In order to improve the yaw stability of the vehicle with active front steering system, an adaptive PID-type fuzzy control scheme is designed to make the yaw rate tracking the desired values as close as possible. A 2-...In order to improve the yaw stability of the vehicle with active front steering system, an adaptive PID-type fuzzy control scheme is designed to make the yaw rate tracking the desired values as close as possible. A 2-DOF vehicle model with active front steering is built firstly, and then the fuzzy PID controller is designed in detail. The simulation investigations of the yaw stability with different steering ma- neuvers are performed. The simulation results show the effectiveness of the fuzzy PID controller for improving the vehicle's yaw stability.展开更多
Conventional PID controllers are widely used in fin stabilizer control systems, but they have time-variations, nonlinearity, and uncertainty influencing their control effects. A lift feedback fuzzy-PID control method ...Conventional PID controllers are widely used in fin stabilizer control systems, but they have time-variations, nonlinearity, and uncertainty influencing their control effects. A lift feedback fuzzy-PID control method was developed to better deal with these problems, and this lift feedback fin stabilizer system was simulated under different sea condition. Test results showed the system has better anti-rolling performance than traditional fin-angle PID control systems.展开更多
This paper presents the automatic drug administration for the regulation of bispectral (BIS) index in the anesthesia process during the clinical surgery by controlling the concentration target of two drugs, namely, pr...This paper presents the automatic drug administration for the regulation of bispectral (BIS) index in the anesthesia process during the clinical surgery by controlling the concentration target of two drugs, namely, propofol and remifentanil. To realize the automatic drug administration, real clinical data are collected for 42 patients for the construction of patients’ models consisting of pharmacokinetic and pharmacodynamic models describing the dynamics reacting to the input drugs. A nominal anesthesia model is obtained by taking the average of 42 patients’ models for the design of control scheme. Three PID controllers are employed, namely linear PID controller, type-1 (T1) fuzzy PID controller and interval type-2 (IT2) fuzzy PID controller, to regulate the BIS index using the nominal patient’s model. The PID gains and membership functions are obtained using genetic algorithm (GA) by minimizing a cost function measuring the control performance. The best trained PID controllers are tested under different scenarios and compared in terms of control performance. Simulation results show that the IT2 fuzzy PID controller offers the best control strategy regulating the BIS index while the T1 fuzzy PID controller comes the second.展开更多
With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant...With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant impacts to power system during their charging and discharging operations. This article established a model of single machine infinite bus (SMIB) power system considering EV as a case study of load disturbance for power system oscillation. The objective of this research is to enhance stability and overcome the drawbacks of traditional control algorithms such as power system stabilizer (PSS), PID controller and fuzzy logic controller (FLC). The implementation’s effect of FLC parallel with PID controller (Fuzzy-PID) has been shown in this paper. The speed deviation (?ω) and electrical power (Pe) are the important factors to be taken into consideration without EV (only change in mechanical torque), EV with change in the mechanical torque and sudden plug-in EV. The obtained result by nonlinear simulation using Matlab/Simulink of a SMIB power system with EV has shown the effectiveness of using (Fuzzy-PID) against all disturbances.展开更多
The fuzzy switched PID controller which combines fuzzy PD and conventional PI controller is proposed for ship track-keeping autopilot In this paper. By using rudder angle, the whole voyage is divided into two operatin...The fuzzy switched PID controller which combines fuzzy PD and conventional PI controller is proposed for ship track-keeping autopilot In this paper. By using rudder angle, the whole voyage is divided into two operating regimes which named transient operating regime and steady operating regime respectively. The fuzzy PD controller is employed in transient operating regime for increasing response, reducing overshoot and shorting transition time. And conventional PI controller is used to improve the stable accuracy in steady operating regime. The global controller is achieved by fuzzy blending of all local controllers. Routh stability criterion is utilized to obtain the stability condition of closed-loop system. The simulation results show the effectiveness of proposed method.展开更多
Diabetes therapy is normally based on discrete insulin infusion that uses long-time interval measurements. Nevertheless, in this paper, a continuous drug infusion closed-loop control system was proposed to avoid the t...Diabetes therapy is normally based on discrete insulin infusion that uses long-time interval measurements. Nevertheless, in this paper, a continuous drug infusion closed-loop control system was proposed to avoid the traditional discrete approaches by automating diabetes therapy. Based on a continuous insulin injection model, two controllers were designed to deal with this plant. The controllers designed in this paper are: proportional integral derivative (PID), and fuzzy logic controllers (FLC). Simulation results have illustrated that the fuzzy logic controller outperformed the PID controller. These results were based on serious disturbances to glucose, such as exercise, delay or noise in glucose sensor and nutrition mixed meal absorption at meal time.展开更多
