期刊文献+
共找到10,281篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of Extended Fisher-Kolmogorov Equation in 2D Utilizing the Generalized Finite Difference Method with Supplementary Nodes
1
作者 Bingrui Ju Wenxiang Sun +1 位作者 Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期267-280,共14页
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso... In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem. 展开更多
关键词 generalized finite difference method nonlinear extended Fisher-Kolmogorov equation Crank-Nicolson scheme
在线阅读 下载PDF
NGP_G-STABILITY OF LINEAR MULTISTEP METHODS FOR SYSTEMS OF GENERALIZED NEUTRAL DELAY DIFFERENTIAL EQUATIONS 被引量:1
2
作者 CONG Yu-hao(丛玉豪) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第7期827-835,共9页
The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was a... The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was analysed for the solution of the generalized system of linear neutral test equations, After the establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, it is shown that a linear multistep method is NGP(G)-stable if and only if it is A-stable. 展开更多
关键词 generalized neutral delay differential system asymptotic stability linear multistep methods NGP(G)-stability
在线阅读 下载PDF
ADER Methods for Hyperbolic Equations with a Time-Reconstruction Solver for the Generalized Riemann Problem: the Scalar Case 被引量:1
3
作者 R.Demattè V.A.Titarev +1 位作者 G.I.Montecinos E.F.Toro 《Communications on Applied Mathematics and Computation》 2020年第3期369-402,共34页
The ADER approach to solve hyperbolic equations to very high order of accuracy has seen explosive developments in the last few years,including both methodological aspects as well as very ambitious applications.In spit... The ADER approach to solve hyperbolic equations to very high order of accuracy has seen explosive developments in the last few years,including both methodological aspects as well as very ambitious applications.In spite of methodological progress,the issues of efficiency and ease of implementation of the solution of the associated generalized Riemann problem(GRP)remain the centre of attention in the ADER approach.In the original formulation of ADER schemes,the proposed solution procedure for the GRP was based on(i)Taylor series expansion of the solution in time right at the element interface,(ii)subsequent application of the Cauchy-Kowalewskaya procedure to convert time derivatives to functionals of space derivatives,and(iii)solution of classical Riemann problems for high-order spatial derivatives to complete the Taylor series expansion.For realistic problems the Cauchy-Kowalewskaya procedure requires the use of symbolic manipulators and being rather cumbersome its replacement or simplification is highly desirable.In this paper we propose a new class of solvers for the GRP that avoid the Cauchy-Kowalewskaya procedure and result in simpler ADER schemes.This is achieved by exploiting the history of the numerical solution that makes it possible to devise a time-reconstruction procedure at the element interface.Still relying on a time Taylor series expansion of the solution at the interface,the time derivatives are then easily calculated from the time-reconstruction polynomial.The resulting schemes are called ADER-TR.A thorough study of the linear stability properties of the linear version of the schemes is carried out using the von Neumann method,thus deducing linear stability regions.Also,via careful numerical experiments,we deduce stability regions for the corresponding non-linear schemes.Numerical examples using the present simplified schemes of fifth and seventh order of accuracy in space and time show that these compare favourably with conventional ADER methods.This paper is restricted to the one-dimensional scalar case with source term,but preliminary results for the one-dimensional Euler equations indicate that the time-reconstruction approach offers significant advantages not only in terms of ease of implementation but also in terms of efficiency for the high-order range schemes. 展开更多
关键词 Hyperbolic equations Finite volume ADER methods generalized Riemann problem(GRP) Time-reconstruction(TR)
在线阅读 下载PDF
Jacobi Collocation Methods for Solving Generalized Space-Fractional Burgers Equations 被引量:1
4
作者 Qingqing Wu Xiaoyan Zeng 《Communications on Applied Mathematics and Computation》 2020年第2期305-318,共14页
The aim of this paper is to obtain the numerical solutions of generalized space-fractional Burgers' equations with initial-boundary conditions by the Jacobi spectral collocation method using the shifted Jacobi-Gau... The aim of this paper is to obtain the numerical solutions of generalized space-fractional Burgers' equations with initial-boundary conditions by the Jacobi spectral collocation method using the shifted Jacobi-Gauss-Lobatto collocation points. By means of the simplifed Jacobi operational matrix, we produce the diferentiation matrix and transfer the space-fractional Burgers' equation into a system of ordinary diferential equations that can be solved by the fourth-order Runge-Kutta method. The numerical simulations indicate that the Jacobi spectral collocation method is highly accurate and fast convergent for the generalized space-fractional Burgers' equation. 展开更多
关键词 generalized space-fractional Burgers'equations Jacobi spectral collocation methods Diferentiation matrix Shifted Jacobi-Gauss-Lobatto collocation points
在线阅读 下载PDF
Generalized Maximum Fuzzy Entropy Methods with Applications on Wind Speed Data 被引量:1
5
作者 Aladdin Shamilov Sevil Senturk Nihal Yilmaz 《Journal of Mathematics and System Science》 2016年第1期46-52,共7页
This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)En... This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)Ent measure for fixed moment vector function in order to obtain the special functional with maximum values of Max(F)Ent measure and secondary optimization of mentioned functional with respect to moment vector functions. Distributions, in other words sets of successive values of estimated membership function closest to (furthest from) the given membership function in the sense of Max(F)Ent measure, obtained by mentioned methods are defined as (MinMax(F)Ent)m which is closest to a given membership function and (MaxMax(F)Ent)m which is furthest from a given membership function. The aim of this study consists of applying MinMax(F)EntM and MaxMax(F)EntM on given wind speed data. Obtained results are realized by using MATLAB programme. The performances of distributions (MinMax(F)En0m and (MaxMax(F)Ent)m generated by using Generalized Maximum Fuzzy Entropy Methods are established by Chi-Square, Root Mean Square Error criterias and Max(F)Ent measure. 展开更多
关键词 Maximum fuzzy entropy measure generalized maximum fuzzy entropy methods Moment vector functions Membership function.
