Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall...Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental.展开更多
A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence da...A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness.展开更多
Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasonin...Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasoning on the basis of greedy and directional strategy to establish a spatial heuristic,so as to improve running efficiency and suitability of shortest path algorithm for traffic network.The authors divide urban traffic network into three hierarchies and set forward a new node hierarchy division rule to avoid the unreliable solution of shortest path.It is argued that the shortest path,no matter distance shortest or time shortest,is usually not the favorite of drivers in practice.Some factors difficult to expect or quantify influence the drivers’ choice greatly.It makes the drivers prefer choosing a less shortest,but more reliable or flexible path to travel on.The presented optimum path algorithm,in addition to the improvement of the running efficiency of shortest path algorithms up to several times,reduces the emergence of those factors,conforms to the intellection characteristic of human beings,and is more easily accepted by drivers.Moreover,it does not require the completeness of networks in the lowest hierarchy and the applicability and fault tolerance of the algorithm have improved.The experiment result shows the advantages of the presented algorithm.The authors argued that the algorithm has great potential application for navigation systems of large_scale traffic networks.展开更多
We present an edge crossing minimization algorithm for hierarchical graphs based on genetic algorithms, and comparing it with some heuristic algorithms. The proposed algorithm is more efficient and has the following a...We present an edge crossing minimization algorithm for hierarchical graphs based on genetic algorithms, and comparing it with some heuristic algorithms. The proposed algorithm is more efficient and has the following advantages: the frame of the algorithms is unified, the method is simple, and its implementation and revision are easy.展开更多
In this paper, we propose a novel speed and service-sensitive handoff algorithm and analytical model for hierarchical cellular networks.First, we use the Gauss-Markov mobility model to predict the speeds of mobile sta...In this paper, we propose a novel speed and service-sensitive handoff algorithm and analytical model for hierarchical cellular networks.First, we use the Gauss-Markov mobility model to predict the speeds of mobile stations, and divide mobile stations into three classes based on the predicted speeds: fast, medium-speed, and slow.Then, according to the mobility classification,network conditions, and service types, mobile stations will be handoff to the proper target networks prior to the deterioration of the currently operating channel. We further develop an analytical model to evaluate the performance of such a hierarchical system with different speed classes and service types. Simulations and analytical results show that the proposed handoff algorithm can significantly improve the network performance in terms of the handoff failure probability, unnecessary handoff probability, and network throughput, comparing with the traditional algorithms.展开更多
Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of t...Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of the system profit,the uncertain demand of logistics network is measured by interval variables and interval parameters,and an interval planning model of discrete logistics network is established.The risk coefficient and maximum constrained deviation are defined to realize the certain transformation of the model.By integrating interval algorithm and genetic algorithm,an interval hierarchical optimal genetic algorithm is proposed to solve the model.It is shown by a tested example that in the same scenario condition an interval solution[3275.3,3 603.7]can be obtained by the model and algorithm which is obviously better than the single precise optimal solution by stochastic or fuzzy algorithm,so it can be reflected that the model and algorithm have more stronger operability and the solution result has superiority to scenario decision.展开更多
A new hierarchical identification algorithm is proposed for solving the identi-fication problem of the extended exponential model,which is used frequently in ecological,social and economical systems.By using the zero ...A new hierarchical identification algorithm is proposed for solving the identi-fication problem of the extended exponential model,which is used frequently in ecological,social and economical systems.By using the zero character of the optimal Lagrangianmultipliers of the equivalent identification problem,a two-level structure of the algorithmis derived first.Then,the convergence and the correspondence with the conventionalnonlinear approaches of the algorithm are proved.The results of simulation and applica-tion show that its convergent rate is greatly higher than that of the L-Mmethod.展开更多
Based on the tropical cyclone(TC) observations in the western North Pacific from 2000 to 2008, this paper adopts the particle swarm optimization(PSO) algorithm of evolutionary computation to optimize one comprehensive...Based on the tropical cyclone(TC) observations in the western North Pacific from 2000 to 2008, this paper adopts the particle swarm optimization(PSO) algorithm of evolutionary computation to optimize one comprehensive classification rule, and apply the optimized classification rule to the forecasting of TC intensity change. In the process of the optimization, the strategy of hierarchical pruning has been adopted in the PSO algorithm to narrow the search area,and thus to enhance the local search ability, i.e. hierarchical PSO algorithm. The TC intensity classification rule involves core attributes including 12-HMWS, MPI, and Rainrate which play vital roles in TC intensity change. The testing accuracy using the new mined rule by hierarchical PSO algorithm reaches 89.6%. The current study shows that the novel classification method for TC intensity change analysis based on hierarchic PSO algorithm is not only easy to explain the source of rule core attributes, but also has great potential to improve the forecasting of TC intensity change.展开更多