The implementation of image-based phenotyping systems has become an important aspect of crop and plant science research which has shown tremendous growth over the years. Accurate determination of features using images...The implementation of image-based phenotyping systems has become an important aspect of crop and plant science research which has shown tremendous growth over the years. Accurate determination of features using images requires stable imaging and very precise processing. By installing a camera on a mechanical arm driven by motor, the maintenance of accuracy and stability becomes non-trivial. As per the state-of-the-art, the issue of external camera shake incurred due to vibration is a great concern in capturing accurate images, which may be induced by the driving motor of the manipulator. So, there is a requirement for a stable active controller for sufficient vibration attenuation of the manipulator. However, there are very few reports in agricultural practices which use control algorithms. Although, many control strategies have been utilized to control the vibration in manipulators associated to various applications, no control strategy with validated stability has been provided to control the vibration in such envisioned agricultural manipulator with simple low-cost hardware devices with the compensation of non-linearities. So, in this work, the combination of proportional-integral-differential(PID) control with type-2 fuzzy logic(T2-F-PID) is implemented for vibration control. The validation of the controller stability using Lyapunov analysis is established. A torsional actuator(TA) is applied for mitigating torsional vibration, which is a new contribution in the area of agricultural manipulators. Also, to prove the effectiveness of the controller, the vibration attenuation results with T2-F-PID is compared with conventional PD/PID controllers, and a type-1 fuzzy PID(T1-F-PID) controller.展开更多
An intelligent fuzzy-PID controller consisting of fuzzy logic controller and PID controller was developed to control the molten steel level of twin-roll strip caster.Additionally,a feedforward differential PID control...An intelligent fuzzy-PID controller consisting of fuzzy logic controller and PID controller was developed to control the molten steel level of twin-roll strip caster.Additionally,a feedforward differential PID controller was used for stopper position control in order to avoid differential kick.It is proved by simulation that the proposed intelligent controller is able to obtain zero steady state error asymptotically and the control system is robust due to its fuggy behavior of the controller.展开更多
In this paper, an indirect adaptive fuzzy output feedback controller with supervisory mode for a class of unknown nonlinear systems is developed. The proposed approach does not need the availability of the state varia...In this paper, an indirect adaptive fuzzy output feedback controller with supervisory mode for a class of unknown nonlinear systems is developed. The proposed approach does not need the availability of the state variables, moreover, a supervisory controller is appended to the adaptive fuzzy controller to force the state to be within the constraint set. Therefore, if the adaptive fuzzy controller cannot maintain the stability, the supervisory controller starts to work to guarantee stability. On the other hand, if the adaptive fuzzy controller works well, the supervisory controller will be de-activated. The overall adaptive fuzzy control scheme guarantees the stability of the whole closed-loop systems. The simulation results confirm the effectiveness of the proposed method.展开更多
Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking com...Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking components.Stabilizing control is applied to track angular velocity order and control multi-disturbance under airborne condition,and its robustness should be very good;tracking control is applied to compensate tracking error of angular position.A mathematical model is established by taking the control of yaw loop as example.H∞ stabilizing controller is designed by taking the advantage of H∞ control robustness and combining with Kalman filter.A fuzzy control is introduced in general PID control to design a decoupled fuzzy Smith estimating PID controller for tracking control.Simulation research shows that the control effect of airborne electro-optical tracking and sighting system based on fuzzy PID and H∞ control is good,especially when the model parameters change and the multi-disturbance exists,the system capability has little fall,but this system still can effectively track a target.展开更多
基金Supported by the National Natural Science Foundation of China (No.50705008)
文摘In order to improve the yaw stability of the vehicle with active front steering system, an adaptive PID-type fuzzy control scheme is designed to make the yaw rate tracking the desired values as close as possible. A 2-DOF vehicle model with active front steering is built firstly, and then the fuzzy PID controller is designed in detail. The simulation investigations of the yaw stability with different steering ma- neuvers are performed. The simulation results show the effectiveness of the fuzzy PID controller for improving the vehicle's yaw stability.
