期刊文献+
共找到113篇文章
< 1 2 6 >
每页显示 20 50 100
Double-Penalized Quantile Regression in Partially Linear Models 被引量:1
1
作者 Yunlu Jiang 《Open Journal of Statistics》 2015年第2期158-164,共7页
In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illus... In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset. 展开更多
关键词 QUANTILE regression partially linear model Heavy-Tailed DISTRIBUTION
在线阅读 下载PDF
PARAMETRIC TEST IN PARTIAL LINEAR REGRESSION MODELS
2
作者 高集体 《Acta Mathematica Scientia》 SCIE CSCD 1995年第S1期1-10,共10页
Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Mulle... Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Muller[1] is also proposed to be a class of new nearest neighbor estimates of g(). Baed on the nonparametric regression procedures, we investigate a statistic for testing H0:g=0, and obtain some aspoptotic results about estimates. 展开更多
关键词 partial linear model Parametric test Asmpptotic normality Nonperametric regression technique.
在线阅读 下载PDF
STRONG CONVERGENCE RATES OF SEVERAL ESTIMATORS IN SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS 被引量:1
3
作者 周勇 尤进红 王晓婧 《Acta Mathematica Scientia》 SCIE CSCD 2009年第5期1113-1127,共15页
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop... This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively. 展开更多
关键词 partially linear regression model varying-coefficient profile leastsquares error variance strong convergence rate law of iterated logarithm
在线阅读 下载PDF
Function-on-Partially Linear Functional Additive Models
4
作者 Jinyou Huang Shuang Chen 《Journal of Applied Mathematics and Physics》 2020年第1期1-9,共9页
We consider a functional partially linear additive model that predicts a functional response by a scalar predictor and functional predictors. The B-spline and eigenbasis least squares estimator for both the parametric... We consider a functional partially linear additive model that predicts a functional response by a scalar predictor and functional predictors. The B-spline and eigenbasis least squares estimator for both the parametric and the nonparametric components proposed. In the final of this paper, as a result, we got the variance decomposition of the model and establish the asymptotic convergence rate for estimator. 展开更多
关键词 FUNCTIONAL Data ANALYSIS FUNCTIONAL Principal COMPONENT ANALYSIS partial linear regression models Penalized B-SPLINES Variance model
在线阅读 下载PDF
The Consistency of LSE Estimators in Partial Linear Regression Models under Mixing Random Errors
5
作者 Yun Bao YAO Yu Tan LÜ +2 位作者 Chao LU Wei WANG Xue Jun WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第5期1244-1272,共29页
In this paper,we consider the partial linear regression model y_(i)=x_(i)β^(*)+g(ti)+ε_(i),i=1,2,...,n,where(x_(i),ti)are known fixed design points,g(·)is an unknown function,andβ^(*)is an unknown parameter to... In this paper,we consider the partial linear regression model y_(i)=x_(i)β^(*)+g(ti)+ε_(i),i=1,2,...,n,where(x_(i),ti)are known fixed design points,g(·)is an unknown function,andβ^(*)is an unknown parameter to be estimated,random errorsε_(i)are(α,β)-mix_(i)ng random variables.The p-th(p>1)mean consistency,strong consistency and complete consistency for least squares estimators ofβ^(*)and g(·)are investigated under some mild conditions.In addition,a numerical simulation is carried out to study the finite sample performance of the theoretical results.Finally,a real data analysis is provided to further verify the effect of the model. 展开更多
关键词 β)-mixing random variables partial linear regression model least squares estimator CONSISTENCY
原文传递
Generalized F-Test for High Dimensional Regression Coefficients of Partially Linear Models 被引量:2
6
作者 WANG Siyang CUI Hengjian 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第5期1206-1226,共21页
This paper proposes a test procedure for testing the regression coefficients in high dimensional partially linear models based on the F-statistic. In the partially linear model, the authors first estimate the unknown ... This paper proposes a test procedure for testing the regression coefficients in high dimensional partially linear models based on the F-statistic. In the partially linear model, the authors first estimate the unknown nonlinear component by some nonparametric methods and then generalize the F-statistic to test the regression coefficients under some regular conditions. During this procedure, the estimation of the nonlinear component brings much challenge to explore the properties of generalized F-test. The authors obtain some asymptotic properties of the generalized F-test in more general cases,including the asymptotic normality and the power of this test with p/n ∈(0, 1) without normality assumption. The asymptotic result is general and by adding some constraint conditions we can obtain the similar conclusions in high dimensional linear models. Through simulation studies, the authors demonstrate good finite-sample performance of the proposed test in comparison with the theoretical results. The practical utility of our method is illustrated by a real data example. 展开更多
关键词 Generalized F-test high dimensional regression partially linear models power of test.
