针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间...针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间序列中的所有突变点,并充分利用突变点信息修正由于经济环境和突发事件引起的预测偏差,大大提高了传统时序外推预测模型的精度。华东地区的实际算例结果表明了该模型的有效性。展开更多
Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t...Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.展开更多
A major goal of coastal engineering is to develop models for the reliable prediction of short-and longterm near shore evolution.The most successful coastal models are numerical models,which allow flexibility in the ch...A major goal of coastal engineering is to develop models for the reliable prediction of short-and longterm near shore evolution.The most successful coastal models are numerical models,which allow flexibility in the choice of initial and boundary conditions.In the present study,evolutionary algorithms(EAs)are employed for multi-objective Pareto optimum design of group method data handling(GMDH)-type neural networks that have been used for bed evolution modeling in the surf zone for reflective beaches,based on the irregular wave experiments performed at the Hydraulic Laboratory of Imperial College(London,UK).The input parameters used for such modeling are significant wave height,wave period,wave action duration,reflection coefficient,distance from shoreline and sand size.In this way,EAs with an encoding scheme are presented for evolutionary design of the generalized GMDH-type neural networks,in which the connectivity configurations in such networks are not limited to adjacent layers.Also,multi-objective EAs with a diversity preserving mechanism are used for Pareto optimization of such GMDH-type neural networks.The most important objectives of GMDH-type neural networks that are considered in this study are training error(TE),prediction error(PE),and number of neurons(N).Different pairs of these objective functions are selected for two-objective optimization processes.Therefore,optimal Pareto fronts of such models are obtained in each case,which exhibit the trade-offs between the corresponding pair of the objectives and,thus,provide different non-dominated optimal choices of GMDH-type neural network model for beach profile evolution.The results showed that the present model has been successfully used to optimally prediction of beach profile evolution on beaches with seawalls.展开更多
针对电力负荷预测粒子群优化最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)模型输入节点难以确定的问题,提出了一种基于数据分组处理方法(Group Method of Data Handling,GMDH)来优化PSO-LSSVM(Particle Swarm Optim...针对电力负荷预测粒子群优化最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)模型输入节点难以确定的问题,提出了一种基于数据分组处理方法(Group Method of Data Handling,GMDH)来优化PSO-LSSVM(Particle Swarm Optimization-Least Squares Support Vector Machine)的中长期电力负荷预测预测方法。该方法是首先利用GMDH算法获得LSSVM建模中的输入变量;然后利用基于自适应变异的PSO算法对LSSVM建模中的参数进行优化,选用某地区2008~2013年的历史数据作为模型的训练样本建立模型;最后使用训练好的GMDHPSO-LSSVM模型对2014、2015年的用电量进行外推预测。组合模型预测结果表明该方法达到了较高的预测精度,预测精度提高了2.21%。展开更多
文摘针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间序列中的所有突变点,并充分利用突变点信息修正由于经济环境和突发事件引起的预测偏差,大大提高了传统时序外推预测模型的精度。华东地区的实际算例结果表明了该模型的有效性。
基金Project(61873283)supported by the National Natural Science Foundation of ChinaProject(KQ1707017)supported by the Changsha Science&Technology Project,ChinaProject(2019CX005)supported by the Innovation Driven Project of the Central South University,China。
文摘Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.
文摘A major goal of coastal engineering is to develop models for the reliable prediction of short-and longterm near shore evolution.The most successful coastal models are numerical models,which allow flexibility in the choice of initial and boundary conditions.In the present study,evolutionary algorithms(EAs)are employed for multi-objective Pareto optimum design of group method data handling(GMDH)-type neural networks that have been used for bed evolution modeling in the surf zone for reflective beaches,based on the irregular wave experiments performed at the Hydraulic Laboratory of Imperial College(London,UK).The input parameters used for such modeling are significant wave height,wave period,wave action duration,reflection coefficient,distance from shoreline and sand size.In this way,EAs with an encoding scheme are presented for evolutionary design of the generalized GMDH-type neural networks,in which the connectivity configurations in such networks are not limited to adjacent layers.Also,multi-objective EAs with a diversity preserving mechanism are used for Pareto optimization of such GMDH-type neural networks.The most important objectives of GMDH-type neural networks that are considered in this study are training error(TE),prediction error(PE),and number of neurons(N).Different pairs of these objective functions are selected for two-objective optimization processes.Therefore,optimal Pareto fronts of such models are obtained in each case,which exhibit the trade-offs between the corresponding pair of the objectives and,thus,provide different non-dominated optimal choices of GMDH-type neural network model for beach profile evolution.The results showed that the present model has been successfully used to optimally prediction of beach profile evolution on beaches with seawalls.
文摘针对电力负荷预测粒子群优化最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)模型输入节点难以确定的问题,提出了一种基于数据分组处理方法(Group Method of Data Handling,GMDH)来优化PSO-LSSVM(Particle Swarm Optimization-Least Squares Support Vector Machine)的中长期电力负荷预测预测方法。该方法是首先利用GMDH算法获得LSSVM建模中的输入变量;然后利用基于自适应变异的PSO算法对LSSVM建模中的参数进行优化,选用某地区2008~2013年的历史数据作为模型的训练样本建立模型;最后使用训练好的GMDHPSO-LSSVM模型对2014、2015年的用电量进行外推预测。组合模型预测结果表明该方法达到了较高的预测精度,预测精度提高了2.21%。