基金the "Ship Control Engineering" emphasis project of 211 Engineering in the tenth five-year plan.
文摘Conventional PID controllers are widely used in fin stabilizer control systems, but they have time-variations, nonlinearity, and uncertainty influencing their control effects. A lift feedback fuzzy-PID control method was developed to better deal with these problems, and this lift feedback fin stabilizer system was simulated under different sea condition. Test results showed the system has better anti-rolling performance than traditional fin-angle PID control systems.
文摘This paper presents the automatic drug administration for the regulation of bispectral (BIS) index in the anesthesia process during the clinical surgery by controlling the concentration target of two drugs, namely, propofol and remifentanil. To realize the automatic drug administration, real clinical data are collected for 42 patients for the construction of patients’ models consisting of pharmacokinetic and pharmacodynamic models describing the dynamics reacting to the input drugs. A nominal anesthesia model is obtained by taking the average of 42 patients’ models for the design of control scheme. Three PID controllers are employed, namely linear PID controller, type-1 (T1) fuzzy PID controller and interval type-2 (IT2) fuzzy PID controller, to regulate the BIS index using the nominal patient’s model. The PID gains and membership functions are obtained using genetic algorithm (GA) by minimizing a cost function measuring the control performance. The best trained PID controllers are tested under different scenarios and compared in terms of control performance. Simulation results show that the IT2 fuzzy PID controller offers the best control strategy regulating the BIS index while the T1 fuzzy PID controller comes the second.
文摘With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant impacts to power system during their charging and discharging operations. This article established a model of single machine infinite bus (SMIB) power system considering EV as a case study of load disturbance for power system oscillation. The objective of this research is to enhance stability and overcome the drawbacks of traditional control algorithms such as power system stabilizer (PSS), PID controller and fuzzy logic controller (FLC). The implementation’s effect of FLC parallel with PID controller (Fuzzy-PID) has been shown in this paper. The speed deviation (?ω) and electrical power (Pe) are the important factors to be taken into consideration without EV (only change in mechanical torque), EV with change in the mechanical torque and sudden plug-in EV. The obtained result by nonlinear simulation using Matlab/Simulink of a SMIB power system with EV has shown the effectiveness of using (Fuzzy-PID) against all disturbances.
文摘The fuzzy switched PID controller which combines fuzzy PD and conventional PI controller is proposed for ship track-keeping autopilot In this paper. By using rudder angle, the whole voyage is divided into two operating regimes which named transient operating regime and steady operating regime respectively. The fuzzy PD controller is employed in transient operating regime for increasing response, reducing overshoot and shorting transition time. And conventional PI controller is used to improve the stable accuracy in steady operating regime. The global controller is achieved by fuzzy blending of all local controllers. Routh stability criterion is utilized to obtain the stability condition of closed-loop system. The simulation results show the effectiveness of proposed method.
