In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illus...In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.展开更多
Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Mulle...Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Muller[1] is also proposed to be a class of new nearest neighbor estimates of g(). Baed on the nonparametric regression procedures, we investigate a statistic for testing H0:g=0, and obtain some aspoptotic results about estimates.展开更多
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop...This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.展开更多
We consider a functional partially linear additive model that predicts a functional response by a scalar predictor and functional predictors. The B-spline and eigenbasis least squares estimator for both the parametric...We consider a functional partially linear additive model that predicts a functional response by a scalar predictor and functional predictors. The B-spline and eigenbasis least squares estimator for both the parametric and the nonparametric components proposed. In the final of this paper, as a result, we got the variance decomposition of the model and establish the asymptotic convergence rate for estimator.展开更多
In this paper,we consider the partial linear regression model y_(i)=x_(i)β^(*)+g(ti)+ε_(i),i=1,2,...,n,where(x_(i),ti)are known fixed design points,g(·)is an unknown function,andβ^(*)is an unknown parameter to...In this paper,we consider the partial linear regression model y_(i)=x_(i)β^(*)+g(ti)+ε_(i),i=1,2,...,n,where(x_(i),ti)are known fixed design points,g(·)is an unknown function,andβ^(*)is an unknown parameter to be estimated,random errorsε_(i)are(α,β)-mix_(i)ng random variables.The p-th(p>1)mean consistency,strong consistency and complete consistency for least squares estimators ofβ^(*)and g(·)are investigated under some mild conditions.In addition,a numerical simulation is carried out to study the finite sample performance of the theoretical results.Finally,a real data analysis is provided to further verify the effect of the model.展开更多
This paper proposes a test procedure for testing the regression coefficients in high dimensional partially linear models based on the F-statistic. In the partially linear model, the authors first estimate the unknown ...This paper proposes a test procedure for testing the regression coefficients in high dimensional partially linear models based on the F-statistic. In the partially linear model, the authors first estimate the unknown nonlinear component by some nonparametric methods and then generalize the F-statistic to test the regression coefficients under some regular conditions. During this procedure, the estimation of the nonlinear component brings much challenge to explore the properties of generalized F-test. The authors obtain some asymptotic properties of the generalized F-test in more general cases,including the asymptotic normality and the power of this test with p/n ∈(0, 1) without normality assumption. The asymptotic result is general and by adding some constraint conditions we can obtain the similar conclusions in high dimensional linear models. Through simulation studies, the authors demonstrate good finite-sample performance of the proposed test in comparison with the theoretical results. The practical utility of our method is illustrated by a real data example.展开更多
Consider a partially linear regression model with an unknown vector parameter , an unknown function g(·), and unknown heteroscedastic error variances. Chen, You<SUP>[23]</SUP> proposed a semiparametri...Consider a partially linear regression model with an unknown vector parameter , an unknown function g(·), and unknown heteroscedastic error variances. Chen, You<SUP>[23]</SUP> proposed a semiparametric generalized least squares estimator (SGLSE) for , which takes the heteroscedasticity into account to increase efficiency. For inference based on this SGLSE, it is necessary to construct a consistent estimator for its asymptotic covariance matrix. However, when there exists within-group correlation, the traditional delta method and the delete-1 jackknife estimation fail to offer such a consistent estimator. In this paper, by deleting grouped partial residuals a delete-group jackknife method is examined. It is shown that the delete-group jackknife method indeed can provide a consistent estimator for the asymptotic covariance matrix in the presence of within-group correlations. This result is an extension of that in [21].展开更多
We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are...We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are given. The strong convergence rates of the proposed estimators are obtained. In our estimation, the observation number of each subject will be completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators.展开更多
In this paper,we focus on the partially linear varying-coefficient quantile regression with missing observations under ultra-high dimension,where the missing observations include either responses or covariates or the ...In this paper,we focus on the partially linear varying-coefficient quantile regression with missing observations under ultra-high dimension,where the missing observations include either responses or covariates or the responses and part of the covariates are missing at random,and the ultra-high dimension implies that the dimension of parameter is much larger than sample size.Based on the B-spline method for the varying coefficient functions,we study the consistency of the oracle estimator which is obtained only using active covariates whose coefficients are nonzero.At the same time,we discuss the asymptotic normality of the oracle estimator for the linear parameter.Note that the active covariates are unknown in practice,non-convex penalized estimator is investigated for simultaneous variable selection and estimation,whose oracle property is also established.Finite sample behavior of the proposed methods is investigated via simulations and real data analysis.展开更多