原文传递
Delete-group Jackknife Estimate in Partially Linear Regression Models with Heteroscedasticity 被引量:1
7
作者 Jin-hong You Gemai Chen 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2003年第4期599-610,共12页
Consider a partially linear regression model with an unknown vector parameter , an unknown function g(·), and unknown heteroscedastic error variances. Chen, You<SUP>[23]</SUP> proposed a semiparametri... Consider a partially linear regression model with an unknown vector parameter , an unknown function g(·), and unknown heteroscedastic error variances. Chen, You<SUP>[23]</SUP> proposed a semiparametric generalized least squares estimator (SGLSE) for , which takes the heteroscedasticity into account to increase efficiency. For inference based on this SGLSE, it is necessary to construct a consistent estimator for its asymptotic covariance matrix. However, when there exists within-group correlation, the traditional delta method and the delete-1 jackknife estimation fail to offer such a consistent estimator. In this paper, by deleting grouped partial residuals a delete-group jackknife method is examined. It is shown that the delete-group jackknife method indeed can provide a consistent estimator for the asymptotic covariance matrix in the presence of within-group correlations. This result is an extension of that in [21]. 展开更多
关键词 partially linear regression model asymptotic variance HETEROSCEDASTICITY delete-group jackknife semiparametric generalized least squares estimator
原文传递
Asymptotic Properties in Semiparametric Partially Linear Regression Models for Functional Data 被引量:1
8
作者 Tao ZHANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2013年第3期631-644,共14页
We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are... We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are given. The strong convergence rates of the proposed estimators are obtained. In our estimation, the observation number of each subject will be completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators. 展开更多
关键词 longitudinal data functional data semiparametric partially linear regression models asymptotic properties
原文传递
Quantile Regression of Ultra-high Dimensional Partially Linear Varying-coefficient Model with Missing Observations 被引量:1
9
作者 Bao Hua Wang Han Ying Liang 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第9期1701-1726,共26页
In this paper,we focus on the partially linear varying-coefficient quantile regression with missing observations under ultra-high dimension,where the missing observations include either responses or covariates or the ... In this paper,we focus on the partially linear varying-coefficient quantile regression with missing observations under ultra-high dimension,where the missing observations include either responses or covariates or the responses and part of the covariates are missing at random,and the ultra-high dimension implies that the dimension of parameter is much larger than sample size.Based on the B-spline method for the varying coefficient functions,we study the consistency of the oracle estimator which is obtained only using active covariates whose coefficients are nonzero.At the same time,we discuss the asymptotic normality of the oracle estimator for the linear parameter.Note that the active covariates are unknown in practice,non-convex penalized estimator is investigated for simultaneous variable selection and estimation,whose oracle property is also established.Finite sample behavior of the proposed methods is investigated via simulations and real data analysis. 展开更多
关键词 Missing observation oracle property partially linear varying-coefficient model quantile regression ultra-high dimension
原文传递
Empirical Likelihood Test for Regression Coefficients in High Dimensional Partially Linear Models 被引量:1
10
作者 LIU Yan REN Mingyang ZHANG Sanguo 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2021年第3期1135-1155,共21页
This paper considers tests for regression coefficients in high dimensional partially linear Models.The authors first use the B-spline method to estimate the unknown smooth function so that it could be linearly express... This paper considers tests for regression coefficients in high dimensional partially linear Models.The authors first use the B-spline method to estimate the unknown smooth function so that it could be linearly expressed.Then,the authors propose an empirical likelihood method to test regression coefficients.The authors derive the asymptotic chi-squared distribution with two degrees of freedom of the proposed test statistics under the null hypothesis.In addition,the method is extended to test with nuisance parameters.Simulations show that the proposed method have a good performance in control of type-I error rate and power.The proposed method is also employed to analyze a data of Skin Cutaneous Melanoma(SKCM). 展开更多
