A more general narrowband regular-shaped geometry-based statistical model(RS-GBSM) combined with the line of sight(LoS) and single bounce(SB) rays for unmanned aerial vehicle(UAV) multiple-input multiple-output(MIMO) ...A more general narrowband regular-shaped geometry-based statistical model(RS-GBSM) combined with the line of sight(LoS) and single bounce(SB) rays for unmanned aerial vehicle(UAV) multiple-input multiple-output(MIMO) channel is proposed in this paper. The channel characteristics, including space-time correlation function(STCF), Doppler power spectral density(DPSD), level crossing rate(LCR) and average fade duration(AFD), are derived based on the single sphere reference model for a non-isotropic environment. The corresponding sum-of-sinusoids(SoS) simulation models including both the deterministic model and statistical model with finite scatterers are also proposed for practicable implementation. The simulation results illustrate that the simulation models well reproduce the channel characteristics of the single sphere reference model with sufficient simulation scatterers. And the statistical model has a better approximation of the reference model in comparison with the deterministic one when the simulation trials of the stochastic model are sufficient. The effects of the parameters such as flight height, moving direction and Rice factor on the characteristics are also studied.展开更多
In this paper, a three-dimensional(3D) geometry- based stochastic scattering model(GBSSM) for wideband multi-input multi-output(MIMO) vehicle-to-vehicle(V2V) relay-based cooperative fading channel based on geometrical...In this paper, a three-dimensional(3D) geometry- based stochastic scattering model(GBSSM) for wideband multi-input multi-output(MIMO) vehicle-to-vehicle(V2V) relay-based cooperative fading channel based on geometrical three-cylinder is proposed. Non-line-of-sight(NLOS) propagation condition is assumed in amplify-and-forward(AF) cooperative networks from the source mobile station(S) to the destination mobile station(D) via the mobile relay station(R). We extend the proposed narrowband model to wideband and also introduce the carrier frequency and bandwidth into the model. To avoid complicated procedure in deriving the analytical expressions of the channel parameters and functions, the channel is realized first. By using the realized channel matrix, the channel properties are further investigated.展开更多
A three-dimensional non-stationary geometry-based stochastic model for unmanned aerial vehicle(UAV)air-to-ground multi-input multi-output(MIMO)channels is proposed.The scatterers surrounding the UAV and ground station...A three-dimensional non-stationary geometry-based stochastic model for unmanned aerial vehicle(UAV)air-to-ground multi-input multi-output(MIMO)channels is proposed.The scatterers surrounding the UAV and ground station are assumed to be distributed on the surface of two cylinders in the proposed model.The impact of UAV rotations and accelerated motion is considered to describe channel non-stationarity.The computational methods of the corresponding time-variant parameters,such as UAV antenna array angles,time delays,and maximum Doppler frequencies,are theoretically deduced.The model is then used to derive channel statistical properties such as space-time correlation functions and Doppler power spectral density.Finally,numerical simulations are run to validate the channel s statistical properties.The simulation results show that increasing the UAV and ground station accelerations can reduce the time correlation function and increase channel non-stationarity in the time domain.Furthermore,the UAV s rotation significantly influences the spatial correlation function,with rolling having a greater influence than pitching.Similarly,the different directions of UAV movement significantly impact the Doppler power spectral density.展开更多
This paper derives a non-stationary multiple-input multiple-output(MIMO) from the one-ring scattering model. The proposed channel model characterizes vehicular radio propagation channels with considerations of moving ...This paper derives a non-stationary multiple-input multiple-output(MIMO) from the one-ring scattering model. The proposed channel model characterizes vehicular radio propagation channels with considerations of moving base and mobile stations, which makes the angle of arrivals(AOAs) along with the angle of departures(AODs) time-variant. We introduce the methodology of including the time-variant impacts when characterizing non-stationary radio propagation channels through the geometrical channel modelling approach. We analyze the statistical properties of the proposed channel model including the local time-variant autocorrelation function(ACF) and the space cross-correlation functions(CCFs). We show that the model developed in this paper for non-stationary scenarios includes the existing one-ring wide-sense stationary channel model as its special case.展开更多
Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometr...Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometry-based stochastic channel models(GSCM),field patterns are technically obtained by chamber measurement(or by its best fitting).However,in some channel related performance analysis scenarios,design insight can be crystallized better by starting the derivations with theoretical co-polarization and cross-polarization components.Specifically,these two components are mathematically linked with field patterns through the proposed polarization projection algorithm.In this manuscript,we focus on revealing the transformation criterion of polarization states between the antenna plane and the propagation plane.In practice,it makes retrieving the field patterns by electromagnetic computation possible.Meanwhile,the impact imposed by distinct antenna orientations is geometrically illustrated and consequently incorporated into the proposed algorithm.This will further facilitate flexible performance evaluation of related radio transmission technologies.Our conclusions are verified by the closed-form expression of the dipole field pattern(via an analytical approach) and by chamber measurement results.Moreover,we find that its 2D degenerative case is aligned with the definitions in 3^(rd) generation partnership project(3GPP)technical report 25.996.The most obvious benefit of the proposed algorithm is to significantly reduce the cost on generating channel coefficients in GSCM simulation.展开更多
Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,...Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular.展开更多
A stochastic epidemic model with two age groups is established in this study,in which the susceptible(S),the exposed(E),the infected(I),the hospitalized(H)and the recovered(R)are involved within the total population,t...A stochastic epidemic model with two age groups is established in this study,in which the susceptible(S),the exposed(E),the infected(I),the hospitalized(H)and the recovered(R)are involved within the total population,the aging rates between two age groups are set to be constant.The existence-and-uniqueness of global positive solution is firstly showed.Then,by constructing several appropriate Lyapunov functions and using the high-dimensional Itô’s formula,the sufficient conditions for the stochastic extinction and stochastic persistence of the exposed individuals and the infected individuals are obtained.The stochastic extinction indicator and the stochastic persistence indicator are less-valued expressions compared with the basic reproduction number.Meanwhile,the main results of this study are modified into multi-age groups.Furthermore,by using the surveillance data for Fujian Provincial Center for Disease Control and Prevention,Fuzhou COVID-19 epidemic is chosen to carry out the numerical simulations,which show that the age group of the population plays the vital role when studying infectious diseases.展开更多
A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques inclu...A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques include obtaining gravity data from the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),creating seismic profiles,analyzing the receiver functions of seismic data,obtaining information from boreholes,and providing geological interpretations.GOCE satellite gravity data were processed to construct a preliminary model based on nonlinear inversions of the data.A regional crustal thickness model was developed using receiver functions,seismic refraction profiles,and geological insights.The inverted model was validated using borehole data and compared with seismic estimates.The model exhibited strong consistency and revealed a correlation between crustal thickness,geology,and tectonics of Egypt.It showed that the shallowest depths of the Moho are located in the north along the Mediterranean Sea and in the eastern part along the Red Sea,reflecting an oceanic plate with a thin,high-density crust.The deepest Moho depths are located in the southwestern part of Egypt,Red Sea coastal mountains,and Sinai Peninsula.The obtained 3D model of crustal thickness provided finely detailed Moho depth estimates that aligned closely with geology and tectonic characteristics of Egypt,contributing valuable insights into the subsurface structure and tectonic processes of region.展开更多
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem...Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.展开更多
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis...In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.展开更多
Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model...Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model integrating Deep Residual Network(ResNet)and Support Vector Machine(SVM)for both≥C-class(C,M,and X classes)and≥M-class(M and X classes)flares.We collected samples of magnetograms from May 1,2010 to September 13,2018 from Space-weather Helioseismic and Magnetic Imager(HMI)Active Region Patches and then used a cross-validation method to obtain seven independent data sets.We then utilized five metrics to evaluate our fusion model,based on intermediate-output extracted by ResNet and SVM using the Gaussian kernel function.Our results show that the primary metric true skill statistics(TSS)achieves a value of 0.708±0.027 for≥C-class prediction,and of 0.758±0.042 for≥M-class prediction;these values indicate that our approach performs significantly better than those of previous studies.The metrics of our fusion model’s performance on the seven datasets indicate that the model is quite stable and robust,suggesting that fusion models that integrate an excellent baseline network with SVM can achieve improved performance in solar flare prediction.Besides,we also discuss the performance impact of architectural innovation in our fusion model.展开更多
