A thee-dimensional finite-element simulation of stretching technological parameters of heavy forgings is performed by using ANSYS program. The law of internal stress distribution with different bt/h (tool width ratio...A thee-dimensional finite-element simulation of stretching technological parameters of heavy forgings is performed by using ANSYS program. The law of internal stress distribution with different bt/h (tool width ratio) and different bb/h (blank width ratio) is studied. Consequently,the critical tool width ratio( bt/h )cr and blank width ratio( bb/ h )cr leading no bi-axial tension are obtained. It lays a credible foundation for designing reasonable stretching technology.展开更多
The structural de formation of Lu’ an mining area is characterized by a remarkable feature of zoning along E-W direction, in the east limb of Qinshui basin, Shanxi Province, China. The re gional tectonic stress field...The structural de formation of Lu’ an mining area is characterized by a remarkable feature of zoning along E-W direction, in the east limb of Qinshui basin, Shanxi Province, China. The re gional tectonic stress fields and basement tectonics are two fundamental factors to control the cover tectonic framework. This paper uses the finite-element method with a elastic-plastic pIan problem model to simulate the three periods of stress fields resulting from field geological study’ Based on these works, the formation and evolution of tectonic framework of Lu’ an mining area have been discussed.展开更多
The dynamic process of the 2008 Wenehuan earthquake is simulated by finite-element method ( FEM), and the results suggest that we may be able to estimate the occurrence time, location, and magnitude of similar earth...The dynamic process of the 2008 Wenehuan earthquake is simulated by finite-element method ( FEM), and the results suggest that we may be able to estimate the occurrence time, location, and magnitude of similar earthquakes in the future. Thus a numerical earthquake prediction (NEP) program is proposed; the reliability of it is dependent on its gradual refinement and the parameters used in the models.展开更多
The Luzon Island is a volcanic arc sandwiched by the eastward subducting South China Sea and the northwestward subducting Philippine Sea plate. Through experiments of plane-stress, elastic, and 2-dimensional finite-el...The Luzon Island is a volcanic arc sandwiched by the eastward subducting South China Sea and the northwestward subducting Philippine Sea plate. Through experiments of plane-stress, elastic, and 2-dimensional finite-element modeling, we evaluated the relationship between plate kinematics and present-day deformation of Luzon Island and adjacent sea areas. The concept of coupling rate was applied to define the boundary velocities along the subduction zones. The distribution of velocity fields calculated in our models was compared with the velocity field revealed by recent geodetic (GPS) observations. The best model was obtained that accounts for the observed velocity field within the limits of acceptable mechanical parameters and reasonable boundary conditions. Sensitivity of the selection of parameters and boundary conditions were evaluated. The model is sensitive to the direction of convergence between the South China Sea and the Philippine Sea plates, and to different coupling rates in the Manila trench, Philippine trench and eastern Luzon trough. We suggest that a change of ±15° of the direction of motion of the Philippine Sea plate can induce important changes in the distribution of the computed displacement trajectories, and the movement of the Philippine Sea plate toward azimuth 330° best explains the velocity pattern observed in Luzon Island. In addition, through sensitivity analysis we conclude that the coupling rate in the Manila trench is much smaller compared with the rates in the eastern Luzon trough and the Philippine trench. This indicates that a significant part of momentum of the Philippine Sea plate motion has been absorbed by the Manila trench; whereas, a part of the momentum has been transmitted into Luzon Island through the eastern Luzon trough and the Philippine trench.展开更多
In hot deformation, the flow stress curves of steels always present as two typical types: at relatively high temperature and low strain rate, the flow stress may first increase and then attain a steady value without r...In hot deformation, the flow stress curves of steels always present as two typical types: at relatively high temperature and low strain rate, the flow stress may first increase and then attain a steady value without reaching an obvious peak stress; in other situations, the flow stress decreases after reaching peak stress and then attains a steady value. A new phenomenological model,described by a sine-function equation, is proposed to define the relationship between flow stress and deformation parameters. A series of isothermal compressions for a carbon steel were carried out, as a case study, to obtain basic experimental data.Parameters of the new model were sequentially determined. The predicted results of the proposed model were compared with actual measured data. Good accuracy was found in the standard statistical parameters of correlation coefficient, root mean square error, and average absolute relative error with the values of 0.935, 7.137 MPa and 4.352%, respectively. Discussion of applications of different models in finite-element simulation demonstrated the benefit of the new model. When comparing the simulation results of three different deformation patterns with large strain, the new model showed 10%–20% lower predicted forming load than the original Arrhenius equation, and better applicability and reliability than modified Arrhenius equations.展开更多
Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth o...Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.展开更多
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre...The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.展开更多
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing ...Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing a greater role in the performance of components. This paper investigates the effect of heat treatment on residual stresses induced in AISI 1025, manufactured using LENS. Finite element model was developed and simulated to analyze residual stress development. AISI 1025 samples suitable for tool and die applications in Fused Deposition Modelling (FDM) filament production, were fabricated using Laser Engineered Net Shaping (LENS) process, followed by heat treatment where annealing and quenching processes were done. The material’s microstructure, residual stress and hardness of heat-treated samples under investigation, were compared against the as-built samples. The results indicated that after annealing, tensile residual stresses were reduced by 93%, resulting in a reduced crack growth rate, compared to the as-built sample, although the hardness was reduced significantly by 25%. On the other hand, high tensile residual stresses of 425 ± 14 MPa were recorded after quenching process with an improvement of hardness by 21%.展开更多
Critical to the safe, efficient, and reliable operation of an autonomous maritime vessel is its ability to perceive the external environment through onboard sensors. For this research, data was collected from a LiDAR ...Critical to the safe, efficient, and reliable operation of an autonomous maritime vessel is its ability to perceive the external environment through onboard sensors. For this research, data was collected from a LiDAR sensor installed on a 16-foot catamaran unmanned vessel. This sensor generated point clouds of the surrounding maritime environment, which were then labeled by hand for training a machine learning (ML) model to perform a semantic segmentation task on LiDAR scans. In particular, the developed semantic segmentation classifies each point-cloud point as belonging to a certain buoy type. This paper describes the developed Unity Game Engine (Unity) simulation to emulate the maritime environment perceived by LiDAR with the goal of generating large (automatically labeled) simulation datasets and improving the ML model performance since hand-labeled real-life LiDAR scan data may be scarce. The Unity simulation data combined with labeled real-life point cloud data was used for a PointNet-based neural network model, the architecture of which is presented in this paper. Fitting the PointNet-based model on the simulation data followed by fine-tuning the combined dataset allowed for accurate semantic segmentation of point clouds on the real-world data. The ML model performance on several combinations of simulation and real-life data is explored. The resulting Intersection over Union (IoU) metric scores are quite high, ranging between 0.78 and 0.89, when validated on simulation and real-life data. The confusion matrix-entry values indicate an accurate semantic segmentation of the buoy types.展开更多
Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of s...Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.展开更多
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
In ground vehicles, the brake is an essential system to ensure the safety of movement. Multiple braking mechanisms have been introduced for use in vehicles. This study explores the potential of using magneto-rheologic...In ground vehicles, the brake is an essential system to ensure the safety of movement. Multiple braking mechanisms have been introduced for use in vehicles. This study explores the potential of using magneto-rheological fluid (MRF) brakes in automotive applications. MRF brakes offer controllable braking force due to a magnetic field, but their use is limited by simulation challenges. In this study, a 7-tooth MRF brake model is proposed. The brake model is simulated in Altair Flux software to analyze magnetic field distribution, braking torque, and its variation under different currents and disc speeds. The simulation conditions also consider both viscous and electromagnetic torque components. Then, the results are analyzed across different brake regions, including rotor, stator, and fluid gap. These results provide valuable insights for designing, manufacturing, installing, and testing MRF brakes for automotive use.展开更多
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ...The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity.展开更多
The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, li...The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods.展开更多
Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency ...Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration.展开更多
基金This project is supported by Doctorate Foundation of Ministry of Education of China(No. 96021603) . Manuscript received
文摘A thee-dimensional finite-element simulation of stretching technological parameters of heavy forgings is performed by using ANSYS program. The law of internal stress distribution with different bt/h (tool width ratio) and different bb/h (blank width ratio) is studied. Consequently,the critical tool width ratio( bt/h )cr and blank width ratio( bb/ h )cr leading no bi-axial tension are obtained. It lays a credible foundation for designing reasonable stretching technology.