在线阅读 下载PDF
EXTENSION TO THE DIRECT METHODS AND APPLICATIONS TO THE GENERALIZED BURGERS EQUATION
6
作者 ZhangQuanju FengFuye 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2002年第3期277-283,共7页
A generalization of the direct method of Clarkson and Kruskal for finding similarity reductions of partial differential equations with arbitrary functions is found and discussed for the generalized Burgers equation. T... A generalization of the direct method of Clarkson and Kruskal for finding similarity reductions of partial differential equations with arbitrary functions is found and discussed for the generalized Burgers equation. The corresponding reductions and the exact solutions due to the methods of the ordinary differential equations are then given by the methods. The results given here answer partially an open problem proposed by Clarkson, that is how to develop the direct method to seek symmetry reductions of nonlinear PDEs with arbitrary functions. 展开更多
关键词 direct method generalized Burgers equation exact solution.
在线阅读 下载PDF
An Application of Generalized Entropy Optimization Methods in Survival Data Analysis
7
作者 Aladdin Shamilov Cigdem Kalathilparmbil Sevda Ozdemir 《Journal of Modern Physics》 2017年第3期349-364,共16页
In this paper, survival data analysis is realized by applying Generalized Entropy Optimization Methods (GEOM). It is known that all statistical distributions can be obtained as distribution by choosing corresponding m... In this paper, survival data analysis is realized by applying Generalized Entropy Optimization Methods (GEOM). It is known that all statistical distributions can be obtained as distribution by choosing corresponding moment functions. However, Generalized Entropy Optimization Distributions (GEOD) in the form of distributions which are obtained on basis of Shannon measure and supplementary optimization with respect to characterizing moment functions, more exactly represent the given statistical data. For this reason, survival data analysis by GEOD acquires a new significance. In this research, the data of the life table for engine failure data (1980) is examined. The performances of GEOD are established by Chi-Square criteria, Root Mean Square Error (RMSE) criteria and Shannon entropy measure, Kullback-Leibler measure. Comparison of GEOD with each other in the different senses shows that along of these distributions (MinMaxEnt)4 is better in the senses of Shannon measure and of Kullback-Leibler measure. It is showed that, (MinMaxEnt)3 ((MaxMaxEnt)4) is more suitable for statistical data among (MinMaxEnt)m,m=1,2,3,4(MaxMaxEnt)m,m=1,2,3,4. Moreover, (MinMaxEnt)3 is better for statistical data than (MaxMaxEnt)4 in the sense of RMSE criteria. According to obtained distribution (MinMaxEnt)3 (MaxMaxEnt)4 estimator of Probability Density Function?f^?(t), Cumulative Distribution Functio?F^ (t) , Survival Function &Scirc;(t) and Hazard Rate &hcirc;(t) are evaluated and graphically illustrated. The results are acquired by using statistical software MATLAB. 展开更多
关键词 SURVIVAL FUNCTION Censored OBSERVATION generalized ENTROPY Optimization methods DISTRIBUTIONS
在线阅读 下载PDF
GENERALIZED INVERSE RATIONAL EXTRAPOLATION METHODS FOR MATRIX SEQUENCES
8
作者 Li Chunjing(Dept.of Math .,tongji Uniersity/Math ,shanghai University,Shanghai 200331,PRC)Gu Chuanqing(Dept.of Math.,Shanghai University,Shanghai 200436,PRC) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2000年第S1期86-90,共5页
Assume that a convergent matrix sequence{A<sub>n</sub>}:A<sub>n</sub>→A(n→∞), A<sub>n</sub>,A∈C<sup>3×3</sup>.We want to form a new matrix sequence {H<sub&... Assume that a convergent matrix sequence{A<sub>n</sub>}:A<sub>n</sub>→A(n→∞), A<sub>n</sub>,A∈C<sup>3×3</sup>.We want to form a new matrix sequence {H<sub>n</sub>}, derived from {A<sub>n</sub>}, which has also A aslimit and whose convergence is faster than the of {A<sub>n</sub>}. Three rational extrapolation meth-ods for accelerating the convergence of matrix sequences {A<sub>n</sub>} are presented in this paper.The underlying methods are based on the generalized inverse for matrices which is 展开更多
关键词 MATH generalized INVERSE RATIONAL EXTRAPOLATION methods FOR MATRIX SEQUENCES RATIONAL
在线阅读 下载PDF
PARALLEL REGION PRESERVING MULTISECTION METHOD FOR SOLVING GENERALIZED EIGENPROBLEM 被引量:1
9
作者 曾岚 周树荃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1996年第2期51+46-50,共6页
