期刊文献+
共找到56,927篇文章
< 1 2 250 >
每页显示 20 50 100
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
1
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
在线阅读 下载PDF
基于ARIMA与GGACO算法的ETL任务调度机制研究
2
作者 周金治 刘艺涵 吴斌 《控制工程》 北大核心 2025年第2期208-215,共8页
随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任... 随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任务调度机制的弹性调度能力以及执行效率,提出了一种基于整合移动平均自回归(autoregressive integrated moving average,ARIMA)模型与贪心-遗传-蚁群优化(greedy-genetic-ant colony optimization,GGACO)算法的ETL任务调度机制。初期,建立ARIMA模型并弹性地结合贪心算法计算初始解;中期,利用遗传算法的全局快收敛的特性结合初始解圈定最优解的大致范围;最后,利用蚁群优化算法的局部快速收敛性进行最优解搜索。实验结果表明:该调度机制能够弹性地指导任务调度尽可能地找到最优解,减少任务的执行时间,以及尽可能实现更高效的负载均衡。 展开更多
关键词 弹性调度 ARIMA 贪心算法 遗传算法 蚁群优化算法
在线阅读 下载PDF
基于非支配排序遗传算法NSGA-Ⅲ的多目标屏蔽智能优化研究
3
作者 王梦琪 郑征 +3 位作者 梅其良 彭超 高静 周岩 《原子能科学技术》 北大核心 2025年第2期422-428,共7页
本文基于第3代非支配排序遗传算法(NSGA-Ⅲ)开展了多目标屏蔽智能优化方法研究。以乏燃料运输船舶为对象,采用多目标智能优化程序建立一维离散纵标计算模型,针对舱盖上方区域屏蔽结构(混凝土和聚乙烯厚度)进行优化设计,最终得到1组优化... 本文基于第3代非支配排序遗传算法(NSGA-Ⅲ)开展了多目标屏蔽智能优化方法研究。以乏燃料运输船舶为对象,采用多目标智能优化程序建立一维离散纵标计算模型,针对舱盖上方区域屏蔽结构(混凝土和聚乙烯厚度)进行优化设计,最终得到1组优化的屏蔽方案。基于优化后的屏蔽方案,建立真实的三维蒙特卡罗计算模型,和基于混凝土、聚乙烯或含硼硅树脂的方案进行对比,评估优化方案的屏蔽效果。评价指标包括屏蔽厚度、重量、总剂量率和价格等。结果显示,基于所开发的多目标屏蔽智能优化方法优化得到的方案各有特点,包含了多个优选的方案,为设计者提供了更丰富的选择。 展开更多
关键词 多目标优化算法 屏蔽 乏燃料运输船舶 第3代非支配排序遗传算法
在线阅读 下载PDF
基于GA-GRNN算法和显微拉曼光谱的城市河流微塑料识别方法研究
4
作者 李静 张媛 +1 位作者 张莹 刘家伟 《光散射学报》 北大核心 2025年第1期69-76,共8页
微塑料污染已成为一个全球性的环境问题,加强对城市水域中微塑料污染的监管是解决微塑料污染的关键环节,因此本文开展了快速、实时的城市河流微塑料识别方法的研究。本工作提出了一种遗传算法优化广义回归神经网络(Genetic Algorithm-Ge... 微塑料污染已成为一个全球性的环境问题,加强对城市水域中微塑料污染的监管是解决微塑料污染的关键环节,因此本文开展了快速、实时的城市河流微塑料识别方法的研究。本工作提出了一种遗传算法优化广义回归神经网络(Genetic Algorithm-Generalized Regression Neural Network,GA-GRNN)算法结合显微拉曼光谱的技术方法,开展了微塑料颗粒的实验探测和理论计算,分析了微塑料颗粒拉曼光谱特征峰的振动模式和隐藏峰的拟合解译,评估了不同浓度微塑料悬浮液的拉曼光谱,通过GA-GRNN算法建立了微塑料识别分类模型,其模型的分类准确率为100%,实现了对河流中分离的微塑料颗粒的准确识别。本文提出将GA-GRNN算法与显微拉曼光谱相组合的技术方法非常具有实用性,在未来城市水域微塑料污染的监管指导方面具有很好的借鉴意义。 展开更多
关键词 遗传算法 广义回归神经网络 拉曼光谱 微塑料 分类模型
在线阅读 下载PDF
基于NSGA-Ⅱ算法的直流传导电磁泵多目标优化
5
作者 陈观慈 杨进 +2 位作者 张文斌 杨照林 陈永华 《材料导报》 北大核心 2025年第9期194-200,共7页
高集成度芯片和电子设备的热障问题已成为制约其集约化发展的瓶颈之一,利用直流传导电磁泵(DC-EMP)驱动液态金属进行传热与散热可以有效解决水冷系统沸点低、热导率低且易发生沸腾相变的问题。为提高DC-EMP的驱动效率,本工作建立了Krig... 高集成度芯片和电子设备的热障问题已成为制约其集约化发展的瓶颈之一,利用直流传导电磁泵(DC-EMP)驱动液态金属进行传热与散热可以有效解决水冷系统沸点低、热导率低且易发生沸腾相变的问题。为提高DC-EMP的驱动效率,本工作建立了Kriging代理模型,以作用区长度L、流道宽度W、流道高度H和输入电流I作为设计变量,压力P和驱动效率η为目标函数,采用NSGA-Ⅱ算法和TOPSIS决策法进行多目标优化,并对初始方案和优化结果进行外特性试验。结果表明,数值模拟与试验结果基本吻合;优化后,DC-EMP在设计工况下的压力和效率均有所提高,相较于初始方案分别提升了32.72%和8.85%;优化后泵内平均磁感应强度增大了约36.58%,分布不均匀性降低了19.36%,流道内流体相对速度分布更均匀,削弱了磁流体动力学(Magnetohydrodynamic,MHD)效应对液态金属流动的影响;基于优化结果,在流道内安装与流速方向平行的绝缘板可以有效减小电流在作用区端部的扩散效应,提高作用区内的有效电流。 展开更多