To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precis...To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precisely pinpointing misfire faults.In the experiment,we established a total of 11 distinct states,encompassing the engine’s normal state,single-cylinder misfire faults,and dual-cylinder misfire faults for different cylinders.Data collection was facilitated by a highly sensitive acceleration signal collector with a high sampling rate of 20,840Hz.The collected data were methodically divided into training and testing sets based on different experimental groups to ensure generalization and prevent overlap between the two sets.The results revealed that,with a vibration acceleration sequence of 1000 time steps(approximately 50 ms)as input,the SENET model achieved a misfire fault detection accuracy of 99.8%.For comparison,we also trained and tested several commonly used models,including Long Short-Term Memory(LSTM),Transformer,and Multi-Scale Residual Networks(MSRESNET),yielding accuracy rates of 84%,79%,and 95%,respectively.This underscores the superior accuracy of the SENET model in detecting engine misfire faults compared to other models.Furthermore,the F1 scores for each type of recognition in the SENET model surpassed 0.98,outperforming the baseline models.Our analysis indicated that the misclassified samples in the LSTM and Transformer models’predictions were primarily due to intra-class misidentifications between single-cylinder and dual-cylinder misfire scenarios.To delve deeper,we conducted a visual analysis of the features extracted by the LSTM and SENET models using T-distributed Stochastic Neighbor Embedding(T-SNE)technology.The findings revealed that,in the LSTMmodel,data points of the same type tended to cluster together with significant overlap.Conversely,in the SENET model,data points of various types were more widely and evenly dispersed,demonstrating its effectiveness in distinguishing between different fault types.展开更多
This paper presents a comparative study of ARIMA and Neural Network AutoRegressive (NNAR) models for time series forecasting. The study focuses on simulated data generated using ARIMA(1, 1, 0) and applies both models ...This paper presents a comparative study of ARIMA and Neural Network AutoRegressive (NNAR) models for time series forecasting. The study focuses on simulated data generated using ARIMA(1, 1, 0) and applies both models for training and forecasting. Model performance is evaluated using MSE, AIC, and BIC. The models are further applied to neonatal mortality data from Saudi Arabia to assess their predictive capabilities. The results indicate that the NNAR model outperforms ARIMA in both training and forecasting.展开更多
Bangladesh has a denser population in comparison with many other countries. Though the rate of population increase has been regarded as a concerning issue, estimation of the population instability in the upcoming year...Bangladesh has a denser population in comparison with many other countries. Though the rate of population increase has been regarded as a concerning issue, estimation of the population instability in the upcoming years may be useful for national planning. To predict Bangladesh’s future population, this study compares the estimated populations of two popular population models, the Malthusian and the logistic population models, with the country’s census population published by BBS. We also tried to find out which model gives a better approximation for forecasting the past, present, and future population between these two models.展开更多
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear...This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.展开更多
The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination ...The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination tracker dashboard. GIS-based exploratory analysis was conducted to select four variables (poverty, black race, population density, and vaccination) to explain COVID-19 occurrence during the study period. Consequently, spatial statistical techniques such as Moran’s I, Hot Spot Analysis, Spatial Lag Model (SLM), and Spatial Error Model (SEM) were used to explain the COVID-19 occurrence and vaccination rate across the 88 counties in Ohio. The result of the Local Moran’s I analysis reveals that the epicenters of COVID-19 and vaccination followed the same patterns. Indeed, counties like Summit, Franklin, Fairfield, Hamilton, and Medina were categorized as epicenters for both COVID-19 occurrence and vaccination rate. The SEM seems to be the best model for both COVID-19 and vaccination rates, with R2 values of 0.68 and 0.70, respectively. The GWR analysis proves to be better than Ordinary Least Squares (OLS), and the distribution of R2 in the GWR is uneven throughout the study area for both COVID-19 cases and vaccinations. Some counties have a high R2 of up to 0.70 for both COVID-19 cases and vaccinations. The outcomes of the regression analyses show that the SEM models can explain 68% - 70% of COVID-19 cases and vaccination across the entire counties within the study period. COVID-19 cases and vaccination rates exhibited significant positive associations with black race and poverty throughout the study area.展开更多
This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV i...This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately.展开更多