The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of ... The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of symmetric tridiagonal matrix. The multisection method for solving the generalized eigenproblem applied significantly in many science and engineering domains has not been studied. The parallel region preserving multisection method (PRM for short) for solving generalized eigenproblems of large sparse and real symmetric matrix is presented in this paper. This method not only retains the advantages of the conventional determinant search method (DS for short), but also overcomes its disadvantages such as leaking roots and disconvergence. We have tested the method on the YH 1 vector computer, and compared it with the parallel region preserving determinant search method the parallel region preserving bisection method (PRB for short). The numerical results show that PRM has a higher speed up, for instance, it attains the speed up of 7.7 when the scale of the problem is 2 114 and the eigenpair found is 3, and PRM is superior to PRB when the scale of the problem is large. 展开更多
关键词 parallel processing structural analysis numerical algebra generalized eigenproblem parallel multisection method
在线阅读 下载PDF
Analysis of the integrated test and evaluation methods of tidal current energy generating devices in the offshore testing site
10
作者 郭文瑞 朱永强 +3 位作者 叶青 李雪临 王鑫 段春明 《Marine Science Bulletin》 CAS 2014年第2期60-71,共12页
Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformat... Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformation and marine renewable energy development. By analyzing three core indicators, including the power output characteristics of the tidal current device, the generating capacity, energy conversion efficiency, proposed the test contents and evaluation methods of indicators are proposed in this paper; and based on the research of wind farms, power quality testing and assessment methods of offshore tidal energy device are proposed; given the security access to the test contents of tidal current energy device, tidal current energy device running conditions in the testing ground are comprehensively assessed. 展开更多
关键词 testing ground tidal current energy generating device integrated test evaluation method
在线阅读 下载PDF
New Exact Travelling Wave Solutions for Generalized Zakharov-Kuzentsov EquationsUsing General Projective Riccati Equation Method 被引量:14
11
作者 CHENYong LIBiao 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第1期1-6,共6页
Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer alg... Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions. 展开更多
关键词 projective Riccati equation method generalized Zakharov-Kuzentsov equation exact solutions
在线阅读 下载PDF
MAOR method for the generalized—order linear complementarity problems
12
作者 祝凤清 彭永清 周永华 《中国西部科技》 2009年第4期9-12,共4页
The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementa... The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices. 展开更多
关键词 Maor迭代算法 线性系统 矩阵 计算方法
在线阅读 下载PDF
A NEW ITERATIVE METHOD FOR FINDING COMMON SOLUTIONS OF GENERALIZED EQUILIBRIUM PROBLEM,FIXED POINT PROBLEM OF INFINITE k-STRICT PSEUDO-CONTRACTIVE MAPPINGS,AND QUASI-VARIATIONAL INCLUSION PROBLEM 被引量:5
13
作者 刘敏 张石生 《Acta Mathematica Scientia》 SCIE CSCD 2012年第2期499-519,共21页
In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseu... In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12]. 展开更多
关键词 k-strict pseudo-contractive mappings generalized equilibrium problem vis-cosity approximation method variational inclusion problem multi-valuedmaximal monotone mappings s-inverse-strongly monotone mapping
在线阅读 下载PDF
SUPERCONVERGENCE OF GENERALIZED DIFFERENCE METHOD FOR ELLIPTIC BOUNDARY VALUE PROBLEM 被引量:2
14
作者 陈仲英 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1994年第2期163-171,共9页
Some superconvergence results of generalized difference solution for elliptic boundary value problem are given. It is shown that optimal points of the stresses for generalized difference method are the same as that fo... Some superconvergence results of generalized difference solution for elliptic boundary value problem are given. It is shown that optimal points of the stresses for generalized difference method are the same as that for finite element method. 展开更多
关键词 SUPERCONVERGENCE generalized DIFFERENCE method ELLIPTIC BOUNDARY VALUE problem
在线阅读 下载PDF
Generalized Extended tanh-function Method for Traveling Wave Solutions of Nonlinear Physical Equations 被引量:6
15
作者 CHANG JING GAO YI-XIAN AND CAI HUA 《Communications in Mathematical Research》 CSCD 2014年第1期60-70,共11页
In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr&#168;odinger equat... In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr&#168;odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics. 展开更多
关键词 generalized tanh-function method nonlinear Schrodinger equation Fisher's equation
在线阅读 下载PDF
Trial function method and exact solutions to the generalized nonlinear Schrdinger equation with time-dependent coefficient 被引量:2
16
作者 曹瑞 张健 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期182-185,共4页
In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial f... In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions. 展开更多
关键词 generalized nonlinear SchriSdinger equation exact solution trial function method
在线阅读 下载PDF
GENERALIZED FINITE SPECTRAL METHOD FOR 1D BURGERS AND KDV EQUATIONS 被引量:2
