The finite-element modeling and simulations of the intra-body communication (IBC) were investigated to provide a theoretical basis for biomedical monitoring. A finite-element model for the whole human body was devel...The finite-element modeling and simulations of the intra-body communication (IBC) were investigated to provide a theoretical basis for biomedical monitoring. A finite-element model for the whole human body was developed to simulate the IBC. The simulation of galvanic coupling IBC and electrostatic coupling IBC were implemented along with different signal transmission paths, and their attenuations were calculated. Our study showed that the position near the signal electrode had higher potential than other positions in the two types of IBC, while the potential generally decreased along the axis of the body parts. Both signal attenuations of the two types IBC increased with increasing signal transmission distance, and the electrostatic coupling IBC had comparatively higher receiving potential than the galvanic coupling IBC. The results indicated that the proposed modeling method could be used for the research of biomedical monitoring based on IBC technology.展开更多
Pilot biomechanical design of biomaterials for artificial nucleus prosthesiswas carried out based on the 3D finite-element method. Two 3D models of lumbar intervertebral discrespectively with a real human nucleus and ...Pilot biomechanical design of biomaterials for artificial nucleus prosthesiswas carried out based on the 3D finite-element method. Two 3D models of lumbar intervertebral discrespectively with a real human nucleus and with the nucleus removed were developed and validatedusing published experimental and clinical data. Then the models with a stainless steel nucleusprosthesis implanted and with polymer nucleus prostheses of various properties implanted were usedfor the 3D finite-element biomechanical analysis. All the above simulation and analysis were carriedout for the L4/L5 disc under a human worst--daily compression load of 2000 N. The results show thatthe polymer materials with Young's modulus of elasticity E = 0.1-100 MPa and Poisson's ratio v=0.35-0.5 are suitable to produce artificial nucleus prosthesis in view of biomechanicalconsideration.展开更多
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor...Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor CSAMT forward modeling using the vector finite-element method. To verify the feasibility of the algorithm, we calculate the electric field, magnetic field, and tensor impedance of the 3D CSAMT far-zone field in layered media and compare them with theoretical solutions. In addition, a three-dimensional anomaly in half-space is also simulated, and the response characteristics of the impedance tensor and the apparent resistivity and impedance phase are analyzed. The results suggest that the vector finite-element method produces high-precision electromagnetic field and impedance tensor data, satisfies the electric field discontinuity, and does not require divergence correction using the vector finite-element method.展开更多
The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such...The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization(IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4 % and 1.2 % for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models.展开更多
A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques inclu...A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques include obtaining gravity data from the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),creating seismic profiles,analyzing the receiver functions of seismic data,obtaining information from boreholes,and providing geological interpretations.GOCE satellite gravity data were processed to construct a preliminary model based on nonlinear inversions of the data.A regional crustal thickness model was developed using receiver functions,seismic refraction profiles,and geological insights.The inverted model was validated using borehole data and compared with seismic estimates.The model exhibited strong consistency and revealed a correlation between crustal thickness,geology,and tectonics of Egypt.It showed that the shallowest depths of the Moho are located in the north along the Mediterranean Sea and in the eastern part along the Red Sea,reflecting an oceanic plate with a thin,high-density crust.The deepest Moho depths are located in the southwestern part of Egypt,Red Sea coastal mountains,and Sinai Peninsula.The obtained 3D model of crustal thickness provided finely detailed Moho depth estimates that aligned closely with geology and tectonic characteristics of Egypt,contributing valuable insights into the subsurface structure and tectonic processes of region.展开更多
Three-dimensional forward modeling magnetotellurics (MT) problems. We present a is a challenge for geometrically complex new edge-based finite-element algorithm using an unstructured mesh for accurately and efficien...Three-dimensional forward modeling magnetotellurics (MT) problems. We present a is a challenge for geometrically complex new edge-based finite-element algorithm using an unstructured mesh for accurately and efficiently simulating 3D MT responses. The electric field curl-curl equation in the frequency domain was used to deduce the H (curl) variation weak form of the MT forward problem, the Galerkin rule was used to derive a linear finite-element equation on the linear-edge tetrahedroid space, and, finally, a BI-CGSTAB solver was used to estimate the unknown electric fields. A local mesh refinement technique in the neighbor of the measuring MT stations was used to greatly improve the accuracies of the numerical solutions. Four synthetic models validated the powerful performance of our algorithms. We believe that our method will effectively contribute to processing more complex MT studies.展开更多
