期刊文献+
共找到9,647篇文章
< 1 2 250 >
每页显示 20 50 100
An Improved SPSA Algorithm for System Identification Using Fuzzy Rules for Training Neural Networks 被引量:1
1
作者 Ahmad T.Abdulsadda Kamran Iqbal 《International Journal of Automation and computing》 EI 2011年第3期333-339,共7页
Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper descri... Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error. 展开更多
关键词 Nonlinear system identification simultaneous perturbation stochastic approximation (SPSA) neural networks (NNs) fuzzy rules multi-layer perceptron (MLP).
在线阅读 下载PDF
Prediction of the undrained shear strength of remolded soil with non-linear regression,fuzzy logic,and artificial neural network
2
作者 YÜNKÜL Kaan KARAÇOR Fatih +1 位作者 GÜRBÜZ Ayhan BUDAK TahsinÖmür 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3108-3122,共15页
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results... This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination. 展开更多
关键词 Undrained shear strength Liquidity index Water content ratio Non-linear regression Artificial neural networks fuzzy logic
在线阅读 下载PDF
Prescribed finite-time stabilization of fuzzy neural networks with time-varying controller
3
作者 Yufeng Zhou Yawen Zhou Peng Wan 《Journal of Automation and Intelligence》 2024年第3期176-184,共9页
This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Li... This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Lipschitz condition for activation function is also relaxed.Second,different from the traditional Lyapunov function,two different time-varying Lyapunov functions are respectively constructed to achieve the exponential and prescribed finite-time stabilization.Significantly,the exponential convergence rate and the settling time are constants that can be given in advance and are not affected by system parameters and initial states.In addition,the time-varying controllers have good tolerance for disturbance caused by discontinuous functions and the disturbance is perfectly resolved and does not affect the control performance.Especially,the form of controllers is relatively simple and there is not necessary to design the fractional-order controllers for prescribed finite-time stabilization.Furthermore,the exponential and prescribed finite-time stabilization for FNNs without delay are respectively established via continuous time-varying state feedback control.Finally,examples show the effectiveness of the proposed control methods. 展开更多
关键词 fuzzy neural networks Exponential stabilization Prescribed finite-time stabilization Time delay Discontinuous activation
在线阅读 下载PDF
General Decay Synchronization of Competitive Fuzzy Neural Networks Involving Time Delays and Right-Hand Discontinuous Activation
4
作者 Mairemunisa Abudusaimaiti Abuduwali Abudukeremu 《Open Journal of Applied Sciences》 2024年第11期3243-3260,共18页
This paper discusses the general decay synchronization problem for a class of fuzzy competitive neural networks with time-varying delays and discontinuous activation functions. Firstly, based on the concept of Filippo... This paper discusses the general decay synchronization problem for a class of fuzzy competitive neural networks with time-varying delays and discontinuous activation functions. Firstly, based on the concept of Filippov solutions for right-hand discontinuous systems, some sufficient conditions for general decay synchronization of the considered system are obtained via designing a nonlinear feedback controller and applying discontinuous differential equation theory, Lyapunov functional methods and some inequality techniques. Finally, one numerical example is given to verify the effectiveness of the proposed theoretical results. The general decay synchronization considered in this article can better estimate the convergence rate of the system, and the exponential synchronization and polynomial synchronization can be seen as its special cases. 展开更多
关键词 Competitive neural network fuzzy General Decay Synchronization Discontinuous Activation Function
在线阅读 下载PDF
Artificial Neural Network and Fuzzy Logic Based Techniques for Numerical Modeling and Prediction of Aluminum-5%Magnesium Alloy Doped with REM Neodymium
5
作者 Anukwonke Maxwell Chukwuma Chibueze Ikechukwu Godwills +1 位作者 Cynthia C. Nwaeju Osakwe Francis Onyemachi 《International Journal of Nonferrous Metallurgy》 2024年第1期1-19,共19页
In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties ... In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R). 展开更多
