为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种...为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种群质量,增强算法的全局搜索能力;使用一种收敛因子调整策略重新计算猎物能量,平衡算法的全局探索和局部开发能力;在哈里斯鹰的开发阶段引入黄金正弦策略,替换原有的位置更新方法,提升算法的局部开发能力;在9个测试函数和不同规模的栅格地图上评估GSHHO的有效性。实验结果表明:GSHHO在不同测试函数中具有较好的寻优精度和稳定性能,在2次机器人路径规划中路径长度较原始HHO算法分别减少4.4%、3.17%,稳定性分别提升52.98%、63.12%。展开更多
针对移动机器人寻找最优路径问题,提出了一种融合无标度网络、自适应权重和黄金正弦算法变异策略的樽海鞘群算法BAGSSA(Adaptive Salp Swarm Algorithm with Scale-free of BA Network and Golden Sine)。首先,生成一个无标度网络来映...针对移动机器人寻找最优路径问题,提出了一种融合无标度网络、自适应权重和黄金正弦算法变异策略的樽海鞘群算法BAGSSA(Adaptive Salp Swarm Algorithm with Scale-free of BA Network and Golden Sine)。首先,生成一个无标度网络来映射跟随者的关系,增强算法全局寻优的能力,在追随者进化过程中集成自适应权重ω,以实现算法探索和开发的平衡;同时选用黄金正弦算法变异进一步提高解的精度。其次,对12个基准函数进行仿真求解,实验数据表明平均值、标准差、Wilcoxon检验和收敛曲线均优于基本樽海鞘群和其他群体智能算法,证明了所提算法具有较高的寻优精度和收敛速度。最后,将BAGSSA应用于移动机器人路径规划问题中,并在两种测试环境中进行仿真实验,仿真结果表明,改进樽海鞘群算法较其他算法所寻路径更优,并具有一定理论与实际应用价值。展开更多
为解决教与学优化算法容易早熟收敛的问题,在原算法的基础上提出一种基于混合策略改进的教与学优化算法(Mixed Strategy Based Improved Teaching-Learning Based Optimization,M-SITLBO)。首先,利用Logistic-Tent混沌映射策略初始化种...为解决教与学优化算法容易早熟收敛的问题,在原算法的基础上提出一种基于混合策略改进的教与学优化算法(Mixed Strategy Based Improved Teaching-Learning Based Optimization,M-SITLBO)。首先,利用Logistic-Tent混沌映射策略初始化种群,保证种群的多样性;其次,在教师和学生阶段分别引入黄金正弦算法和基于莱维飞行与对数螺旋线的搜索策略优化个体的位置更新公式,增强并平衡算法的全局和局部收敛性能;最后,设计仿真对其寻优性能进行测试,结果表明改进后的教与学优化算法寻优速度、精度以及稳定性显著提升,且具有较强跳出局部最优的能力。展开更多
文摘为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种群质量,增强算法的全局搜索能力;使用一种收敛因子调整策略重新计算猎物能量,平衡算法的全局探索和局部开发能力;在哈里斯鹰的开发阶段引入黄金正弦策略,替换原有的位置更新方法,提升算法的局部开发能力;在9个测试函数和不同规模的栅格地图上评估GSHHO的有效性。实验结果表明:GSHHO在不同测试函数中具有较好的寻优精度和稳定性能,在2次机器人路径规划中路径长度较原始HHO算法分别减少4.4%、3.17%,稳定性分别提升52.98%、63.12%。
文摘针对移动机器人寻找最优路径问题,提出了一种融合无标度网络、自适应权重和黄金正弦算法变异策略的樽海鞘群算法BAGSSA(Adaptive Salp Swarm Algorithm with Scale-free of BA Network and Golden Sine)。首先,生成一个无标度网络来映射跟随者的关系,增强算法全局寻优的能力,在追随者进化过程中集成自适应权重ω,以实现算法探索和开发的平衡;同时选用黄金正弦算法变异进一步提高解的精度。其次,对12个基准函数进行仿真求解,实验数据表明平均值、标准差、Wilcoxon检验和收敛曲线均优于基本樽海鞘群和其他群体智能算法,证明了所提算法具有较高的寻优精度和收敛速度。最后,将BAGSSA应用于移动机器人路径规划问题中,并在两种测试环境中进行仿真实验,仿真结果表明,改进樽海鞘群算法较其他算法所寻路径更优,并具有一定理论与实际应用价值。
文摘为解决教与学优化算法容易早熟收敛的问题,在原算法的基础上提出一种基于混合策略改进的教与学优化算法(Mixed Strategy Based Improved Teaching-Learning Based Optimization,M-SITLBO)。首先,利用Logistic-Tent混沌映射策略初始化种群,保证种群的多样性;其次,在教师和学生阶段分别引入黄金正弦算法和基于莱维飞行与对数螺旋线的搜索策略优化个体的位置更新公式,增强并平衡算法的全局和局部收敛性能;最后,设计仿真对其寻优性能进行测试,结果表明改进后的教与学优化算法寻优速度、精度以及稳定性显著提升,且具有较强跳出局部最优的能力。