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis...In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.展开更多
The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination ...The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination tracker dashboard. GIS-based exploratory analysis was conducted to select four variables (poverty, black race, population density, and vaccination) to explain COVID-19 occurrence during the study period. Consequently, spatial statistical techniques such as Moran’s I, Hot Spot Analysis, Spatial Lag Model (SLM), and Spatial Error Model (SEM) were used to explain the COVID-19 occurrence and vaccination rate across the 88 counties in Ohio. The result of the Local Moran’s I analysis reveals that the epicenters of COVID-19 and vaccination followed the same patterns. Indeed, counties like Summit, Franklin, Fairfield, Hamilton, and Medina were categorized as epicenters for both COVID-19 occurrence and vaccination rate. The SEM seems to be the best model for both COVID-19 and vaccination rates, with R2 values of 0.68 and 0.70, respectively. The GWR analysis proves to be better than Ordinary Least Squares (OLS), and the distribution of R2 in the GWR is uneven throughout the study area for both COVID-19 cases and vaccinations. Some counties have a high R2 of up to 0.70 for both COVID-19 cases and vaccinations. The outcomes of the regression analyses show that the SEM models can explain 68% - 70% of COVID-19 cases and vaccination across the entire counties within the study period. COVID-19 cases and vaccination rates exhibited significant positive associations with black race and poverty throughout the study area.展开更多
To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me...To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.展开更多
This work aims at the mathematical modeling of a parabolic trough concentrator, the numerical resolution of the resulting equation, as well as the simulation of the heat transfer fluid heating process. To do this, a t...This work aims at the mathematical modeling of a parabolic trough concentrator, the numerical resolution of the resulting equation, as well as the simulation of the heat transfer fluid heating process. To do this, a thermal balance was established for the heat transfer fluid, the absorber and the glass. This allowed us to establish an equation system whose resolution was done by the finite difference method. Then, a computer program was developed to simulate the temperatures of the heat transfer fluid, the absorber tube and the glass as a function of time and space. The numerical resolution made it possible to obtain the temperatures of the heat transfer fluid, the absorber and the glass. The simulation of the fluid heating process was done in one-hour time steps, from six in the morning to six in the afternoon. The results obtained show that the temperature difference between the inlet and the outlet of the sensor is very significant. These results obtained, regarding the variation of the temperatures of the heat transfer fluid, the absorber and the glass, as well as the powers and efficiency of the parabolic trough concentrator and various factors, allow for the improvement of the performances of our prototype.展开更多
Foam structures have been attracting many scientists for a long time. However, the physics behind these structures is very complicated, and complete modeling has not yet been achieved. In this paper, a phase-field mod...Foam structures have been attracting many scientists for a long time. However, the physics behind these structures is very complicated, and complete modeling has not yet been achieved. In this paper, a phase-field modeling of the rearrangement process of foam structures was proposed, and simulations were conducted to show its effectiveness. Adjacent foam cells were assumed to interact with each other through the pressure difference, and four different conditions were introduced. When the cells had identical inner pressures at the initial state, they were stabilized, keeping the initial volume. In contrast, a volumetric change occurred when the amount of the substance in the initial cells was provided. Other models to regenerate small-cell distribution were also proposed, and the foam structures observed in real liquid foam were successfully reproduced.展开更多
In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In...In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In the context of important physical characteristics of the backscattering polarization of RIS,the modeling of the RIS wireless channel requires a tradeoff between complexity and accuracy,as well as usability and simplicity.For channel modeling of RIS systems,RIS is modelled as multi-equivalent virtual base stations(BSs)induced by multi polarized electromagnetic waves from different incident directions.The comparison between test and simulation results demonstrates that the proposed algorithm effectively captures the key characteristics of the general RIS element polarization physical model and provides accurate results.展开更多