文摘The structural de formation of Lu’ an mining area is characterized by a remarkable feature of zoning along E-W direction, in the east limb of Qinshui basin, Shanxi Province, China. The re gional tectonic stress fields and basement tectonics are two fundamental factors to control the cover tectonic framework. This paper uses the finite-element method with a elastic-plastic pIan problem model to simulate the three periods of stress fields resulting from field geological study’ Based on these works, the formation and evolution of tectonic framework of Lu’ an mining area have been discussed.
基金supported by the National Natural Science Foundation ofChina(40974020,40074024)National 973 Project of China2008(B425704)State Key Laboratory of Earthguake Dynamics Project(LED2008B02)
文摘The dynamic process of the 2008 Wenehuan earthquake is simulated by finite-element method ( FEM), and the results suggest that we may be able to estimate the occurrence time, location, and magnitude of similar earthquakes in the future. Thus a numerical earthquake prediction (NEP) program is proposed; the reliability of it is dependent on its gradual refinement and the parameters used in the models.
基金supported by the National Scientific and Tech-nological Support Project of China (No. 2006BAB19B02)the Guangdong Natural Science Foundation (No. 07004206)the National Natural Science Foundation of China (No. 40476026)
文摘The Luzon Island is a volcanic arc sandwiched by the eastward subducting South China Sea and the northwestward subducting Philippine Sea plate. Through experiments of plane-stress, elastic, and 2-dimensional finite-element modeling, we evaluated the relationship between plate kinematics and present-day deformation of Luzon Island and adjacent sea areas. The concept of coupling rate was applied to define the boundary velocities along the subduction zones. The distribution of velocity fields calculated in our models was compared with the velocity field revealed by recent geodetic (GPS) observations. The best model was obtained that accounts for the observed velocity field within the limits of acceptable mechanical parameters and reasonable boundary conditions. Sensitivity of the selection of parameters and boundary conditions were evaluated. The model is sensitive to the direction of convergence between the South China Sea and the Philippine Sea plates, and to different coupling rates in the Manila trench, Philippine trench and eastern Luzon trough. We suggest that a change of ±15° of the direction of motion of the Philippine Sea plate can induce important changes in the distribution of the computed displacement trajectories, and the movement of the Philippine Sea plate toward azimuth 330° best explains the velocity pattern observed in Luzon Island. In addition, through sensitivity analysis we conclude that the coupling rate in the Manila trench is much smaller compared with the rates in the eastern Luzon trough and the Philippine trench. This indicates that a significant part of momentum of the Philippine Sea plate motion has been absorbed by the Manila trench; whereas, a part of the momentum has been transmitted into Luzon Island through the eastern Luzon trough and the Philippine trench.
基金supported by the National Natural Science Foundation of China(Grant No.51475294)
文摘In hot deformation, the flow stress curves of steels always present as two typical types: at relatively high temperature and low strain rate, the flow stress may first increase and then attain a steady value without reaching an obvious peak stress; in other situations, the flow stress decreases after reaching peak stress and then attains a steady value. A new phenomenological model,described by a sine-function equation, is proposed to define the relationship between flow stress and deformation parameters. A series of isothermal compressions for a carbon steel were carried out, as a case study, to obtain basic experimental data.Parameters of the new model were sequentially determined. The predicted results of the proposed model were compared with actual measured data. Good accuracy was found in the standard statistical parameters of correlation coefficient, root mean square error, and average absolute relative error with the values of 0.935, 7.137 MPa and 4.352%, respectively. Discussion of applications of different models in finite-element simulation demonstrated the benefit of the new model. When comparing the simulation results of three different deformation patterns with large strain, the new model showed 10%–20% lower predicted forming load than the original Arrhenius equation, and better applicability and reliability than modified Arrhenius equations.