关键词 液态金属 直流传导电磁泵 KRIGING模型 遗传算法
在线阅读 下载PDF
基于PSO-GA模型的供水管网漏损预测研究
6
作者 彭燕莉 刘俊红 +2 位作者 陶修斌 覃佳肖 朱雅 《沈阳建筑大学学报(自然科学版)》 北大核心 2025年第1期121-129,共9页
准确、有效地定位供水管网中漏损位置,减少水资源浪费和降低检漏成本。基于EPANET软件构建供水管网水力模型,采用粒子群算法和遗传算法相结合方法对管网漏损预测模型进行优化求解、验证,以实现管网漏损定位和漏损程度判定;以西南地区某... 准确、有效地定位供水管网中漏损位置,减少水资源浪费和降低检漏成本。基于EPANET软件构建供水管网水力模型,采用粒子群算法和遗传算法相结合方法对管网漏损预测模型进行优化求解、验证,以实现管网漏损定位和漏损程度判定;以西南地区某城镇的供水管网为例,分别对单点和多点(2处及以上)漏损工况进行模拟评估。提出的供水管网漏损预测模型在单点漏损工况下,预测漏损量与实际漏损量的平均绝对百分比误差εmape小于3%,多点漏损量的εmape值均小于5.22%,且模拟定位节点与实际漏损点的拓扑距离绝大部分稳定在2以内。基于PSO-GA的漏损预测模型可有效地实现漏损定位与漏损程度的同步检测,并识别出多个近似节点,为检漏工作提供技术参考。 展开更多
关键词 供水管网 PSO-ga算法 漏损定位 EPANET
在线阅读 下载PDF
基于GA-RELM多特征优选的烟叶多部位正反面识别方法
7
作者 陈婷 赵晓琳 +5 位作者 张冀武 盖小雷 张晓伟 刘宇晨 王燕 龙杰 《湖南农业大学学报(自然科学版)》 北大核心 2025年第1期113-122,共10页
针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构... 针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构建正反面数据集,根据特征重要性和特征间的潜在关系,实现特征降维并构建新特征组合。其次,对正则化极限学习机(RELM)进行隐藏层偏置寻优,以提高模型实际应用性和分类精度。结果表明:与原极限学习机(ELM)相比,GA-RELM对自然状态下的烟叶正反面和多部位正反面的分类精度分别提高了0.84%和7.88%,运算时间分别减少2.56 s和5.72 s;与其他烟叶分级算法相比,GA-RELM在准确率、精确率、召回率、F1评分等多个指标上表现出明显优势。 展开更多
关键词 烤烟 烟叶分级 多特征优选 遗传算法 正则化极限学习机
在线阅读 下载PDF
基于GA-LSTM的桥梁缆索腐蚀钢丝力学性能预测模型
8
作者 缪长青 吕悦凯 万春风 《东南大学学报(自然科学版)》 北大核心 2025年第1期140-145,共6页
为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经... 为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经元数量、窗口大小4个超参数,以预测不同腐蚀特征状态下钢丝的力学性能。将其与传统LSTM和GA-反向传播模型的预测结果进行比较。结果表明,GA-LSTM模型具有更高的预测精度和鲁棒性。在屈服强度与极限强度预测效果方面,均方根误差(root mean square error, RMSE)、平均绝对误差(mean absolute error, MAE)、决定系数分别提高约44%~61%、43%~57%、35%~92%。在屈服应变与极限应变预测效果方面,RMSE、MAE、决定系数分别提高约0~46%、7%~49%、12%~229%。所建立的模型可以作为一个有用的工具支持桥梁缆索腐蚀安全性评估工作。 展开更多
关键词 桥梁缆索腐蚀钢丝 力学性能预测 时序预测 神经网络 遗传算法 超参数优化
在线阅读 下载PDF
GA-2D-VMD联合FNLM的医学超声图像去噪方法研究
9
作者 闫洪波 那毅然 +1 位作者 沈雅楠 徐洋 《机械设计与制造》 北大核心 2025年第2期375-379,384,共6页
医学超声成像过程中出现的斑点噪声,降低了图像的可视性,传统算法在去噪后可能会出现图像边缘细节模糊、去噪效果不佳等问题。针对于此,提出了基于遗传算法优化的2D-VMD与FNLM相结合的方法。首先利用遗传算法对2D-VMD的两个参数同时进... 医学超声成像过程中出现的斑点噪声,降低了图像的可视性,传统算法在去噪后可能会出现图像边缘细节模糊、去噪效果不佳等问题。针对于此,提出了基于遗传算法优化的2D-VMD与FNLM相结合的方法。首先利用遗传算法对2D-VMD的两个参数同时进行自适应寻优,接着采用优化2D-VMD分解噪声图像,并借助相关系数筛选有效分量,然后使用FNLM滤波去噪,最后将去噪后的子模态重构完成去噪。实验结果证明,该方法具有优秀的去噪效果和保留图像边缘细节信息的能力,客观评价指标亦有明显的提升。 展开更多
关键词 斑点噪声 遗传算法 二维变分模态分解 参数优化 快速非局部均值 图像去噪
在线阅读 下载PDF
一种基于GA-BP神经网络的冷库能耗预测
10
作者 王雅博 陈君豪 +1 位作者 刘兴华 张行健 《冷藏技术》 2025年第1期79-85,75,共8页
影响冷库能耗的因素众多,其中,货物信息的缺失使得建立冷库预测模型面临一定的挑战。为解决该问题,提出利用冷库当天使用面积代替传统的货物信息作为输入特征,依据某大型冷库历史能耗数据,采用斯皮尔曼相关性分析筛选出合适的变量,构建... 影响冷库能耗的因素众多,其中,货物信息的缺失使得建立冷库预测模型面临一定的挑战。为解决该问题,提出利用冷库当天使用面积代替传统的货物信息作为输入特征,依据某大型冷库历史能耗数据,采用斯皮尔曼相关性分析筛选出合适的变量,构建基于GA-BP神经网络的冷库能耗模型。结果表明,在缺失货物信息的情况下,使用冷库当天使用面积作为输入变量能够保证模型具有高准确率,R2达到0.9563,并且性能优于BP神经网络、多元回归模型。 展开更多
关键词 能耗预测 特征选择 遗传算法 BP神经网络 机器学习
在线阅读 下载PDF
基于GSM-QGA的自适应椭圆作用域APF路径规划
11
作者 李晖 刘述娟 +2 位作者 秦慧萍 鞠明媚 杜左强 《计算机系统应用》 2025年第3期248-258,共11页
针对传统人工势场法(artificial potential field,APF)未充分考虑车辆避碰风险分布差异性和陷入局部极值导致路径规划失败的问题,提出一种基于梯度统计变异量子遗传算法(gradient statistical mutation quantum genetic algorithm,GSM-Q... 针对传统人工势场法(artificial potential field,APF)未充分考虑车辆避碰风险分布差异性和陷入局部极值导致路径规划失败的问题,提出一种基于梯度统计变异量子遗传算法(gradient statistical mutation quantum genetic algorithm,GSM-QGA)的自适应椭圆作用域人工势场法.在传统斥力场圆形作用域的基础上,通过分析车辆和障碍物的相对运动状态,定义斥力势场动态椭圆作用域计算方法;同时对势场函数影响因素进行分析,引入速度因素分别完成斥力势场函数和引力势场函数的设计;将梯度统计变异量子遗传算法作为改进人工势场局部最优修正策略,当车辆陷入局部极值往复运动时,基于车辆当前位置构建伪全局地图,规划可行路径跳出局部极值范围.仿真实验结果表明,改进算法规划的路径不仅可以有效避免车辆陷入局部极值,减少车辆不必要的避障操作,而且在路径平滑性和路径长度等方面相比于传统APF算法和固定椭圆域APF算法均具有优势,所规划路径长度分别缩短6.37%和9.14%. 展开更多
关键词 路径规划 人工势场法 梯度统计变异量子遗传算法 自适应椭圆作用域
在线阅读 下载PDF
基于GA-LQR的高速列车横向振动主动控制方法研究
12
作者 赵德生 霍有志 《高速铁路技术》 2025年第1期49-54,62,共7页
本文针对随机轨道不规则激励造成高速列车车体横向振动问题,提出一种基于GA-LQR算法和二系悬架系统的主动控制方法,通过抑制车体的横向振动提高高速列车的运行平稳性和安全性。首先,考虑随机轨道不规则激励并建立车辆-轨道系统动力学模... 本文针对随机轨道不规则激励造成高速列车车体横向振动问题,提出一种基于GA-LQR算法和二系悬架系统的主动控制方法,通过抑制车体的横向振动提高高速列车的运行平稳性和安全性。首先,考虑随机轨道不规则激励并建立车辆-轨道系统动力学模型;其次,针对LQR控制器设计时权重矩阵Q和R较难选择的问题,采用GA算法迭代优化得到最优权矩阵和控制器;最后,通过模拟仿真进一步验证所提方法的有效性。结果表明,所提出的基于GA-LQR算法和二系悬架系统的主动控制方法,具有抑制列车车体横向振动的有效潜力,与被动悬架方法相比,该方法有效地将车体横向振动振幅降低68.47%,显著提升了乘坐舒适性和高速列车运行的稳定性。 展开更多
关键词 高速列车 横向振动 主动控制 线性二次型调节器 遗传算法
在线阅读 下载PDF
GA-BP模型在HSS模型参数取值中的应用
13
作者 张杰 马杰 +2 位作者 陈啸海 钟鹏 王营营 《城市道桥与防洪》 2025年第1期229-235,共7页
小应变硬化土(HSS)模型可以有效反映土的压缩硬化特性和小应变特性,非常适合黄土基坑的数值模拟计算。但是,HSS模型包含了11个硬化土(HS)模型参数和2个小应变参数,而这2个小应变参数往往需要采用试验方法确定,获取过程复杂。为了探讨小... 小应变硬化土(HSS)模型可以有效反映土的压缩硬化特性和小应变特性,非常适合黄土基坑的数值模拟计算。但是,HSS模型包含了11个硬化土(HS)模型参数和2个小应变参数,而这2个小应变参数往往需要采用试验方法确定,获取过程复杂。为了探讨小应变参数的预测方法,采用经过遗传算法优化的BP神经网络模型,即GA-BP神经网络模型,首先根据预设的小应变参数水平经过数值模拟计算得到49组位移数据,然后将得到的数据用于GA-BP神经网络的训练,待GA-BP神经网络的预测误差达到要求之后,再使用实际的位移数据反演得到小应变参数,最后基于预测得到的小应变参数进行数值模拟。结果显示,GA-BP神经网络模型预测的小应变参数在基坑围护结构最大水平位移和地表最大沉降计算方面表现良好,可以应用于实际工程。 展开更多
关键词 岩土工程 遗传算法 HSS模型 BP神经网络 小应变参数 参数反演
在线阅读 下载PDF
基于GA-GWO算法的电动汽车有序充放电两阶段优化策略
14
作者 闫丽梅 王登银 +1 位作者 洪益民 刘继翔 《电工电气》 2025年第2期24-31,共8页
电动汽车(EV)聚集性无序充电会对电力系统的安全与稳定性运行产生不良影响。考虑电网侧的调峰需求和EV用户的充电需求及充电成本,在基于分时电价的基础上,提出最小临界电量对EV向电网进行馈电进行限制,并给出一种基于最小临界电量的两... 电动汽车(EV)聚集性无序充电会对电力系统的安全与稳定性运行产生不良影响。考虑电网侧的调峰需求和EV用户的充电需求及充电成本,在基于分时电价的基础上,提出最小临界电量对EV向电网进行馈电进行限制,并给出一种基于最小临界电量的两阶段有序充放电控制策略,以EV用户充电费用最小与电网负荷波动最小为目标,建立EV充放电优化模型。利用遗传-灰狼优化算法(GA-GWO)对EV的充放电行为进行优化,采用蒙特卡洛法模拟某居民区450辆EV的充电需求,与其他充电策略在不同渗透率的场景下进行了对比仿真,结果表明,所提出充放电优化策略能起到降低负荷方差以及削峰填谷作用,且随着参与调度的电动汽车数量增多,优化效果更明显。 展开更多