The conversion of forest land to other types of land cover is one of the major issues in the global fight against climate change. Understanding the direct and indirect factors of these conversions from local studies i...The conversion of forest land to other types of land cover is one of the major issues in the global fight against climate change. Understanding the direct and indirect factors of these conversions from local studies in the tropics is essential to project the future impact of human activities on the preservation of tropical forests in general and the forests of the Republic of Congo in particular. This study, conducted in five localities with different socioeconomic contexts in the Republic of Congo, aims to analyze the variability of drivers of deforestation and forest degradation linked to urbanization in the Congo Basin. Using a series of land cover maps from the years 1986, 2003 and 2019 for the cities of Ouesso, Pokola, Ngombe, Impfondo and Dongou, as well as field data and socio-economic information collected from local and central administrations, a unique model has been developed to understand the explanatory patterns of forest loss. Deforestation around urban centers is mainly due to urban agriculture due to population growth, as well as the spatial expansion of cities, which have a major impact on the stability and integrity of forests. Shifting agriculture is the main direct cause of deforestation and forest degradation, representing 48% of the total sample, followed by the collection of wood fuel (22%), the collection of construction wood (19%), illegal logging (6%) and urban expansion (5%). Forecasts indicate that forest loss around major cities will increase by 487, 20 ha to 5266, 73 ha by 2050 compared to the base year of 2019. This study highlights the need for a new system of land management and poverty alleviation of local populations to ensure the stability of the Congo Basin tropical forests around large and small African cities.展开更多
This study examines hemodynamic behavior in particular cases of pulmonary hypertension without treatment. Pulmonary hypertension represents an anomalous hemodynamic state and is characterized by an excessively high bl...This study examines hemodynamic behavior in particular cases of pulmonary hypertension without treatment. Pulmonary hypertension represents an anomalous hemodynamic state and is characterized by an excessively high blood pressure in the pulmonary artery. To simulate the hemodynamic abnormalities in pulmonary hypertension under different causes and pathologies, we construct a localized parameter circuit model governed by nonlinear ordinary derivative equations of the human circulatory system. Thus, two special cases are considered, namely pulmonary the artery stenosis and the left ventricular diastolic dysfunction. For each case of pulmonary hypertension development, we determine the relationships between blood pressure and chamber and vessel pressure-volume. When the pulmonary hypertension is due to pulmonary artery stenosis, it appears that the right ventricular pressure increases up to 90 mm Hg, likewise the rise in pulmonary artery resistance induces direct increment in pulmonary artery pressure. However, when the pulmonary hypertension is due to left ventricular diastolic dysfunction, we note that the left atrial pressure and the pulmonary vein pressure augment, leading to the growth of the pulmonary artery blood pressure. The established results within this paper are useful for understanding the hemodynamic mechanism of particular pulmonary hypertension.展开更多
Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a vi...Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method.展开更多
To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force...To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force distribution,deformation development,and crack propagation characteristics of a framed anti-sliding structure(FAS)under landslide thrust up to the point of failure.Results show that the maximum bending moment and its increase rate in the fore pile are greater than those in the rear pile,with the maximum bending moment of the fore pile approximately 1.1 times that of the rear pile.When the FAS fails,the displacement at the top of the fore pile is significantly greater,about 1.27 times that of the rear pile in the experiment.Major cracks develop at locations corresponding to the peak bending moments.Small transverse cracks initially appear on the upper surface at the intersection between the primary beam and rear pile and then spread to the side of the structure.At the failure stage,major cracks are observed at the pil-beam intersections and near the anchor points.Strengthening flexural stiffness at intersections where major cracks occur can improve the overall thrust-deformation coordination of the FAS,thereby maximizing its performance.展开更多
This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a ...This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a dry cement powder core,a saturated clay middle layer,and a dry sand upper layer.The test injects H_(2)O_(2)solution into the cement core to produce new pore-gas.The model test includes three identical H_(2)O_(2)injections.The small mass of generated oxygen gas(0.07%of slope soil mass and landslide body)from the first injection can build sufficient pore-gas pressure to cause soil upheaval and slide.Meanwhile,despite the first injection causing leak paths in the clay layer,the generated small mass of gas from the second and third injections can further trigger the landslide.A dynamic theoretical analysis of the slope failure is carried out and the required minimum pore-gas pressure for the landslide is calculated.The mass and pressure of generated gas in the model test are also estimated based on the calibration test for oxygen generation from H_(2)O_(2)solution in cement powder.The results indicate that the minimum mass of the generated gas for triggering the landslide is 2 ppm to 0.07%of the landslide body.Furthermore,the small mass of gas can provide sufficient pressure to cause soil upheaval and soil sliding in dynamic analysis.展开更多