Hierarchical evolutionary algorithms based on genetic algorithms (GAs) and Nash strategy of game theory are proposed to accelerate the optimization process and implemented in transonic aerodynamic shape optimization p...Hierarchical evolutionary algorithms based on genetic algorithms (GAs) and Nash strategy of game theory are proposed to accelerate the optimization process and implemented in transonic aerodynamic shape optimization problems Inspired from the natural evolution history that different periods with certain environments have different criteria for the evaluations of individuals’ fitness, a hierarchical fidelity model is introduced to reach high optimization efficiency The shape of an NACA0012 based airfoil is optimized in maximizing the lift coefficient under a given transonic flow condition Optimized results are presented and compared with the single model results and traditional GA展开更多
In the enormous and still poorly mastered gap between the macro level, where well developed continuum theories of continuous media and engineering methods of calculation and design operate, and atomic, subordinate to ...In the enormous and still poorly mastered gap between the macro level, where well developed continuum theories of continuous media and engineering methods of calculation and design operate, and atomic, subordinate to the laws of quantum mechanics, there is an extensive meso-hierarchical level of the structure of matter. At this level unprecedented previously products and technologies can be artificially created. Nano technology is a qualitatively new strategy in technology: it creates objects in exactly the opposite way—large objects are created from small ones [1]. We have developed a new method for modeling acoustic monitoring of a layered-block elastic medium with several inclusions of various physical and mechanical hierarchical structures [2]. An iterative process is developed for solving the direct problem for the case of three hierarchical inclusions of l, m, s-th ranks based on the use of 2D integro-differential equations. The degree of hierarchy of inclusions is determined by the values of their ranks, which may be different, while the first rank is associated with the atomic structure, the following ranks are associated with increasing geometric sizes, which contain inclusions of lower ranks and sizes. Hierarchical inclusions are located in different layers one above the other: the upper one is abnormally plastic, the second is abnormally elastic and the third is abnormally dense. The degree of filling with inclusions of each rank for all three hierarchical inclusions is different. Modeling is carried out from smaller sizes to large inclusions;as a result, it becomes possible to determine the necessary parameters of the formed material from acoustic monitoring data.展开更多
Using group and subassembly cluster methods, the hierarchical structure of a product is ?generated automatically, which largely reduces the complexity of planning. Based on genetic algorithm, the optimal of assembly s...Using group and subassembly cluster methods, the hierarchical structure of a product is ?generated automatically, which largely reduces the complexity of planning. Based on genetic algorithm, the optimal of assembly sequence of each structure level can be obtained by sequence-by-sequence search. As a result, a better assembly sequence of the product can be generated by combining the assembly sequences of all hierarchical structures, which provides more parallelism and flexibility for assembly operations. An industrial example is solved by this new approach.展开更多
Aim To analyze the traditional hierarchical Kalman filtering fusion algorithm theoretically and point out that the traditional Kalman filtering fusion algorithm is complex and can not improve the tracking precision we...Aim To analyze the traditional hierarchical Kalman filtering fusion algorithm theoretically and point out that the traditional Kalman filtering fusion algorithm is complex and can not improve the tracking precision well, even it is impractical, and to propose the weighting average fusion algorithm. Methods The theoretical analysis and Monte Carlo simulation methods were ed to compare the traditional fusion algorithm with the new one,and the comparison of the root mean square error statistics values of the two algorithms was made. Results The hierarchical fusion algorithm is not better than the weighting average fusion and feedback weighting average algorithm The weighting filtering fusion algorithm is simple in principle, less in data, faster in processing and better in tolerance.Conclusion The weighting hierarchical fusion algorithm is suitable for the defective sensors.The feedback of the fusion result to the single sersor can enhance the single sensorr's precision. especially once one sensor has great deviation and low accuracy or has some deviation of sample period and is asynchronous to other sensors.展开更多
Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical app...Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical approach is proposed to solve the resource allocation problem for IMA systems in distributed environments. Firstly, the worst case response time of tasks with arbitrary deadlines is analyzed for the two-level scheduler. Then, the hierarchical resource allocation approach is presented in two levels. At the platform level, a task assignment algorithm based on genetic simulated annealing (GSA) is proposed to assign a set of pre-defined tasks to different processing nodes in the form of task groups, so that resources can be allocated as partitions and mapped to task groups. While yielding to all the resource con- straints, the algorithm tries to find an optimal task assignment with minimized communication costs and balanced work load. At the node level, partition parameters are optimized, so that the computational resource can be allocated further. An example is shown to illustrate the hierarchal resource allocation approach and manifest the validity. Simulation results comparing the performance of the proposed GSA with that of traditional genetic algorithms are presented in the context of task assignment in IMA systems.展开更多
Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective op...Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective optimization (BBMO) is introduced, which uses the cluster attribute of islands to naturally decompose the problem. The proposed algorithm makes use of nondominated sorting approach to improve the convergence ability efficiently. It also combines the crowding distance to guarantee the diversity of Pareto optimal solutions. We compare the BBMO with two representative state-of-the-art evolutionary multi-objective optimization methods, non-dominated sorting genetic algorithm-II (NSGA-II) and archive-based micro genetic algorithm (AMGA) in terms of three metrics. Simulation results indicate that in most cases, the proposed BBMO is able to find much better spread of solutions and converge faster to true Pareto optimal fronts than NSGA-II and AMGA do.展开更多
For a city,analyzing its advantages,disadvantages and the level of economic development in a country is important,especially for the cities in China developing at flying speed.The corresponding literatures for the cit...For a city,analyzing its advantages,disadvantages and the level of economic development in a country is important,especially for the cities in China developing at flying speed.The corresponding literatures for the cities in China have not considered the indicators of economy and industry in detail.In this paper,based on multiple indicators of economy and industry,the urban hierarchical structure of 285 cities above the prefecture level in China is investigated.The indicators from the economy,industry,infrastructure,medical care,population,education,culture,and employment levels are selected to establish a new indicator system for analyzing urban hierarchical structure.The factor analysis method is used to investigate the relationship between the variables of selected indicators and obtain the score of each common factor and comprehensive scores and rankings for 285 cities above the prefecture level in China.According to the comprehensive scores,285 cities above the prefecture level are clustered into 15 levels by using K-means clustering algorithm.Then,the hierarchical structure system of the cities above the prefecture level in China is obtained and corresponding policy implications are proposed.The results and implications can not only be applied to the urban planning and development in China but also offer a reference on other developing countries.The methodologies used in this paper can also be applied to study the urban hierarchical structure in other countries.展开更多
Purpose: To discuss the problems arising from hierarchical cluster analysis of co-occurrence matrices in SPSS, and the corresponding solutions. Design/methodology/approach: We design different methods of using the S...Purpose: To discuss the problems arising from hierarchical cluster analysis of co-occurrence matrices in SPSS, and the corresponding solutions. Design/methodology/approach: We design different methods of using the SPSS hierarchical clustering module for co-occurrence matrices in order to compare these methods. We offer the correct syntax to deactivate the similarity algorithm for clustering analysis within the hierarchical clustering module of SPSS. Findings: When one inputs co-occurrence matrices into the data editor of the SPSS hierarchical clustering module without deactivating the embedded similarity algorithm, the program calculates similarity twice, and thus distorts and overestimates the degree of similarity. Practical implications: We offer the correct syntax to block the similarity algorithm for clustering analysis in the SPSS hierarchical clustering module in the case of co-occurrence matrices. This syntax enables researchers to avoid obtaining incorrect results. Originality/value: This paper presents a method of editing syntax to prevent the default use of a similarity algorithm for SPSS's hierarchical clustering module. This will help researchers, especially those from China, to properly implement the co-occurrence matrix when using SPSS for hierarchical cluster analysis, in order to provide more scientific and rational results.展开更多
A class of large-scale systems, where the overall objective function is a nonlinear function of performance index of each subsystem, is investigated in this paper. This type of large-scale control problem is non-separ...A class of large-scale systems, where the overall objective function is a nonlinear function of performance index of each subsystem, is investigated in this paper. This type of large-scale control problem is non-separable in the sense of conventional hierarchical control. Hierarchical control is extended in the paper to large-scale non-separable control problems, where multiobjective optimization is used as separation strategy. The large-scale non-separable control problem is embedded, under certain conditions, into a family of the weighted Lagrangian formulation. The weighted Lagrangian formulation is separable with respect to subsystems and can be effectively solved using the interaction balance approach at the two lower levels in the proposed three-level solution structure. At the third level, the weighting vector for the weighted Lagrangian formulation is adjusted iteratively to search the optimal weighting vector with which the optimal of the original large-scale non-separable control problem is obtained. Theoretical base of the algorithm is established. Simulation shows that the algorithm is effective.展开更多