关键词 Al-5%Mg Alloy NEODYMIUM Artificial neural network fuzzy Logic Average Grain Size and Mechanical Properties
在线阅读 下载PDF
AN INTELLIGENT TOOL CONDITION MONITORING SYSTEM USING FUZZY NEURAL NETWORKS 被引量:3
6
作者 赵东标 KeshengWang OliverKrimmel 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期169-175,共7页
Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificia... Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificial neural networks (ANNs) are used for this purpose in conjunction with suitable sensory systems. The present work in Norwegian University of Science and Technology (NTNU) uses back propagation neural networks (BP) and fuzzy neural networks (FNN) to process the cutting tool state data measured with force and acoustic emission (AE) sensors, and implements a valuable on line tool condition monitoring system using the ANNs. Different ANN structures are designed and investigated to estimate the tool wear state based on the fusion of acoustic emission and force signals. Finally, four case studies are introduced for the sensing and ANN processing of the tool wear states and the failures of the tool with practical experiment examples. The results indicate that a tool wear identification system can be achieved using the sensors integration with ANNs, and that ANNs provide a very effective method of implementing sensor integration for on line monitoring of tool wear states and abnormalities. 展开更多
关键词 tool condition monitoring neural networks fuzzy logic acoustic emission force sensor fuzzy neural networks
在线阅读 下载PDF
Improving Land Resource Evaluation Using Fuzzy Neural Network Ensembles 被引量:11
7
作者 XUE Yue-Ju HU Yue-Ming +3 位作者 LIU Shu-Guang YANG Jing-Feng CHEN Qi-Chang BAO Shi-Tai 《Pedosphere》 SCIE CAS CSCD 2007年第4期429-435,共7页
Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource exper... Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource experts, and the evaluation results rely heavily on experts' experiences. In order to overcome the shortcoming, we presented a fuzzy neural network ensemble method that did not require grading the evaluation factors into categorical indexes and could evaluate land resources by using the three kinds of attribute values directly. A fuzzy back propagation neural network (BPNN), a fuzzy radial basis function neural network (RBFNN), a fuzzy BPNN ensemble, and a fuzzy RBFNN ensemble were used to evaluate the land resources in Guangdong Province. The evaluation results by using the fuzzy BPNN ensemble and the fuzzy RBFNN ensemble were much better than those by using the single fuzzy BPNN and the single fuzzy RBFNN, and the error rate of the single fuzzy RBFNN or fuzzy RBFNN ensemble was lower than that of the single fuzzy BPNN or fuzzy BPNN ensemble, respectively. By using the fuzzy neural network ensembles, the validity of land resource evaluation was improved and reliance on land evaluators' experiences was considerably reduced. 展开更多
关键词 back propagation neural network (BPNN) data types fuzzy neural network ensembles land resource evaluation radial basis function neural network (RBFNN)
在线阅读 下载PDF
APPROXIMATION CAPABILITIES OF MULTILAYER FEEDFORWARD REGULAR FUZZY NEURAL NETWORKS 被引量:2
8
作者 Liu PuyinDept. of Math., National Univ. of Defence Technology,Changsha 410073 Dept. of Math., Beijing Normal Univ.,Beijing 100875. 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2001年第1期45-57,共13页
Four layer feedforward regular fuzzy neural networks are constructed. Universal approximations to some continuous fuzzy functions defined on F 0 (R) n by the four layer fuzzy neural networks are shown. At f... Four layer feedforward regular fuzzy neural networks are constructed. Universal approximations to some continuous fuzzy functions defined on F 0 (R) n by the four layer fuzzy neural networks are shown. At first,multivariate Bernstein polynomials associated with fuzzy valued functions are empolyed to approximate continuous fuzzy valued functions defined on each compact set of R n . Secondly,by introducing cut preserving fuzzy mapping,the equivalent conditions for continuous fuzzy functions that can be arbitrarily closely approximated by regular fuzzy neural networks are shown. Finally a few of sufficient and necessary conditions for characterizing approximation capabilities of regular fuzzy neural networks are obtained. And some concrete fuzzy functions demonstrate our conclusions. 展开更多
关键词 Regular fuzzy neural networks CUT preserving fuzzy mappings universal approximators fuzzy valued Bernstein polynomials.