基金supported by the Research Funding of Hangzhou International Innovation Institute of Beihang Uni-versity,China(No.2024KQ130)the National Natural Science Foundation of China(Nos.52073010 and 52373259).
文摘Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.
基金Funded by the Research Funds of China University of Mining and Technology(No.102523215)。
文摘The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
文摘Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing a greater role in the performance of components. This paper investigates the effect of heat treatment on residual stresses induced in AISI 1025, manufactured using LENS. Finite element model was developed and simulated to analyze residual stress development. AISI 1025 samples suitable for tool and die applications in Fused Deposition Modelling (FDM) filament production, were fabricated using Laser Engineered Net Shaping (LENS) process, followed by heat treatment where annealing and quenching processes were done. The material’s microstructure, residual stress and hardness of heat-treated samples under investigation, were compared against the as-built samples. The results indicated that after annealing, tensile residual stresses were reduced by 93%, resulting in a reduced crack growth rate, compared to the as-built sample, although the hardness was reduced significantly by 25%. On the other hand, high tensile residual stresses of 425 ± 14 MPa were recorded after quenching process with an improvement of hardness by 21%.
文摘Critical to the safe, efficient, and reliable operation of an autonomous maritime vessel is its ability to perceive the external environment through onboard sensors. For this research, data was collected from a LiDAR sensor installed on a 16-foot catamaran unmanned vessel. This sensor generated point clouds of the surrounding maritime environment, which were then labeled by hand for training a machine learning (ML) model to perform a semantic segmentation task on LiDAR scans. In particular, the developed semantic segmentation classifies each point-cloud point as belonging to a certain buoy type. This paper describes the developed Unity Game Engine (Unity) simulation to emulate the maritime environment perceived by LiDAR with the goal of generating large (automatically labeled) simulation datasets and improving the ML model performance since hand-labeled real-life LiDAR scan data may be scarce. The Unity simulation data combined with labeled real-life point cloud data was used for a PointNet-based neural network model, the architecture of which is presented in this paper. Fitting the PointNet-based model on the simulation data followed by fine-tuning the combined dataset allowed for accurate semantic segmentation of point clouds on the real-world data. The ML model performance on several combinations of simulation and real-life data is explored. The resulting Intersection over Union (IoU) metric scores are quite high, ranging between 0.78 and 0.89, when validated on simulation and real-life data. The confusion matrix-entry values indicate an accurate semantic segmentation of the buoy types.
文摘Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
文摘In ground vehicles, the brake is an essential system to ensure the safety of movement. Multiple braking mechanisms have been introduced for use in vehicles. This study explores the potential of using magneto-rheological fluid (MRF) brakes in automotive applications. MRF brakes offer controllable braking force due to a magnetic field, but their use is limited by simulation challenges. In this study, a 7-tooth MRF brake model is proposed. The brake model is simulated in Altair Flux software to analyze magnetic field distribution, braking torque, and its variation under different currents and disc speeds. The simulation conditions also consider both viscous and electromagnetic torque components. Then, the results are analyzed across different brake regions, including rotor, stator, and fluid gap. These results provide valuable insights for designing, manufacturing, installing, and testing MRF brakes for automotive use.
基金Funded by the National Natural Science Foundation of China Academy of Engineering Physics and Jointly Setup"NSAF"Joint Fund(No.U1430119)。
文摘The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity.
文摘The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods.
基金Project supported by the Scientific Research Project of China Three Gorges Corporation(Grant No.202203092)。
文摘Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration.