films with imparity polymer morphologies were obtained by experiments and the finite element simulation.Results of the experimental and finite element simulation showed that the electro-optical properties of PDLC composite films were inversely proportional to the domain size of the polymer network and the mechanical properties were proportional to the domain size of the polymer network.