在线阅读 下载PDF
Optimized operation scheme of flash-memory-based neural network online training with ultra-high endurance
9
作者 Yang Feng Zhaohui Sun +6 位作者 Yueran Qi Xuepeng Zhan Junyu Zhang Jing Liu Masaharu Kobayashi Jixuan Wu Jiezhi Chen 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期33-37,共5页
With the rapid development of machine learning,the demand for high-efficient computing becomes more and more urgent.To break the bottleneck of the traditional Von Neumann architecture,computing-in-memory(CIM)has attra... With the rapid development of machine learning,the demand for high-efficient computing becomes more and more urgent.To break the bottleneck of the traditional Von Neumann architecture,computing-in-memory(CIM)has attracted increasing attention in recent years.In this work,to provide a feasible CIM solution for the large-scale neural networks(NN)requiring continuous weight updating in online training,a flash-based computing-in-memory with high endurance(10^(9) cycles)and ultrafast programming speed is investigated.On the one hand,the proposed programming scheme of channel hot electron injection(CHEI)and hot hole injection(HHI)demonstrate high linearity,symmetric potentiation,and a depression process,which help to improve the training speed and accuracy.On the other hand,the low-damage programming scheme and memory window(MW)optimizations can suppress cell degradation effectively with improved computing accuracy.Even after 109 cycles,the leakage current(I_(off))of cells remains sub-10pA,ensuring the large-scale computing ability of memory.Further characterizations are done on read disturb to demonstrate its robust reliabilities.By processing CIFAR-10 tasks,it is evident that~90%accuracy can be achieved after 109 cycles in both ResNet50 and VGG16 NN.Our results suggest that flash-based CIM has great potential to overcome the limitations of traditional Von Neumann architectures and enable high-performance NN online training,which pave the way for further development of artificial intelligence(AI)accelerators. 展开更多
关键词 NOR flash memory computing-in-memory ENDURANCE neural network online training
在线阅读 下载PDF
Additive-Multiplicative Fuzzy Neural Network and Its Performance
10
作者 翟东海 靳蕃 《Journal of Southwest Jiaotong University(English Edition)》 2003年第1期16-22,共7页
In view of the main weaknesses of current fuzzy neural networks such as low reasoning precision and long training time, an Additive Multiplicative Fuzzy Neural Network (AMFNN) model and its architecture are present... In view of the main weaknesses of current fuzzy neural networks such as low reasoning precision and long training time, an Additive Multiplicative Fuzzy Neural Network (AMFNN) model and its architecture are presented. AMFNN combines additive inference and multiplicative inference into an integral whole, reasonably makes use of their advantages of inference and effectively overcomes their weaknesses when they are used for inference separately. Here, an error back propagation algorithm for AMFNN is presented based on the gradient descent method. Comparisons between the AMFNN and six representative fuzzy inference methods shows that the AMFNN is characterized by higher reasoning precision, wider application scope, stronger generalization capability and easier implementation. 展开更多
关键词 fuzzy inference additive multiplicative fuzzy neural network fuzzy rule acquisition
在线阅读 下载PDF
APPLICATION OF MULTI-SENSOR DATA FUSION BASED ON FUZZY NEURAL NETWORK IN ROTA TING MECHANICAL FAILURE DIAGNOSIS 被引量:1
11
作者 周洁敏 林刚 +1 位作者 宫淑丽 陶云刚 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期91-96,共6页
At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-se... At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data wi th that on original separate data,it is shown that the former is more accurate than the latter. 展开更多
关键词 MULTI-SENSOR data fus ion fuzzy neural network rotating mechanical fault diagnosis grade of members hip
在线阅读 下载PDF
INDUCTION MOTOR SPEED CONTROL SYSTEM BASED ON FUZZY NEURAL NETWORK 被引量:1
12
作者 徐小增 李叶松 秦忆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第3期195-199,共5页
A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teachin... A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness. 展开更多
关键词 induction motor fuzzy neural network vector control speed control system
在线阅读 下载PDF
RBF neural network regression model based on fuzzy observations 被引量:1
13
作者 朱红霞 沈炯 苏志刚 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期400-406,共7页
A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership fu... A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy. 展开更多
关键词 radial basis function neural network (RBFNN) fuzzy membership function imprecise observation regression model
在线阅读 下载PDF
Fuzzy Neural Network Model of 4-CBA Concentration for Industrial Purified Terephthalic Acid Oxidation Process 被引量:7
14
作者 刘瑞兰 苏宏业 +3 位作者 牟盛静 贾涛 陈渭泉 褚健 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期234-239,共6页
A fuzzy neural network (FNN) model is developed to predict the 4-CBA concentration of the oxidation unit in purified terephthalic acid process. Several technologies are used to deal with the process data before modeli... A fuzzy neural network (FNN) model is developed to predict the 4-CBA concentration of the oxidation unit in purified terephthalic acid process. Several technologies are used to deal with the process data before modeling.First,a set of preliminary input variables is selected according to prior knowledge and experience. Secondly,a method based on the maximum correlation coefficient is proposed to detect the dead time between the process variables and response variables. Finally, the fuzzy curve method is used to reduce the unimportant input variables.The simulation results based on industrial data show that the relative error range of the FNN model is narrower than that of the American Oil Company (AMOCO) model. Furthermore, the FNN model can predict the trend of the 4-CBA concentration more accurately. 展开更多