This paper considers tests for regression coefficients in high dimensional partially linear Models.The authors first use the B-spline method to estimate the unknown smooth function so that it could be linearly express...This paper considers tests for regression coefficients in high dimensional partially linear Models.The authors first use the B-spline method to estimate the unknown smooth function so that it could be linearly expressed.Then,the authors propose an empirical likelihood method to test regression coefficients.The authors derive the asymptotic chi-squared distribution with two degrees of freedom of the proposed test statistics under the null hypothesis.In addition,the method is extended to test with nuisance parameters.Simulations show that the proposed method have a good performance in control of type-I error rate and power.The proposed method is also employed to analyze a data of Skin Cutaneous Melanoma(SKCM).展开更多
Testing heteroscedasticity determines whether the regression model can predict the dependent variable consistently across all values of the explanatory variables.Since the proposed tests could not detect heteroscedast...Testing heteroscedasticity determines whether the regression model can predict the dependent variable consistently across all values of the explanatory variables.Since the proposed tests could not detect heteroscedasticity in all cases,more precisely in heavy-tailed distributions,the authors established new comprehensive test statistic based on Levene’s test.The authors built the asymptotic normality of the test statistic under the null hypothesis of homoscedasticity based on the recent theory of analysis of variance for the infinite factors level.The proposed test uses the residuals from a regression model fit of the mean function with Levene’s test to assess homogeneity of variance.Simulation studies show that our test yields better than other methods in almost all cases even if the variance is a nonlinear function.Finally,the proposed method is implemented through a real data-set.展开更多
This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary...This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. One of our main objects is to estimate nonparametric component and the unknowen parameters simultaneously. It is easier to compute, and the required computation burden is much less than that of the existing two-stage estimation method. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained, and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are carried out to investigate the performance of the proposed method.展开更多
The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the l...The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the local linear method. In this paper its inference is addressed. Based on these estimates, the generalized like- lihood ratio test is established. Under the null hypotheses the normalized test statistic follows a x2-distribution asymptotically, with the scale constant and the degrees of freedom being independent of the nuisance param- eters. This is the Wilks phenomenon. Furthermore its asymptotic power is also derived, which achieves the optimal rate of convergence for nonparametric hypotheses testing. A simulation and a real example are used to evaluate the performances of the testing procedures empirically.展开更多
Consider a repeated measurement partially linear regression model with anunknown vector parameter β_1, an unknown function g(·), and unknown heteroscedastic errorvariances. In order to improve the semiparametric...Consider a repeated measurement partially linear regression model with anunknown vector parameter β_1, an unknown function g(·), and unknown heteroscedastic errorvariances. In order to improve the semiparametric generalized least squares estimator (SGLSE) of ,we propose an iterative weighted semiparametric least squares estimator (IWSLSE) and show that itimproves upon the SGLSE in terms of asymptotic covariance matrix. An adaptive procedure is given todetermine the number of iterations. We also show that when the number of replicates is less than orequal to two, the IWSLSE can not improve upon the SGLSE. These results are generalizations of thosein [2] to the case of semiparametric regressions.展开更多
In the article, hypothesis test for coefficients in high dimensional regression models is considered. I develop simultaneous test statistic for the hypothesis test in both linear and partial linear models. The derived...In the article, hypothesis test for coefficients in high dimensional regression models is considered. I develop simultaneous test statistic for the hypothesis test in both linear and partial linear models. The derived test is designed for growing p and fixed n where the conventional F-test is no longer appropriate. The asymptotic distribution of the proposed test statistic under the null hypothesis is obtained.展开更多
The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic ...The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic normal distribution under the null hypothesis of no serial correlation.Some MonteCarlo experiments are conducted to examine the finite sample performance of the proposed V_(N,p) teststatistic.Simulation results confirm that the proposed test performs satisfactorily in estimated sizeand power.展开更多
In this paper we provide a method to test the existence of the change points in the nonparametric regression function of partially linear models with conditional heteroscedastic variance. We propose the test statistic...In this paper we provide a method to test the existence of the change points in the nonparametric regression function of partially linear models with conditional heteroscedastic variance. We propose the test statistic and establish its asymptotic properties under some regular conditions. Some simulation studies are given to investigate the performance of the proposed method in finite samples. Finally, the proposed method is applied to a real data for illustration.展开更多
A partially linear regression model with heteroscedastic and/or serially correlated errors is studied here. It is well known that in order to apply the semiparametric least squares estimation (SLSE) to make statisti...A partially linear regression model with heteroscedastic and/or serially correlated errors is studied here. It is well known that in order to apply the semiparametric least squares estimation (SLSE) to make statistical inference a consistent estimator of the asymptotic covariance matrix is needed. The traditional residual-based estimator of the asymptotic covariance matrix is not consistent when the errors are heteroscedastic and/or serially correlated. In this paper we propose a new estimator by truncating, which is an extension of the procedure in White. This estimator is shown to be consistent when the truncating parameter converges to infinity with some rate.展开更多
文摘In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.