Modeling HIV/AIDS progression is critical for understanding disease dynamics and improving patient care. This study compares the Exponential and Weibull survival models, focusing on their ability to capture state-spec...Modeling HIV/AIDS progression is critical for understanding disease dynamics and improving patient care. This study compares the Exponential and Weibull survival models, focusing on their ability to capture state-specific failure rates in HIV/AIDS progression. While the Exponential model offers simplicity with a constant hazard rate, it often fails to accommodate the complexities of dynamic disease progression. In contrast, the Weibull model provides flexibility by allowing hazard rates to vary over time. Both models are evaluated within the frameworks of the Cox Proportional Hazards (Cox PH) and Accelerated Failure Time (AFT) models, incorporating critical covariates such as age, gender, CD4 count, and ART status. Statistical evaluation metrics, including Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), log-likelihood, and Pseudo-R2, were employed to assess model performance across diverse patient subgroups. Results indicate that the Weibull model consistently outperforms the Exponential model in dynamic scenarios, such as younger patients and those with co-infections, while maintaining robustness in stable contexts. This study highlights the trade-off between flexibility and simplicity in survival modeling, advocating for tailored model selection to balance interpretability and predictive accuracy. These findings provide valuable insights for optimizing HIV/AIDS management strategies and advancing survival analysis methodologies.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 61622101 and Grant 61571020National Science and Technology Major Project under Grant 2018ZX03001031
文摘A more general narrowband regular-shaped geometry-based statistical model(RS-GBSM) combined with the line of sight(LoS) and single bounce(SB) rays for unmanned aerial vehicle(UAV) multiple-input multiple-output(MIMO) channel is proposed in this paper. The channel characteristics, including space-time correlation function(STCF), Doppler power spectral density(DPSD), level crossing rate(LCR) and average fade duration(AFD), are derived based on the single sphere reference model for a non-isotropic environment. The corresponding sum-of-sinusoids(SoS) simulation models including both the deterministic model and statistical model with finite scatterers are also proposed for practicable implementation. The simulation results illustrate that the simulation models well reproduce the channel characteristics of the single sphere reference model with sufficient simulation scatterers. And the statistical model has a better approximation of the reference model in comparison with the deterministic one when the simulation trials of the stochastic model are sufficient. The effects of the parameters such as flight height, moving direction and Rice factor on the characteristics are also studied.
基金supported by the open research fund of National Mobile Communications Research Laboratory, Southeast University (No. 2016D09)National Nature Science Foundation of China (NSFC) under grant No. 61372051
文摘In this paper, a three-dimensional(3D) geometry- based stochastic scattering model(GBSSM) for wideband multi-input multi-output(MIMO) vehicle-to-vehicle(V2V) relay-based cooperative fading channel based on geometrical three-cylinder is proposed. Non-line-of-sight(NLOS) propagation condition is assumed in amplify-and-forward(AF) cooperative networks from the source mobile station(S) to the destination mobile station(D) via the mobile relay station(R). We extend the proposed narrowband model to wideband and also introduce the carrier frequency and bandwidth into the model. To avoid complicated procedure in deriving the analytical expressions of the channel parameters and functions, the channel is realized first. By using the realized channel matrix, the channel properties are further investigated.
基金The Pre-Research Fund of Science and Technology on Near-Surface Detection Laboratory(No.6142414190405,6142414200505)the Specialized Development Foundation for the Achievement Transformation of Jiangsu Province(No.BA2019025).
文摘A three-dimensional non-stationary geometry-based stochastic model for unmanned aerial vehicle(UAV)air-to-ground multi-input multi-output(MIMO)channels is proposed.The scatterers surrounding the UAV and ground station are assumed to be distributed on the surface of two cylinders in the proposed model.The impact of UAV rotations and accelerated motion is considered to describe channel non-stationarity.The computational methods of the corresponding time-variant parameters,such as UAV antenna array angles,time delays,and maximum Doppler frequencies,are theoretically deduced.The model is then used to derive channel statistical properties such as space-time correlation functions and Doppler power spectral density.Finally,numerical simulations are run to validate the channel s statistical properties.The simulation results show that increasing the UAV and ground station accelerations can reduce the time correlation function and increase channel non-stationarity in the time domain.Furthermore,the UAV s rotation significantly influences the spatial correlation function,with rolling having a greater influence than pitching.Similarly,the different directions of UAV movement significantly impact the Doppler power spectral density.
