In this paper we consider the first order discrete Hamiltonian systems {x1(n+1)-x1(n)=Hx2(n,x(n)),x2(n)-x2(n-1)=Hx1(n,x(n)),where x(n) = (x2(n)x1(n))∑ R^2N, H(n,z) = 1/2S(n)z. z + R(n,z...In this paper we consider the first order discrete Hamiltonian systems {x1(n+1)-x1(n)=Hx2(n,x(n)),x2(n)-x2(n-1)=Hx1(n,x(n)),where x(n) = (x2(n)x1(n))∑ R^2N, H(n,z) = 1/2S(n)z. z + R(n,z) is periodic in n and superlinear as {z} →4 ∞. We prove the existence and infinitely many (geometrically distinct) homoclonic orbits of the system by critical point theorems for strongly indefinite functionals.展开更多
基金CHEN WenXiong supported by Science Foundation of Huaqiao UniversityYANG Minbo was supported by Natural Science Foundation of Zhejiang Province (Grant No. Y7080008)+1 种基金YANG Minbo was supported by National Natural Science Foundation of China (Grant No. 11101374, 10971194)DING Yanheng was supported partially by National Natural Science Foundation of China (Grant No. 10831005)
文摘In this paper we consider the first order discrete Hamiltonian systems {x1(n+1)-x1(n)=Hx2(n,x(n)),x2(n)-x2(n-1)=Hx1(n,x(n)),where x(n) = (x2(n)x1(n))∑ R^2N, H(n,z) = 1/2S(n)z. z + R(n,z) is periodic in n and superlinear as {z} →4 ∞. We prove the existence and infinitely many (geometrically distinct) homoclonic orbits of the system by critical point theorems for strongly indefinite functionals.