Entity relation is an essential component of some famous knowledge bases,such as Freebase,Yago and Knowledge Graph,while the hyponymy plays an important role in entity relations that show the relationship between the ...Entity relation is an essential component of some famous knowledge bases,such as Freebase,Yago and Knowledge Graph,while the hyponymy plays an important role in entity relations that show the relationship between the more general terms(hypernyms)and the more specific instances of the terms(hyponyms).In this paper,we present a comprehensive scheme of open-domain Chinese entity hypernym hierarchical construction.Some of the most important unsupervised and heuristic approaches for building hierarchical structure are covered in sufficient detail along with reasonable analyses.We experimentally evaluate the proposed methods and compare them with other baselines.The result shows high precision of our method and the proposed scheme will be further improved with larger scale corpora.展开更多
Purpose: When producing mining operations in high-stress rock massive, technogenic seismicity is manifested. Forecasting and prevention of these events is given much attention in all countries with a developed mining ...Purpose: When producing mining operations in high-stress rock massive, technogenic seismicity is manifested. Forecasting and prevention of these events is given much attention in all countries with a developed mining industry. From the point of view of the paradigm of physical mesomechanics, which includes a synergetic approach to changing the state of rock massive of different material composition, this problem can be solved with the help of monitoring methods tuned to the study of hierarchical structural media. Changes in the environment, leading to short-term precursors of dynamic phenomena, are explained within the framework of hierarchical heterogeneity and nonlinearity from observations of wave fields and seismic catalog. For that purpose it is needed to develop new algorithms of modeling wave field propagation through the local objects with hierarchical structure. Design/Methodology/Approach: It had been constructed an algorithm for 3D modeling electromagnetic field for arbitrary type of source of excitation in N-layered medium with a hierarchic conductive and magnetic intrusion, located in the layer number J. It had been constructed algorithms for 2D modeling of sound diffraction and linear polarized transversal seismic wave on an anomaly elastic or dense intrusion of hierarchic structure, located in the layer number J of N-layered elastic medium. We used the method of integral and integral-differential equations for a space frequency presentation of wave field distribution. Findings: From the theory it is obvious that for such complicated medium each wave field contains its own information about the inner structure of the hierarchical inclusion. Therefore it is needed to interpret the monitoring data for each wave field apart, and not mixes the data base. Practical Value/Implications: These results will be the base for constructing new systems of monitoring observations of dynamical geological systems. Especially it is needed to prevent rock shocks in deep mines by their exploitation or natural hazards.展开更多
基金jointly supported by the Jiangsu Postgraduate Research and Practice Innovation Project under Grant KYCX22_1030,SJCX22_0283 and SJCX23_0293the NUPTSF under Grant NY220201.
文摘Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental.
文摘A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness.
文摘Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasoning on the basis of greedy and directional strategy to establish a spatial heuristic,so as to improve running efficiency and suitability of shortest path algorithm for traffic network.The authors divide urban traffic network into three hierarchies and set forward a new node hierarchy division rule to avoid the unreliable solution of shortest path.It is argued that the shortest path,no matter distance shortest or time shortest,is usually not the favorite of drivers in practice.Some factors difficult to expect or quantify influence the drivers’ choice greatly.It makes the drivers prefer choosing a less shortest,but more reliable or flexible path to travel on.The presented optimum path algorithm,in addition to the improvement of the running efficiency of shortest path algorithms up to several times,reduces the emergence of those factors,conforms to the intellection characteristic of human beings,and is more easily accepted by drivers.Moreover,it does not require the completeness of networks in the lowest hierarchy and the applicability and fault tolerance of the algorithm have improved.The experiment result shows the advantages of the presented algorithm.The authors argued that the algorithm has great potential application for navigation systems of large_scale traffic networks.
文摘We present an edge crossing minimization algorithm for hierarchical graphs based on genetic algorithms, and comparing it with some heuristic algorithms. The proposed algorithm is more efficient and has the following advantages: the frame of the algorithms is unified, the method is simple, and its implementation and revision are easy.