基金supported by Shandong Agricultural University Funding of First-class DisciplinesShandong Agricultural University Key Cultivation Discipline Funding for NSFC Proposers+1 种基金supported by Grant of Beihang University Beidou Technology Transformation and Industrialization (BARI1709)Open Project of National Engineering Research Center for Information Technology in Agriculture (No.KF2015W003)
文摘This paper derives a non-stationary multiple-input multiple-output(MIMO) from the one-ring scattering model. The proposed channel model characterizes vehicular radio propagation channels with considerations of moving base and mobile stations, which makes the angle of arrivals(AOAs) along with the angle of departures(AODs) time-variant. We introduce the methodology of including the time-variant impacts when characterizing non-stationary radio propagation channels through the geometrical channel modelling approach. We analyze the statistical properties of the proposed channel model including the local time-variant autocorrelation function(ACF) and the space cross-correlation functions(CCFs). We show that the model developed in this paper for non-stationary scenarios includes the existing one-ring wide-sense stationary channel model as its special case.
基金supported in part by the Natural Science Basic Research Plan in Shaanxi Province(No.2015JQ6221,No. 2015JQ6259,No.2015JM6341)the Fundamental Research Funds for the Central Universities(No.JB140109)+8 种基金the National Natural Science Foundation of China(No. 61401321,No.61372067)the National Hightech R&D Program of China(No. 2014AA01A704,No.2015AA7124058)the National Basic Research Program of China(No.2014CB340206)the National Key Technology R&D Program of China(No. 2012BAH16B00)the Next Generation Internet Program of China(No.CNGI1203003)the Research Culture Funds of Xi'an University of Science and Technology(No.201357)the Open Project of State Key Laboratory of Integrated Service Networks(No.ISN1601)the Open Research Fund of National Mobile Communications Research Laboratory (No.2015D01)the Science and Technology R&D Program of Shaanxi Province(No. 2014KJXX-49)
文摘Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometry-based stochastic channel models(GSCM),field patterns are technically obtained by chamber measurement(or by its best fitting).However,in some channel related performance analysis scenarios,design insight can be crystallized better by starting the derivations with theoretical co-polarization and cross-polarization components.Specifically,these two components are mathematically linked with field patterns through the proposed polarization projection algorithm.In this manuscript,we focus on revealing the transformation criterion of polarization states between the antenna plane and the propagation plane.In practice,it makes retrieving the field patterns by electromagnetic computation possible.Meanwhile,the impact imposed by distinct antenna orientations is geometrically illustrated and consequently incorporated into the proposed algorithm.This will further facilitate flexible performance evaluation of related radio transmission technologies.Our conclusions are verified by the closed-form expression of the dipole field pattern(via an analytical approach) and by chamber measurement results.Moreover,we find that its 2D degenerative case is aligned with the definitions in 3^(rd) generation partnership project(3GPP)technical report 25.996.The most obvious benefit of the proposed algorithm is to significantly reduce the cost on generating channel coefficients in GSCM simulation.
基金supported by the Project of Stable Support for Youth Team in Basic Research Field,CAS(grant No.YSBR-018)the National Natural Science Foundation of China(grant Nos.42188101,42130204)+4 种基金the B-type Strategic Priority Program of CAS(grant no.XDB41000000)the National Natural Science Foundation of China(NSFC)Distinguished Overseas Young Talents Program,Innovation Program for Quantum Science and Technology(2021ZD0300301)the Open Research Project of Large Research Infrastructures of CAS-“Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project”.The project was supported also by the National Key Laboratory of Deep Space Exploration(Grant No.NKLDSE2023A002)the Open Fund of Anhui Provincial Key Laboratory of Intelligent Underground Detection(Grant No.APKLIUD23KF01)the China National Space Administration(CNSA)pre-research Project on Civil Aerospace Technologies No.D010305,D010301.
文摘Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular.
基金Supported by National Natural Science Foundation of China(61911530398,12231012)Consultancy Project by the Chinese Academy of Engineering(2022-JB-06,2023-JB-12)+3 种基金the Natural Science Foundation of Fujian Province of China(2021J01621)Special Projects of the Central Government Guiding Local Science and Technology Development(2021L3018)Royal Society of Edinburgh(RSE1832)Engineering and Physical Sciences Research Council(EP/W522521/1).