This paper develops a comprehensive computational modeling and simulation framework based on Complex Adaptive Systems(CAS)theory to unveil the underlying mechanisms of self-organization,nonlinear evolution,and emergen...This paper develops a comprehensive computational modeling and simulation framework based on Complex Adaptive Systems(CAS)theory to unveil the underlying mechanisms of self-organization,nonlinear evolution,and emergence in social systems.By integrating mathematical models,agent-based modeling,network dynamic analysis,and hybrid modeling approaches,the study applies CAS theory to case studies in economic markets,political decision-making,and social interactions.The experimental results demonstrate that local interactions among individual agents can give rise to complex global phenomena,such as market fluctuations,opinion polarization,and sudden outbreaks of social movements.This framework not only provides a more robust explanation for the nonlinear dynamics and abrupt transitions that traditional models often fail to capture,but also offers valuable decision-support tools for public policy formulation,social governance,and risk management.Emphasizing the importance of interdisciplinary approaches,this work outlines future research directions in high-performance computing,artificial intelligence,and real-time data integration to further advance the theoretical and practical applications of CAS in the social sciences.展开更多
Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging f...Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging from 278.15 K to 318.15 K.The solubility in each system was found to be positively correlated with temperature.Furthermore,solubility data were analyzed using four equations:the modified Apelblat equation,Van’t Hoff equation,λh equation and CNIBS/R-K equations,and they provided satisfactory results for both two systems.The average root-mean-square deviation(105RMSD)values for these models were less than 13.93.Calculations utilizing the Van’t Hoff equation and Gibbs equations facilitated the derivation of apparent thermodynamic properties of NTO dissolution in the two systems,including values for Gibbs free energy,enthalpy and entropy.The%ζ_(H)is larger than%ζ_(TS),and all the%ζ_(H)data are≥58.63%,indicating that the enthalpy make a greater contribution than entropy to theΔG_(soln)^(Θ).展开更多
基金Supported by the National Natural Science Foundation of China(60801050)the Excellent Talent Fund of Beijing(2011)Excellent Young Scholars Research Fund of Beijing Institute ofTechnology(2012)
文摘The finite-element modeling and simulations of the intra-body communication (IBC) were investigated to provide a theoretical basis for biomedical monitoring. A finite-element model for the whole human body was developed to simulate the IBC. The simulation of galvanic coupling IBC and electrostatic coupling IBC were implemented along with different signal transmission paths, and their attenuations were calculated. Our study showed that the position near the signal electrode had higher potential than other positions in the two types of IBC, while the potential generally decreased along the axis of the body parts. Both signal attenuations of the two types IBC increased with increasing signal transmission distance, and the electrostatic coupling IBC had comparatively higher receiving potential than the galvanic coupling IBC. The results indicated that the proposed modeling method could be used for the research of biomedical monitoring based on IBC technology.
文摘Pilot biomechanical design of biomaterials for artificial nucleus prosthesiswas carried out based on the 3D finite-element method. Two 3D models of lumbar intervertebral discrespectively with a real human nucleus and with the nucleus removed were developed and validatedusing published experimental and clinical data. Then the models with a stainless steel nucleusprosthesis implanted and with polymer nucleus prostheses of various properties implanted were usedfor the 3D finite-element biomechanical analysis. All the above simulation and analysis were carriedout for the L4/L5 disc under a human worst--daily compression load of 2000 N. The results show thatthe polymer materials with Young's modulus of elasticity E = 0.1-100 MPa and Poisson's ratio v=0.35-0.5 are suitable to produce artificial nucleus prosthesis in view of biomechanicalconsideration.
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
基金supported by the National Natural Science Foundation of China(No.41104068)the Deep Exploration in China,Sino Probe-03-05
文摘Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor CSAMT forward modeling using the vector finite-element method. To verify the feasibility of the algorithm, we calculate the electric field, magnetic field, and tensor impedance of the 3D CSAMT far-zone field in layered media and compare them with theoretical solutions. In addition, a three-dimensional anomaly in half-space is also simulated, and the response characteristics of the impedance tensor and the apparent resistivity and impedance phase are analyzed. The results suggest that the vector finite-element method produces high-precision electromagnetic field and impedance tensor data, satisfies the electric field discontinuity, and does not require divergence correction using the vector finite-element method.