关键词 Empirical likelihood test high dimensional analysis partially linear models regression coefficients
原文传递
Test for Heteroscedasticity in Partially Linear Regression Models
11
作者 KHALED Waled LIN Jinguan +2 位作者 HAN Zhongcheng ZHAO Yanyong HAO Hongxia 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2019年第4期1194-1210,共17页
Testing heteroscedasticity determines whether the regression model can predict the dependent variable consistently across all values of the explanatory variables.Since the proposed tests could not detect heteroscedast... Testing heteroscedasticity determines whether the regression model can predict the dependent variable consistently across all values of the explanatory variables.Since the proposed tests could not detect heteroscedasticity in all cases,more precisely in heavy-tailed distributions,the authors established new comprehensive test statistic based on Levene’s test.The authors built the asymptotic normality of the test statistic under the null hypothesis of homoscedasticity based on the recent theory of analysis of variance for the infinite factors level.The proposed test uses the residuals from a regression model fit of the mean function with Levene’s test to assess homogeneity of variance.Simulation studies show that our test yields better than other methods in almost all cases even if the variance is a nonlinear function.Finally,the proposed method is implemented through a real data-set. 展开更多
关键词 ANOVA heteroscedastic ERRORS HYPOTHESIS testing partially linear regression model
原文传递
Efficient Estimation of a Varying-coefficient Partially Linear Binary Regression Model
12
作者 TaoHU Heng Jian CUI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第11期2179-2190,共12页
This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary... This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. One of our main objects is to estimate nonparametric component and the unknowen parameters simultaneously. It is easier to compute, and the required computation burden is much less than that of the existing two-stage estimation method. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained, and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are carried out to investigate the performance of the proposed method. 展开更多
关键词 partially linear model varying-coefficient binary regression asymptotically efficient estimator sieve MLE
原文传递
Inference on Varying-Coefficient Partially Linear Regression Model
13
作者 Jing-yan FENG Ri-quan ZHANG Yi-qiang LU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第1期139-156,共18页
The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the l... The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the local linear method. In this paper its inference is addressed. Based on these estimates, the generalized like- lihood ratio test is established. Under the null hypotheses the normalized test statistic follows a x2-distribution asymptotically, with the scale constant and the degrees of freedom being independent of the nuisance param- eters. This is the Wilks phenomenon. Furthermore its asymptotic power is also derived, which achieves the optimal rate of convergence for nonparametric hypotheses testing. A simulation and a real example are used to evaluate the performances of the testing procedures empirically. 展开更多
关键词 asymptotic normality varying-coefficient partially linear regression model generalized likelihoodratio test Wilks phenomenon xi-distribution.
原文传递
Iterative Weighted Semiparametric Least Squares Estimation in Repeated Measurement Partially Linear Regression Models
14
作者 GemaiChen Jin-hongYou 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2005年第2期177-192,共16页
Consider a repeated measurement partially linear regression model with anunknown vector parameter β_1, an unknown function g(·), and unknown heteroscedastic errorvariances. In order to improve the semiparametric... Consider a repeated measurement partially linear regression model with anunknown vector parameter β_1, an unknown function g(·), and unknown heteroscedastic errorvariances. In order to improve the semiparametric generalized least squares estimator (SGLSE) of ,we propose an iterative weighted semiparametric least squares estimator (IWSLSE) and show that itimproves upon the SGLSE in terms of asymptotic covariance matrix. An adaptive procedure is given todetermine the number of iterations. We also show that when the number of replicates is less than orequal to two, the IWSLSE can not improve upon the SGLSE. These results are generalizations of thosein [2] to the case of semiparametric regressions. 展开更多
关键词 partially linear regression model heteroscedastic error variance iterativeweighted semiparametric least squares estimator (IWSLSE) asymptotic normality
原文传递
A New Test for Large Dimensional Regression Coefficients