文摘A stochastic epidemic model with two age groups is established in this study,in which the susceptible(S),the exposed(E),the infected(I),the hospitalized(H)and the recovered(R)are involved within the total population,the aging rates between two age groups are set to be constant.The existence-and-uniqueness of global positive solution is firstly showed.Then,by constructing several appropriate Lyapunov functions and using the high-dimensional Itô’s formula,the sufficient conditions for the stochastic extinction and stochastic persistence of the exposed individuals and the infected individuals are obtained.The stochastic extinction indicator and the stochastic persistence indicator are less-valued expressions compared with the basic reproduction number.Meanwhile,the main results of this study are modified into multi-age groups.Furthermore,by using the surveillance data for Fujian Provincial Center for Disease Control and Prevention,Fuzhou COVID-19 epidemic is chosen to carry out the numerical simulations,which show that the age group of the population plays the vital role when studying infectious diseases.
文摘A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques include obtaining gravity data from the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),creating seismic profiles,analyzing the receiver functions of seismic data,obtaining information from boreholes,and providing geological interpretations.GOCE satellite gravity data were processed to construct a preliminary model based on nonlinear inversions of the data.A regional crustal thickness model was developed using receiver functions,seismic refraction profiles,and geological insights.The inverted model was validated using borehole data and compared with seismic estimates.The model exhibited strong consistency and revealed a correlation between crustal thickness,geology,and tectonics of Egypt.It showed that the shallowest depths of the Moho are located in the north along the Mediterranean Sea and in the eastern part along the Red Sea,reflecting an oceanic plate with a thin,high-density crust.The deepest Moho depths are located in the southwestern part of Egypt,Red Sea coastal mountains,and Sinai Peninsula.The obtained 3D model of crustal thickness provided finely detailed Moho depth estimates that aligned closely with geology and tectonic characteristics of Egypt,contributing valuable insights into the subsurface structure and tectonic processes of region.
文摘Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.
文摘In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.
基金supported by the National Key R&D Program of China (Grant No.2022YFF0503700)the National Natural Science Foundation of China (42074196, 41925018)
文摘Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model integrating Deep Residual Network(ResNet)and Support Vector Machine(SVM)for both≥C-class(C,M,and X classes)and≥M-class(M and X classes)flares.We collected samples of magnetograms from May 1,2010 to September 13,2018 from Space-weather Helioseismic and Magnetic Imager(HMI)Active Region Patches and then used a cross-validation method to obtain seven independent data sets.We then utilized five metrics to evaluate our fusion model,based on intermediate-output extracted by ResNet and SVM using the Gaussian kernel function.Our results show that the primary metric true skill statistics(TSS)achieves a value of 0.708±0.027 for≥C-class prediction,and of 0.758±0.042 for≥M-class prediction;these values indicate that our approach performs significantly better than those of previous studies.The metrics of our fusion model’s performance on the seven datasets indicate that the model is quite stable and robust,suggesting that fusion models that integrate an excellent baseline network with SVM can achieve improved performance in solar flare prediction.Besides,we also discuss the performance impact of architectural innovation in our fusion model.
基金Yongxian Huang supported by Projects of Guangzhou Science and Technology Plan(2023A04J0409)。
文摘To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precisely pinpointing misfire faults.In the experiment,we established a total of 11 distinct states,encompassing the engine’s normal state,single-cylinder misfire faults,and dual-cylinder misfire faults for different cylinders.Data collection was facilitated by a highly sensitive acceleration signal collector with a high sampling rate of 20,840Hz.The collected data were methodically divided into training and testing sets based on different experimental groups to ensure generalization and prevent overlap between the two sets.The results revealed that,with a vibration acceleration sequence of 1000 time steps(approximately 50 ms)as input,the SENET model achieved a misfire fault detection accuracy of 99.8%.For comparison,we also trained and tested several commonly used models,including Long Short-Term Memory(LSTM),Transformer,and Multi-Scale Residual Networks(MSRESNET),yielding accuracy rates of 84%,79%,and 95%,respectively.This underscores the superior accuracy of the SENET model in detecting engine misfire faults compared to other models.Furthermore,the F1 scores for each type of recognition in the SENET model surpassed 0.98,outperforming the baseline models.Our analysis indicated that the misclassified samples in the LSTM and Transformer models’predictions were primarily due to intra-class misidentifications between single-cylinder and dual-cylinder misfire scenarios.To delve deeper,we conducted a visual analysis of the features extracted by the LSTM and SENET models using T-distributed Stochastic Neighbor Embedding(T-SNE)technology.The findings revealed that,in the LSTMmodel,data points of the same type tended to cluster together with significant overlap.Conversely,in the SENET model,data points of various types were more widely and evenly dispersed,demonstrating its effectiveness in distinguishing between different fault types.