基金financially supported by the National Natural Science Foundation of China(No.41204055,41164003,and 41104074)Opening Project(No.SMIL-2014-06) of Hubei Subsurface Multi-scale Imaging Lab(SMIL),China University of Geosciences(Wuhan)
文摘The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization(IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4 % and 1.2 % for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models.
文摘A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques include obtaining gravity data from the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),creating seismic profiles,analyzing the receiver functions of seismic data,obtaining information from boreholes,and providing geological interpretations.GOCE satellite gravity data were processed to construct a preliminary model based on nonlinear inversions of the data.A regional crustal thickness model was developed using receiver functions,seismic refraction profiles,and geological insights.The inverted model was validated using borehole data and compared with seismic estimates.The model exhibited strong consistency and revealed a correlation between crustal thickness,geology,and tectonics of Egypt.It showed that the shallowest depths of the Moho are located in the north along the Mediterranean Sea and in the eastern part along the Red Sea,reflecting an oceanic plate with a thin,high-density crust.The deepest Moho depths are located in the southwestern part of Egypt,Red Sea coastal mountains,and Sinai Peninsula.The obtained 3D model of crustal thickness provided finely detailed Moho depth estimates that aligned closely with geology and tectonic characteristics of Egypt,contributing valuable insights into the subsurface structure and tectonic processes of region.
基金National High Technology Research and Development Program(863 Program)(No.2006AA06Z105,2007AA06Z134)
文摘Three-dimensional forward modeling magnetotellurics (MT) problems. We present a is a challenge for geometrically complex new edge-based finite-element algorithm using an unstructured mesh for accurately and efficiently simulating 3D MT responses. The electric field curl-curl equation in the frequency domain was used to deduce the H (curl) variation weak form of the MT forward problem, the Galerkin rule was used to derive a linear finite-element equation on the linear-edge tetrahedroid space, and, finally, a BI-CGSTAB solver was used to estimate the unknown electric fields. A local mesh refinement technique in the neighbor of the measuring MT stations was used to greatly improve the accuracies of the numerical solutions. Four synthetic models validated the powerful performance of our algorithms. We believe that our method will effectively contribute to processing more complex MT studies.
文摘In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.
文摘The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination tracker dashboard. GIS-based exploratory analysis was conducted to select four variables (poverty, black race, population density, and vaccination) to explain COVID-19 occurrence during the study period. Consequently, spatial statistical techniques such as Moran’s I, Hot Spot Analysis, Spatial Lag Model (SLM), and Spatial Error Model (SEM) were used to explain the COVID-19 occurrence and vaccination rate across the 88 counties in Ohio. The result of the Local Moran’s I analysis reveals that the epicenters of COVID-19 and vaccination followed the same patterns. Indeed, counties like Summit, Franklin, Fairfield, Hamilton, and Medina were categorized as epicenters for both COVID-19 occurrence and vaccination rate. The SEM seems to be the best model for both COVID-19 and vaccination rates, with R2 values of 0.68 and 0.70, respectively. The GWR analysis proves to be better than Ordinary Least Squares (OLS), and the distribution of R2 in the GWR is uneven throughout the study area for both COVID-19 cases and vaccinations. Some counties have a high R2 of up to 0.70 for both COVID-19 cases and vaccinations. The outcomes of the regression analyses show that the SEM models can explain 68% - 70% of COVID-19 cases and vaccination across the entire counties within the study period. COVID-19 cases and vaccination rates exhibited significant positive associations with black race and poverty throughout the study area.
基金supported by University of Macao,China,Nos.MYRG2022-00054-FHS and MYRG-GRG2023-00038-FHS-UMDF(to ZY)the Macao Science and Technology Development Fund,China,Nos.FDCT0048/2021/AGJ and FDCT0020/2019/AMJ and FDCT 0011/2018/A1(to ZY)Natural Science Foundation of Guangdong Province of China,No.EF017/FHS-YZ/2021/GDSTC(to ZY)。
文摘To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.