17
作者 詹杰民 李毓湘 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第12期1635-1643,共9页
A generalized finite spectral method is proposed. The method is of highorder accuracy. To attain high accuracy in time discretization, the fourth-order AdamsBashforth-Moulton predictor and corrector scheme was used. T... A generalized finite spectral method is proposed. The method is of highorder accuracy. To attain high accuracy in time discretization, the fourth-order AdamsBashforth-Moulton predictor and corrector scheme was used. To avoid numerical oscillations caused by the dispersion term in the KdV equation, two numerical techniques were introduced to improve the numerical stability. The Legendre, Chebyshev and Hermite polynomials were used as the basis functions. The proposed numerical scheme is validated by applications to the Burgers equation (nonlinear convection- diffusion problem) and KdV equation(single solitary and 2-solitary wave problems), where analytical solutions are available for comparison. Numerical results agree very well with the corresponding analytical solutions in all cases. 展开更多
关键词 special orthogonal functions generalized finite spectral method nonlinear wave
在线阅读 下载PDF
Assessing dynamic response of multispan viscoelastic thin beams under a moving mass via generalized moving least square method 被引量:3
18
作者 Keivan Kiani Ali Nikkhoo Bahman Mehri 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第5期721-733,共13页
Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatia... Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam material increases, the load inertia effects as well as the possibility of moving mass separation reduces. 展开更多
关键词 Moving mass-beam interaction - Multispan viscoelastic beam Euler-Bernoulli beam generalized moving least square method (GMLSM)
在线阅读 下载PDF
SEMI-INVERSE METHOD AND GENERALIZED VARIATIONAL PRINCIPLES WITH MULTI-VARIABLES IN ELASTICITY 被引量:2
19
作者 何吉欢 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第7期797-808,共12页
Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational pr... Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational principles with multi-variables without arty variational crisis phenomenon. The method is to construct an energy trial-functional with an unknown function F, which can be readily identified by making the trial-functional stationary and using known constraint equations. As a result generalized variational principles with two kinds of independent variables (such as well-known Hellinger-Reissner variational principle and Hu-Washizu principle) and generalized variational principles with three kinds of independent variables (such as Chien's generalized variational principles) in elasticity have been deduced without using Lagrange multiplier method. By semi-inverse method, the author has also proved that Hu-Washizu principle is actually a variational principle with only two kinds of independent variables, stress-strain relations are still its constraints. 展开更多
关键词 variational principle in elasticy Chien's generalized variational principles Hu-Washizu principle semi-inverse method trial-functional variational crisis
在线阅读 下载PDF
Free vibration and critical speed of moderately thick rotating laminated composite conical shell using generalized differential quadrature method 被引量:3
20
作者 K.DANESHJOU M.TALEBITOOTI R.TALEBITOOTI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第4期437-456,共20页
The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditi... The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditions developed from the first-order shear deformation theory (FSDT). The equations of motion are obtained applying Hamilton's concept, which contain the influence of the centrifugal force, the Coriolis acceleration, and the preliminary hoop stress. In addition, the axial load is applied to the conical shell as a ratio of the global critical buckling load. The governing partial differential equations are given in the expressions of five components of displacement related to the points ly- ing on the reference surface of the shell. Afterward, the governing differential equations are converted into a group of algebraic equations by using the GDQM. The outcomes are achieved considering the effects of stacking sequences, thickness of the shell, rotating velocities, half-vertex cone angle, and boundary conditions. Furthermore, the outcomes indicate that the rate of the convergence of frequencies is swift, and the numerical tech- nique is superior stable. Three comparisons between the selected outcomes and those of other research are accomplished, and excellent agreement is achieved. 展开更多
关键词 generalized differential quadrature method (GDQM) natural frequency rotating conical shell first-order shear deformation theory (FSDT) critical speed
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部