In this paper, we establish several inequalities for the the generalized linear distortion function λ(a, K) by using the monotonicity and convexity of certain combinations λ(a, K).
To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the s...To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.展开更多
基金Supported by the National Natural Science Foundation of China(11071069, 11171307)the Natural Science Foundation of Hunan Province(09JJ6003)
文摘In this paper, we establish several inequalities for the the generalized linear distortion function λ(a, K) by using the monotonicity and convexity of certain combinations λ(a, K).
基金Project supported by the National Natural Science Foundation of China (No. 10271074)
文摘To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.