文摘Diabetes therapy is normally based on discrete insulin infusion that uses long-time interval measurements. Nevertheless, in this paper, a continuous drug infusion closed-loop control system was proposed to avoid the traditional discrete approaches by automating diabetes therapy. Based on a continuous insulin injection model, two controllers were designed to deal with this plant. The controllers designed in this paper are: proportional integral derivative (PID), and fuzzy logic controllers (FLC). Simulation results have illustrated that the fuzzy logic controller outperformed the PID controller. These results were based on serious disturbances to glucose, such as exercise, delay or noise in glucose sensor and nutrition mixed meal absorption at meal time.
文摘The implementation of image-based phenotyping systems has become an important aspect of crop and plant science research which has shown tremendous growth over the years. Accurate determination of features using images requires stable imaging and very precise processing. By installing a camera on a mechanical arm driven by motor, the maintenance of accuracy and stability becomes non-trivial. As per the state-of-the-art, the issue of external camera shake incurred due to vibration is a great concern in capturing accurate images, which may be induced by the driving motor of the manipulator. So, there is a requirement for a stable active controller for sufficient vibration attenuation of the manipulator. However, there are very few reports in agricultural practices which use control algorithms. Although, many control strategies have been utilized to control the vibration in manipulators associated to various applications, no control strategy with validated stability has been provided to control the vibration in such envisioned agricultural manipulator with simple low-cost hardware devices with the compensation of non-linearities. So, in this work, the combination of proportional-integral-differential(PID) control with type-2 fuzzy logic(T2-F-PID) is implemented for vibration control. The validation of the controller stability using Lyapunov analysis is established. A torsional actuator(TA) is applied for mitigating torsional vibration, which is a new contribution in the area of agricultural manipulators. Also, to prove the effectiveness of the controller, the vibration attenuation results with T2-F-PID is compared with conventional PD/PID controllers, and a type-1 fuzzy PID(T1-F-PID) controller.
基金Item Sponsored by National Natural Science Foundation of China(59995440)State Key Fundamental Research Project of China(G2000067208-4)
文摘An intelligent fuzzy-PID controller consisting of fuzzy logic controller and PID controller was developed to control the molten steel level of twin-roll strip caster.Additionally,a feedforward differential PID controller was used for stopper position control in order to avoid differential kick.It is proved by simulation that the proposed intelligent controller is able to obtain zero steady state error asymptotically and the control system is robust due to its fuggy behavior of the controller.
基金Supported by National Natural Science Foundation of P. R. China (60274019)National Key Basic Research and Development Program of P. R. China (2002CB312200)
文摘In this paper, an indirect adaptive fuzzy output feedback controller with supervisory mode for a class of unknown nonlinear systems is developed. The proposed approach does not need the availability of the state variables, moreover, a supervisory controller is appended to the adaptive fuzzy controller to force the state to be within the constraint set. Therefore, if the adaptive fuzzy controller cannot maintain the stability, the supervisory controller starts to work to guarantee stability. On the other hand, if the adaptive fuzzy controller works well, the supervisory controller will be de-activated. The overall adaptive fuzzy control scheme guarantees the stability of the whole closed-loop systems. The simulation results confirm the effectiveness of the proposed method.
基金Sponsored by Foundation for Excellent Young Teachers in Universities of Henan Province of China(2002[121])
文摘Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking components.Stabilizing control is applied to track angular velocity order and control multi-disturbance under airborne condition,and its robustness should be very good;tracking control is applied to compensate tracking error of angular position.A mathematical model is established by taking the control of yaw loop as example.H∞ stabilizing controller is designed by taking the advantage of H∞ control robustness and combining with Kalman filter.A fuzzy control is introduced in general PID control to design a decoupled fuzzy Smith estimating PID controller for tracking control.Simulation research shows that the control effect of airborne electro-optical tracking and sighting system based on fuzzy PID and H∞ control is good,especially when the model parameters change and the multi-disturbance exists,the system capability has little fall,but this system still can effectively track a target.