文摘This paper presents a comparative study of ARIMA and Neural Network AutoRegressive (NNAR) models for time series forecasting. The study focuses on simulated data generated using ARIMA(1, 1, 0) and applies both models for training and forecasting. Model performance is evaluated using MSE, AIC, and BIC. The models are further applied to neonatal mortality data from Saudi Arabia to assess their predictive capabilities. The results indicate that the NNAR model outperforms ARIMA in both training and forecasting.
文摘Bangladesh has a denser population in comparison with many other countries. Though the rate of population increase has been regarded as a concerning issue, estimation of the population instability in the upcoming years may be useful for national planning. To predict Bangladesh’s future population, this study compares the estimated populations of two popular population models, the Malthusian and the logistic population models, with the country’s census population published by BBS. We also tried to find out which model gives a better approximation for forecasting the past, present, and future population between these two models.
基金the University of Transport Technology under the project entitled“Application of Machine Learning Algorithms in Landslide Susceptibility Mapping in Mountainous Areas”with grant number DTTD2022-16.
文摘This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.
文摘The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination tracker dashboard. GIS-based exploratory analysis was conducted to select four variables (poverty, black race, population density, and vaccination) to explain COVID-19 occurrence during the study period. Consequently, spatial statistical techniques such as Moran’s I, Hot Spot Analysis, Spatial Lag Model (SLM), and Spatial Error Model (SEM) were used to explain the COVID-19 occurrence and vaccination rate across the 88 counties in Ohio. The result of the Local Moran’s I analysis reveals that the epicenters of COVID-19 and vaccination followed the same patterns. Indeed, counties like Summit, Franklin, Fairfield, Hamilton, and Medina were categorized as epicenters for both COVID-19 occurrence and vaccination rate. The SEM seems to be the best model for both COVID-19 and vaccination rates, with R2 values of 0.68 and 0.70, respectively. The GWR analysis proves to be better than Ordinary Least Squares (OLS), and the distribution of R2 in the GWR is uneven throughout the study area for both COVID-19 cases and vaccinations. Some counties have a high R2 of up to 0.70 for both COVID-19 cases and vaccinations. The outcomes of the regression analyses show that the SEM models can explain 68% - 70% of COVID-19 cases and vaccination across the entire counties within the study period. COVID-19 cases and vaccination rates exhibited significant positive associations with black race and poverty throughout the study area.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-RP23066).
文摘This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately.
文摘Modeling HIV/AIDS progression is critical for understanding disease dynamics and improving patient care. This study compares the Exponential and Weibull survival models, focusing on their ability to capture state-specific failure rates in HIV/AIDS progression. While the Exponential model offers simplicity with a constant hazard rate, it often fails to accommodate the complexities of dynamic disease progression. In contrast, the Weibull model provides flexibility by allowing hazard rates to vary over time. Both models are evaluated within the frameworks of the Cox Proportional Hazards (Cox PH) and Accelerated Failure Time (AFT) models, incorporating critical covariates such as age, gender, CD4 count, and ART status. Statistical evaluation metrics, including Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), log-likelihood, and Pseudo-R2, were employed to assess model performance across diverse patient subgroups. Results indicate that the Weibull model consistently outperforms the Exponential model in dynamic scenarios, such as younger patients and those with co-infections, while maintaining robustness in stable contexts. This study highlights the trade-off between flexibility and simplicity in survival modeling, advocating for tailored model selection to balance interpretability and predictive accuracy. These findings provide valuable insights for optimizing HIV/AIDS management strategies and advancing survival analysis methodologies.