关键词 电动汽车 分时电价 最小临界电量 两阶段有序充放电 遗传-灰狼优化算法
在线阅读 下载PDF
GENETIC ALGORITHMS AND GAME THEORY FOR HIGH LIFT DESIGN PROBLEMS IN AERODYNAMICS 被引量:7
15
作者 PériauxJacques WangJiangfeng WuYizhao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2002年第1期7-13,共7页
A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timiz... A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timization problems and the increasing importance of low cost distributed parallel environments,it is a natural idea to replace a globar optimization by decentralized local sub-optimizations using GT which introduces the notion of games associated to an optimization problem.The GT/GAs combined optimization method is used for recon-struction and optimization problems by high lift multi-air-foil desing.Numerical results are favorably compared with single global GAs.The method shows teh promising robustness and efficient parallel properties of coupled GAs with different game scenarios for future advanced multi-disciplinary aerospace techmologies. 展开更多
关键词 gaME theory genetic algorithms multi-ob-jective aerodynamic optimization 基因算法 博奕论 气动优化 翼型
在线阅读 下载PDF
Topological optimization of ballistic protective structures through genetic algorithms in a vulnerability-driven environment
16
作者 Salvatore Annunziata Luca Lomazzi +1 位作者 Marco Giglio Andrea Manes 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期125-137,共13页
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne... Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from. 展开更多
关键词 Topological optimization Protective structure genetic algorithm SURVIVABILITY VULNERABILITY
在线阅读 下载PDF
SFGA-CPA: A Novel Screening Correlation Power Analysis Framework Based on Genetic Algorithm
17
作者 Jiahui Liu Lang Li +1 位作者 Di Li Yu Ou 《Computers, Materials & Continua》 SCIE EI 2024年第6期4641-4657,共17页
Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key de... Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods. 展开更多
关键词 Side-channel analysis correlation power analysis genetic algorithm CROSSOVER MUTATION
在线阅读 下载PDF
Appropriate Combination of Crossover Operator and Mutation Operator in Genetic Algorithms for the Travelling Salesman Problem
18
作者 Zakir Hussain Ahmed Habibollah Haron Abdullah Al-Tameem 《Computers, Materials & Continua》 SCIE EI 2024年第5期2399-2425,共27页