文摘This work aims at the mathematical modeling of a parabolic trough concentrator, the numerical resolution of the resulting equation, as well as the simulation of the heat transfer fluid heating process. To do this, a thermal balance was established for the heat transfer fluid, the absorber and the glass. This allowed us to establish an equation system whose resolution was done by the finite difference method. Then, a computer program was developed to simulate the temperatures of the heat transfer fluid, the absorber tube and the glass as a function of time and space. The numerical resolution made it possible to obtain the temperatures of the heat transfer fluid, the absorber and the glass. The simulation of the fluid heating process was done in one-hour time steps, from six in the morning to six in the afternoon. The results obtained show that the temperature difference between the inlet and the outlet of the sensor is very significant. These results obtained, regarding the variation of the temperatures of the heat transfer fluid, the absorber and the glass, as well as the powers and efficiency of the parabolic trough concentrator and various factors, allow for the improvement of the performances of our prototype.
文摘Foam structures have been attracting many scientists for a long time. However, the physics behind these structures is very complicated, and complete modeling has not yet been achieved. In this paper, a phase-field modeling of the rearrangement process of foam structures was proposed, and simulations were conducted to show its effectiveness. Adjacent foam cells were assumed to interact with each other through the pressure difference, and four different conditions were introduced. When the cells had identical inner pressures at the initial state, they were stabilized, keeping the initial volume. In contrast, a volumetric change occurred when the amount of the substance in the initial cells was provided. Other models to regenerate small-cell distribution were also proposed, and the foam structures observed in real liquid foam were successfully reproduced.
基金supported by Ministry of Science and Technology of the People’s Republic of China(2020YFB1808101)the Project“5G evolution wireless air interface intelligent R&D and verification public platform project”supported by Ministry of Industry and Information Technology of the People’s Republic of China(TC220A04M).
文摘In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In the context of important physical characteristics of the backscattering polarization of RIS,the modeling of the RIS wireless channel requires a tradeoff between complexity and accuracy,as well as usability and simplicity.For channel modeling of RIS systems,RIS is modelled as multi-equivalent virtual base stations(BSs)induced by multi polarized electromagnetic waves from different incident directions.The comparison between test and simulation results demonstrates that the proposed algorithm effectively captures the key characteristics of the general RIS element polarization physical model and provides accurate results.
文摘The conversion of forest land to other types of land cover is one of the major issues in the global fight against climate change. Understanding the direct and indirect factors of these conversions from local studies in the tropics is essential to project the future impact of human activities on the preservation of tropical forests in general and the forests of the Republic of Congo in particular. This study, conducted in five localities with different socioeconomic contexts in the Republic of Congo, aims to analyze the variability of drivers of deforestation and forest degradation linked to urbanization in the Congo Basin. Using a series of land cover maps from the years 1986, 2003 and 2019 for the cities of Ouesso, Pokola, Ngombe, Impfondo and Dongou, as well as field data and socio-economic information collected from local and central administrations, a unique model has been developed to understand the explanatory patterns of forest loss. Deforestation around urban centers is mainly due to urban agriculture due to population growth, as well as the spatial expansion of cities, which have a major impact on the stability and integrity of forests. Shifting agriculture is the main direct cause of deforestation and forest degradation, representing 48% of the total sample, followed by the collection of wood fuel (22%), the collection of construction wood (19%), illegal logging (6%) and urban expansion (5%). Forecasts indicate that forest loss around major cities will increase by 487, 20 ha to 5266, 73 ha by 2050 compared to the base year of 2019. This study highlights the need for a new system of land management and poverty alleviation of local populations to ensure the stability of the Congo Basin tropical forests around large and small African cities.
文摘This study examines hemodynamic behavior in particular cases of pulmonary hypertension without treatment. Pulmonary hypertension represents an anomalous hemodynamic state and is characterized by an excessively high blood pressure in the pulmonary artery. To simulate the hemodynamic abnormalities in pulmonary hypertension under different causes and pathologies, we construct a localized parameter circuit model governed by nonlinear ordinary derivative equations of the human circulatory system. Thus, two special cases are considered, namely pulmonary the artery stenosis and the left ventricular diastolic dysfunction. For each case of pulmonary hypertension development, we determine the relationships between blood pressure and chamber and vessel pressure-volume. When the pulmonary hypertension is due to pulmonary artery stenosis, it appears that the right ventricular pressure increases up to 90 mm Hg, likewise the rise in pulmonary artery resistance induces direct increment in pulmonary artery pressure. However, when the pulmonary hypertension is due to left ventricular diastolic dysfunction, we note that the left atrial pressure and the pulmonary vein pressure augment, leading to the growth of the pulmonary artery blood pressure. The established results within this paper are useful for understanding the hemodynamic mechanism of particular pulmonary hypertension.