15
作者 June Luo Yi-Jun Zuo 《Open Journal of Statistics》 2011年第3期212-216,共5页
In the article, hypothesis test for coefficients in high dimensional regression models is considered. I develop simultaneous test statistic for the hypothesis test in both linear and partial linear models. The derived... In the article, hypothesis test for coefficients in high dimensional regression models is considered. I develop simultaneous test statistic for the hypothesis test in both linear and partial linear models. The derived test is designed for growing p and fixed n where the conventional F-test is no longer appropriate. The asymptotic distribution of the proposed test statistic under the null hypothesis is obtained. 展开更多
关键词 High DIMENSION RIDGE regression HYPOTHESIS TEST partial linear model ASYMPTOTIC
在线阅读 下载PDF
经济发展与用电量分析:基于部分观测函数型众数线性回归模型
16
作者 迟洪 凌能祥 《大学数学》 2025年第1期1-8,共8页
把1980~2022年全球人均GDP数据曲线作为函数型协变量,以用电量均值作为响应变量,基于函数型众数线性回归模型,研究全球范围内的经济发展水平对用电量的影响.注意到1980~2022年间人均用电量和人均GDP曲线数据均存在部分缺失,首先对函数... 把1980~2022年全球人均GDP数据曲线作为函数型协变量,以用电量均值作为响应变量,基于函数型众数线性回归模型,研究全球范围内的经济发展水平对用电量的影响.注意到1980~2022年间人均用电量和人均GDP曲线数据均存在部分缺失,首先对函数型数据进行了恢复;其次,构建部分观测函数型众数线性回归模型,从斜率函数的估计量中获得用电量与经济发展之间的关系;最后,运用求得的模型进行实证分析,进一步说明方法的有效性. 展开更多
关键词 经济发展与用电量 部分观测函数型数据 曲线重构 众数线性回归模型
在线阅读 下载PDF
TESTING SERIAL CORRELATION IN SEMIPARAMETRIC VARYING COEFFICIENT PARTIALLY LINEAR ERRORS-IN-VARIABLES MODEL 被引量:5
17
作者 Xuemei HU Feng LIU Zhizhong WANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第3期483-494,共12页
The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic ... The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic normal distribution under the null hypothesis of no serial correlation.Some MonteCarlo experiments are conducted to examine the finite sample performance of the proposed V_(N,p) teststatistic.Simulation results confirm that the proposed test performs satisfactorily in estimated sizeand power. 展开更多
关键词 Asymptotic normality local linear regression measurement error modified profile leastsquares estimation partial linear model testing serial correlation varying coefficient model.
原文传递
附加一次和二次等式约束的Partial-EIV模型及相应算法 被引量:1
18
作者 韩杰 张松林 《测绘科学技术学报》 北大核心 2019年第1期17-22,27,共7页
研究了附加一次和二次等式约束的Partial-EIV模型,推导了加权整体最小二乘估计准则下相应的计算公式,并讨论了仅附加一次等式约束的Partial-EIV模型和仅附加二次等式约束的Partial-EIV模型。通过正交线性回归和平面坐标转换两个算例进... 研究了附加一次和二次等式约束的Partial-EIV模型,推导了加权整体最小二乘估计准则下相应的计算公式,并讨论了仅附加一次等式约束的Partial-EIV模型和仅附加二次等式约束的Partial-EIV模型。通过正交线性回归和平面坐标转换两个算例进行实验,将新算法与已有的附加等式约束的EIV模型的方法进行了对比,发现文中方法计算效率更高,且适用于结构化EIV模型的求解。 展开更多
关键词 整体最小二乘 partial-EIV模型 等式约束 正交线性回归 平面坐标转换
在线阅读 下载PDF
Testing for Change Points in Partially Linear Models
19
作者 Li-wen ZHANG Zhong-yi ZHU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第4期879-892,共14页
In this paper we provide a method to test the existence of the change points in the nonparametric regression function of partially linear models with conditional heteroscedastic variance. We propose the test statistic... In this paper we provide a method to test the existence of the change points in the nonparametric regression function of partially linear models with conditional heteroscedastic variance. We propose the test statistic and establish its asymptotic properties under some regular conditions. Some simulation studies are given to investigate the performance of the proposed method in finite samples. Finally, the proposed method is applied to a real data for illustration. 展开更多
关键词 change point partially linear model heteroscedastic variance local linear regression bandwidthselection
原文传递
Truncated Estimator of Asymptotic Covariance Matrix in Partially Linear Models with Heteroscedastic Errors
20
作者 Yan-meng Zhao Jin-hong You Yong Zhou 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2006年第4期565-574,共10页
A partially linear regression model with heteroscedastic and/or serially correlated errors is studied here. It is well known that in order to apply the semiparametric least squares estimation (SLSE) to make statisti... A partially linear regression model with heteroscedastic and/or serially correlated errors is studied here. It is well known that in order to apply the semiparametric least squares estimation (SLSE) to make statistical inference a consistent estimator of the asymptotic covariance matrix is needed. The traditional residual-based estimator of the asymptotic covariance matrix is not consistent when the errors are heteroscedastic and/or serially correlated. In this paper we propose a new estimator by truncating, which is an extension of the procedure in White. This estimator is shown to be consistent when the truncating parameter converges to infinity with some rate. 展开更多
关键词 partially linear regression model heteroscedastic serially correlation semiparametric least squares estimation asymptotic covariance matrix
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部