关键词 purified terephthalic acid 4-carboxybenzaldchydc fuzzy neural network soft sensor input variables selection fuzzy curve dead time detection
在线阅读 下载PDF
FAULT DIAGNOSIS OF ROTATING MACHINERY USING KNOWLEDGE-BASED FUZZY NEURAL NETWORK 被引量:2
15
作者 李如强 陈进 伍星 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第1期99-108,共10页
A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from ... A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks. 展开更多
关键词 rotating machinery fault diagnosis rough sets theory fuzzy sets theory generic algorithm knowledge-based fuzzy neural network
在线阅读 下载PDF
Using fuzzy neural networks for RMB/USD real exchange rate forecasting 被引量:2
16
作者 惠晓峰 李喆 魏庆泉 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第2期189-192,共4页
In order to aim at improving the forecasting performance of the RMB/USD exchange rate, this paper proposes a new architecture of fuzzy neural networks based on fuzzy logic, and the method of point differential, which ... In order to aim at improving the forecasting performance of the RMB/USD exchange rate, this paper proposes a new architecture of fuzzy neural networks based on fuzzy logic, and the method of point differential, which guarantees not only the direction of weight correction, but also the needed precision for the BP algorithm. In applying genetic algorithms for optimal performance, this approach, in the forecasting of the RMB/USD real exchange rate from 1994 to 2000, obviously outperforms typical BP Neural Networks and exhibits a higher capacity in regard to nonlinear, time-variablility, and illegibility of the exchange rate. 展开更多
关键词 fuzzy neural networks fuzzy logic genetic algorithm RMB/USD real exchange rate
在线阅读 下载PDF
Simultaneous Perturbation Stochastic Approximation Algorithm Combined with Neural Network and Fuzzy Simulation 被引量:1
17
作者 宁玉富 唐万生 郭长友 《Transactions of Tianjin University》 EI CAS 2008年第1期43-49,共7页
In order to solve three kinds of fuzzy programm model, fuzzy chance-constrained programming mode ng models, i.e. fuzzy expected value and fuzzy dependent-chance programming model, a simultaneous perturbation stochast... In order to solve three kinds of fuzzy programm model, fuzzy chance-constrained programming mode ng models, i.e. fuzzy expected value and fuzzy dependent-chance programming model, a simultaneous perturbation stochastic approximation algorithm is proposed by integrating neural network with fuzzy simulation. At first, fuzzy simulation is used to generate a set of input-output data. Then a neural network is trained according to the set. Finally, the trained neural network is embedded in simultaneous perturbation stochastic approximation algorithm. Simultaneous perturbation stochastic approximation algorithm is used to search the optimal solution. Two numerical examples are presented to illustrate the effectiveness of the proposed algorithm. 展开更多
关键词 fuzzy variable fuzzy programming fuzzy simulation neural network approximation theory perturbation techniques computer simulation simultaneous perturbation stochasticapproximation algorithm
在线阅读 下载PDF
Registration algorithm for sensor alignment based on stochastic fuzzy neural network
18
作者 LiJiao JingZhongliang +1 位作者 HeJiaona WangAn 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期134-139,共6页
Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors... Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors, which can result system errors. So traditional registration algorithms have limitation. This paper presents a registration algorithm for sensor alignment based on stochastic fuzzy neural network (SNFF), and utilized fuzzy clustering algorithm obtaining the number of fuzzy rules. Finally, the simulative result illuminate that this way could gain a satisfing result. 展开更多
关键词 multi-sensors REGISTRATION fuzzy clustering stochastic fuzzy neural network.
在线阅读 下载PDF
Short-term load forecasting based on fuzzy neural network
19
作者 DONG Liang MU Zhichun (Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1997年第3期46-48,53,共4页
The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e... The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e. themultiplicative inference, the maximum inference and the minimum inference, are used for comparison. The learningalgorithms corresponding to the inference methods are derived from back-propagation algorithm. To validate the fuzzyneural network model, the network is used to Predict short-term load by compaing the network output against the realload data from a local power system supplying electricity to a large steel manufacturer. The experimental results aresatisfactory. 展开更多
关键词 short-term load forecasting fuzzy control fuzzy neural networks
在线阅读 下载PDF
Application of fuzzy neural network to the nuclear power plant in process fault diagnosis
20
作者 LIUYong-kuo XIAHong XIEChun-li 《Journal of Marine Science and Application》 2005年第1期34-38,共5页
The fuzzy logic and neural networks are combined in this paper, setting upthe fuzzy neural network (FNN ) ; meanwhile, the distinct differences and connections between thefuzzy logic and neural network are compared. F... The fuzzy logic and neural networks are combined in this paper, setting upthe fuzzy neural network (FNN ) ; meanwhile, the distinct differences and connections between thefuzzy logic and neural network are compared. Furthermore, the algorithm and structure of the FNN areintroduced. In order to diagnose the faults of nuclear power plant, the FNN is applied to thenuclear power planl, and the intelligence fault diagnostic system of the nuclear power plant isbuilt based on the FNN . The fault symptoms and the possibility of the inverted U-tube breakaccident of steam generator are discussed. In order to test the system' s validity, the invertedU-tube break accident of steam generator is used as an example and many simulation experiments areperformed. The test result shows that the FNN can identify the fault. 展开更多
关键词 neural networks fuzzy logic fuzzy neural network (FNN) inverted U-tube nuclear power plant
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部