基金National Natural Science Foundation of China(71690233,71971213,71901214)。
文摘Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method.
基金The National Natural Science Foundation of China(No.52078427).
文摘To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force distribution,deformation development,and crack propagation characteristics of a framed anti-sliding structure(FAS)under landslide thrust up to the point of failure.Results show that the maximum bending moment and its increase rate in the fore pile are greater than those in the rear pile,with the maximum bending moment of the fore pile approximately 1.1 times that of the rear pile.When the FAS fails,the displacement at the top of the fore pile is significantly greater,about 1.27 times that of the rear pile in the experiment.Major cracks develop at locations corresponding to the peak bending moments.Small transverse cracks initially appear on the upper surface at the intersection between the primary beam and rear pile and then spread to the side of the structure.At the failure stage,major cracks are observed at the pil-beam intersections and near the anchor points.Strengthening flexural stiffness at intersections where major cracks occur can improve the overall thrust-deformation coordination of the FAS,thereby maximizing its performance.
基金supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project No.HKU 17207518).
文摘This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a dry cement powder core,a saturated clay middle layer,and a dry sand upper layer.The test injects H_(2)O_(2)solution into the cement core to produce new pore-gas.The model test includes three identical H_(2)O_(2)injections.The small mass of generated oxygen gas(0.07%of slope soil mass and landslide body)from the first injection can build sufficient pore-gas pressure to cause soil upheaval and slide.Meanwhile,despite the first injection causing leak paths in the clay layer,the generated small mass of gas from the second and third injections can further trigger the landslide.A dynamic theoretical analysis of the slope failure is carried out and the required minimum pore-gas pressure for the landslide is calculated.The mass and pressure of generated gas in the model test are also estimated based on the calibration test for oxygen generation from H_(2)O_(2)solution in cement powder.The results indicate that the minimum mass of the generated gas for triggering the landslide is 2 ppm to 0.07%of the landslide body.Furthermore,the small mass of gas can provide sufficient pressure to cause soil upheaval and soil sliding in dynamic analysis.
文摘This paper develops a comprehensive computational modeling and simulation framework based on Complex Adaptive Systems(CAS)theory to unveil the underlying mechanisms of self-organization,nonlinear evolution,and emergence in social systems.By integrating mathematical models,agent-based modeling,network dynamic analysis,and hybrid modeling approaches,the study applies CAS theory to case studies in economic markets,political decision-making,and social interactions.The experimental results demonstrate that local interactions among individual agents can give rise to complex global phenomena,such as market fluctuations,opinion polarization,and sudden outbreaks of social movements.This framework not only provides a more robust explanation for the nonlinear dynamics and abrupt transitions that traditional models often fail to capture,but also offers valuable decision-support tools for public policy formulation,social governance,and risk management.Emphasizing the importance of interdisciplinary approaches,this work outlines future research directions in high-performance computing,artificial intelligence,and real-time data integration to further advance the theoretical and practical applications of CAS in the social sciences.
文摘Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging from 278.15 K to 318.15 K.The solubility in each system was found to be positively correlated with temperature.Furthermore,solubility data were analyzed using four equations:the modified Apelblat equation,Van’t Hoff equation,λh equation and CNIBS/R-K equations,and they provided satisfactory results for both two systems.The average root-mean-square deviation(105RMSD)values for these models were less than 13.93.Calculations utilizing the Van’t Hoff equation and Gibbs equations facilitated the derivation of apparent thermodynamic properties of NTO dissolution in the two systems,including values for Gibbs free energy,enthalpy and entropy.The%ζ_(H)is larger than%ζ_(TS),and all the%ζ_(H)data are≥58.63%,indicating that the enthalpy make a greater contribution than entropy to theΔG_(soln)^(Θ).