文摘Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Muller[1] is also proposed to be a class of new nearest neighbor estimates of g(). Baed on the nonparametric regression procedures, we investigate a statistic for testing H0:g=0, and obtain some aspoptotic results about estimates.
基金supported by the National Natural Science Funds for Distinguished Young Scholar (70825004)National Natural Science Foundation of China (NSFC) (10731010 and 10628104)+3 种基金the National Basic Research Program (2007CB814902)Creative Research Groups of China (10721101)Leading Academic Discipline Program, the 10th five year plan of 211 Project for Shanghai University of Finance and Economics211 Project for Shanghai University of Financeand Economics (the 3rd phase)
文摘This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.
文摘We consider a functional partially linear additive model that predicts a functional response by a scalar predictor and functional predictors. The B-spline and eigenbasis least squares estimator for both the parametric and the nonparametric components proposed. In the final of this paper, as a result, we got the variance decomposition of the model and establish the asymptotic convergence rate for estimator.
基金Supported by the National Social Science Foundation of China(Grant No.22BTJ059)。
文摘In this paper,we consider the partial linear regression model y_(i)=x_(i)β^(*)+g(ti)+ε_(i),i=1,2,...,n,where(x_(i),ti)are known fixed design points,g(·)is an unknown function,andβ^(*)is an unknown parameter to be estimated,random errorsε_(i)are(α,β)-mix_(i)ng random variables.The p-th(p>1)mean consistency,strong consistency and complete consistency for least squares estimators ofβ^(*)and g(·)are investigated under some mild conditions.In addition,a numerical simulation is carried out to study the finite sample performance of the theoretical results.Finally,a real data analysis is provided to further verify the effect of the model.
基金supported by the Natural Science Foundation of China under Grant Nos.11231010,11471223,11501586BCMIIS and Key Project of Beijing Municipal Educational Commission under Grant No.KZ201410028030
文摘This paper proposes a test procedure for testing the regression coefficients in high dimensional partially linear models based on the F-statistic. In the partially linear model, the authors first estimate the unknown nonlinear component by some nonparametric methods and then generalize the F-statistic to test the regression coefficients under some regular conditions. During this procedure, the estimation of the nonlinear component brings much challenge to explore the properties of generalized F-test. The authors obtain some asymptotic properties of the generalized F-test in more general cases,including the asymptotic normality and the power of this test with p/n ∈(0, 1) without normality assumption. The asymptotic result is general and by adding some constraint conditions we can obtain the similar conclusions in high dimensional linear models. Through simulation studies, the authors demonstrate good finite-sample performance of the proposed test in comparison with the theoretical results. The practical utility of our method is illustrated by a real data example.
文摘Consider a partially linear regression model with an unknown vector parameter , an unknown function g(·), and unknown heteroscedastic error variances. Chen, You<SUP>[23]</SUP> proposed a semiparametric generalized least squares estimator (SGLSE) for , which takes the heteroscedasticity into account to increase efficiency. For inference based on this SGLSE, it is necessary to construct a consistent estimator for its asymptotic covariance matrix. However, when there exists within-group correlation, the traditional delta method and the delete-1 jackknife estimation fail to offer such a consistent estimator. In this paper, by deleting grouped partial residuals a delete-group jackknife method is examined. It is shown that the delete-group jackknife method indeed can provide a consistent estimator for the asymptotic covariance matrix in the presence of within-group correlations. This result is an extension of that in [21].
文摘We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are given. The strong convergence rates of the proposed estimators are obtained. In our estimation, the observation number of each subject will be completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators.
基金Supported by National Natural Science Foundation of China(Grant No.12071348)Fundamental Research Funds for Central Universities,China(Grant No.2023-3-2D-04)。
文摘In this paper,we focus on the partially linear varying-coefficient quantile regression with missing observations under ultra-high dimension,where the missing observations include either responses or covariates or the responses and part of the covariates are missing at random,and the ultra-high dimension implies that the dimension of parameter is much larger than sample size.Based on the B-spline method for the varying coefficient functions,we study the consistency of the oracle estimator which is obtained only using active covariates whose coefficients are nonzero.At the same time,we discuss the asymptotic normality of the oracle estimator for the linear parameter.Note that the active covariates are unknown in practice,non-convex penalized estimator is investigated for simultaneous variable selection and estimation,whose oracle property is also established.Finite sample behavior of the proposed methods is investigated via simulations and real data analysis.
基金supported by the University of Chinese Academy of Sciences under Grant No.Y95401TXX2Beijing Natural Science Foundation under Grant No.Z190004Key Program of Joint Funds of the National Natural Science Foundation of China under Grant No.U19B2040。
文摘This paper considers tests for regression coefficients in high dimensional partially linear Models.The authors first use the B-spline method to estimate the unknown smooth function so that it could be linearly expressed.Then,the authors propose an empirical likelihood method to test regression coefficients.The authors derive the asymptotic chi-squared distribution with two degrees of freedom of the proposed test statistics under the null hypothesis.In addition,the method is extended to test with nuisance parameters.Simulations show that the proposed method have a good performance in control of type-I error rate and power.The proposed method is also employed to analyze a data of Skin Cutaneous Melanoma(SKCM).