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes... Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances. 展开更多
关键词 Travelling salesman problem genetic algorithms crossover operator mutation operator comprehensive sequential constructive crossover insertion mutation
在线阅读 下载PDF
Surrogate model-assisted interactive genetic algorithms with individual’s fuzzy and stochastic fitness 被引量:1
19
作者 Xiaoyan SUN, Dunwei GONG (School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou Jiangsu 221116, China) 《控制理论与应用(英文版)》 EI 2010年第2期189-199,共11页
We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an indi... We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an individual’s fuzzy and stochastic fitness. We firstly present an approach to construct a directed fuzzy graph of an evolutionary population according to individuals’ dominance relations, cut-set levels and interval dominance probabilities, and then calculate an individual’s crisp fitness based on the out-degree and in-degree of the fuzzy graph. The approach to obtain training data is achieved using the fuzzy entropy of the evolutionary system to guarantee the credibilities of the samples which are used to train the surrogate model. We adopt a support vector regression machine as the surrogate model and train it using the sampled individuals and their crisp fitness. Then the surrogate model is optimized using the traditional genetic algorithm for some generations, and some good individuals are submitted to the user for the subsequent evolutions so as to guide and accelerate the evolution. Finally, we quantitatively analyze the performance of the presented algorithm in alleviating user fatigue and increasing more opportunities to find the satisfactory individuals, and also apply our algorithm to a fashion evolutionary design system to demonstrate its efficiency. 展开更多
关键词 Interactive genetic algorithms User fatigue Surrogate model Directed fuzzy graph Fuzzy entropy
在线阅读 下载PDF
Automatic Identification of Tomato Maturation Using Multilayer Feed Forward Neural Network with Genetic Algorithms (GA) 被引量:1
20
作者 FANG Jun-long ZHANG Chang-li WANG Shu-wen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2004年第2期179-183,共5页
We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use mul... We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was up to 94%. 展开更多
关键词 tomato maturation computer vision artificial neural network genetic algorithms
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部