基金partly supported by the National Natural Science Foundation of China under Grant Nos.11571073,11701286,NSF,JS(BK20171073)
文摘Testing heteroscedasticity determines whether the regression model can predict the dependent variable consistently across all values of the explanatory variables.Since the proposed tests could not detect heteroscedasticity in all cases,more precisely in heavy-tailed distributions,the authors established new comprehensive test statistic based on Levene’s test.The authors built the asymptotic normality of the test statistic under the null hypothesis of homoscedasticity based on the recent theory of analysis of variance for the infinite factors level.The proposed test uses the residuals from a regression model fit of the mean function with Levene’s test to assess homogeneity of variance.Simulation studies show that our test yields better than other methods in almost all cases even if the variance is a nonlinear function.Finally,the proposed method is implemented through a real data-set.
基金Supported by National Natural Science Foundation of China (Grant Nos.10771017,10971015,10901020)Key Project of MOE,PRC (Grant No.309007)
文摘This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. One of our main objects is to estimate nonparametric component and the unknowen parameters simultaneously. It is easier to compute, and the required computation burden is much less than that of the existing two-stage estimation method. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained, and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are carried out to investigate the performance of the proposed method.
基金supported in part by National Natural Science Foundation of China(11171112,11201190)Doctoral Fund of Ministry of Education of China(20130076110004)+1 种基金Program of Shanghai Subject Chief Scientist(14XD1401600)the 111 Project of China(B14019)
文摘The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the local linear method. In this paper its inference is addressed. Based on these estimates, the generalized like- lihood ratio test is established. Under the null hypotheses the normalized test statistic follows a x2-distribution asymptotically, with the scale constant and the degrees of freedom being independent of the nuisance param- eters. This is the Wilks phenomenon. Furthermore its asymptotic power is also derived, which achieves the optimal rate of convergence for nonparametric hypotheses testing. A simulation and a real example are used to evaluate the performances of the testing procedures empirically.
基金supported by a grant from the Natural Sciences and Engineering Research Council of Canada.
文摘Consider a repeated measurement partially linear regression model with anunknown vector parameter β_1, an unknown function g(·), and unknown heteroscedastic errorvariances. In order to improve the semiparametric generalized least squares estimator (SGLSE) of ,we propose an iterative weighted semiparametric least squares estimator (IWSLSE) and show that itimproves upon the SGLSE in terms of asymptotic covariance matrix. An adaptive procedure is given todetermine the number of iterations. We also show that when the number of replicates is less than orequal to two, the IWSLSE can not improve upon the SGLSE. These results are generalizations of thosein [2] to the case of semiparametric regressions.
文摘In the article, hypothesis test for coefficients in high dimensional regression models is considered. I develop simultaneous test statistic for the hypothesis test in both linear and partial linear models. The derived test is designed for growing p and fixed n where the conventional F-test is no longer appropriate. The asymptotic distribution of the proposed test statistic under the null hypothesis is obtained.
基金supported by the National Natural Science Foundation of China under Grant Nos. 10871217 and 40574003the Science and Technology Project of Chongqing Education Committee under Grant No. KJ080609+1 种基金the Doctor's Start-up Research Fund under Grant No. 08-52204the Youth Science Research Fund of Chongging Technology and Business University under Grant No. 0852008
文摘The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic normal distribution under the null hypothesis of no serial correlation.Some MonteCarlo experiments are conducted to examine the finite sample performance of the proposed V_(N,p) teststatistic.Simulation results confirm that the proposed test performs satisfactorily in estimated sizeand power.
基金Supported by the National Natural Science Foundation of China(No.11271080)
文摘In this paper we provide a method to test the existence of the change points in the nonparametric regression function of partially linear models with conditional heteroscedastic variance. We propose the test statistic and establish its asymptotic properties under some regular conditions. Some simulation studies are given to investigate the performance of the proposed method in finite samples. Finally, the proposed method is applied to a real data for illustration.
基金Zhou's research was partially supported by the National Natural Science Foundation of China(No.10471140,10571169)
文摘A partially linear regression model with heteroscedastic and/or serially correlated errors is studied here. It is well known that in order to apply the semiparametric least squares estimation (SLSE) to make statistical inference a consistent estimator of the asymptotic covariance matrix is needed. The traditional residual-based estimator of the asymptotic covariance matrix is not consistent when the errors are heteroscedastic and/or serially correlated. In this paper we propose a new estimator by truncating, which is an extension of the procedure in White. This estimator is shown to be consistent when the truncating parameter converges to infinity with some rate.