基金supported by Natural Science Foundation of China(61372125)973 project(2013CB329104)+1 种基金the National High-Tech R&D Program(863 Program 2015AA01A705)the open research fund of National Mobile Communications Research Laboratory,Southeast University(2013D01)
文摘In this paper, we propose a novel speed and service-sensitive handoff algorithm and analytical model for hierarchical cellular networks.First, we use the Gauss-Markov mobility model to predict the speeds of mobile stations, and divide mobile stations into three classes based on the predicted speeds: fast, medium-speed, and slow.Then, according to the mobility classification,network conditions, and service types, mobile stations will be handoff to the proper target networks prior to the deterioration of the currently operating channel. We further develop an analytical model to evaluate the performance of such a hierarchical system with different speed classes and service types. Simulations and analytical results show that the proposed handoff algorithm can significantly improve the network performance in terms of the handoff failure probability, unnecessary handoff probability, and network throughput, comparing with the traditional algorithms.
基金Project(51178061)supported by the National Natural Science Foundation of ChinaProject(2010FJ6016)supported by Hunan Provincial Science and Technology,China+1 种基金Project(12C0015)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(13JJ3072)supported by Hunan Provincial Natural Science Foundation of China
文摘Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of the system profit,the uncertain demand of logistics network is measured by interval variables and interval parameters,and an interval planning model of discrete logistics network is established.The risk coefficient and maximum constrained deviation are defined to realize the certain transformation of the model.By integrating interval algorithm and genetic algorithm,an interval hierarchical optimal genetic algorithm is proposed to solve the model.It is shown by a tested example that in the same scenario condition an interval solution[3275.3,3 603.7]can be obtained by the model and algorithm which is obviously better than the single precise optimal solution by stochastic or fuzzy algorithm,so it can be reflected that the model and algorithm have more stronger operability and the solution result has superiority to scenario decision.
文摘A new hierarchical identification algorithm is proposed for solving the identi-fication problem of the extended exponential model,which is used frequently in ecological,social and economical systems.By using the zero character of the optimal Lagrangianmultipliers of the equivalent identification problem,a two-level structure of the algorithmis derived first.Then,the convergence and the correspondence with the conventionalnonlinear approaches of the algorithm are proved.The results of simulation and applica-tion show that its convergent rate is greatly higher than that of the L-Mmethod.
基金National Natural Science Foundation of China(41201045)Jiangsu Qing Lan Project(2016)Natural Science Foundation of Jiangsu Province(BK20151458)
文摘Based on the tropical cyclone(TC) observations in the western North Pacific from 2000 to 2008, this paper adopts the particle swarm optimization(PSO) algorithm of evolutionary computation to optimize one comprehensive classification rule, and apply the optimized classification rule to the forecasting of TC intensity change. In the process of the optimization, the strategy of hierarchical pruning has been adopted in the PSO algorithm to narrow the search area,and thus to enhance the local search ability, i.e. hierarchical PSO algorithm. The TC intensity classification rule involves core attributes including 12-HMWS, MPI, and Rainrate which play vital roles in TC intensity change. The testing accuracy using the new mined rule by hierarchical PSO algorithm reaches 89.6%. The current study shows that the novel classification method for TC intensity change analysis based on hierarchic PSO algorithm is not only easy to explain the source of rule core attributes, but also has great potential to improve the forecasting of TC intensity change.
基金Start-up foundation item of the Educational Department of China for returnees
文摘Hierarchical evolutionary algorithms based on genetic algorithms (GAs) and Nash strategy of game theory are proposed to accelerate the optimization process and implemented in transonic aerodynamic shape optimization problems Inspired from the natural evolution history that different periods with certain environments have different criteria for the evaluations of individuals’ fitness, a hierarchical fidelity model is introduced to reach high optimization efficiency The shape of an NACA0012 based airfoil is optimized in maximizing the lift coefficient under a given transonic flow condition Optimized results are presented and compared with the single model results and traditional GA
文摘In the enormous and still poorly mastered gap between the macro level, where well developed continuum theories of continuous media and engineering methods of calculation and design operate, and atomic, subordinate to the laws of quantum mechanics, there is an extensive meso-hierarchical level of the structure of matter. At this level unprecedented previously products and technologies can be artificially created. Nano technology is a qualitatively new strategy in technology: it creates objects in exactly the opposite way—large objects are created from small ones [1]. We have developed a new method for modeling acoustic monitoring of a layered-block elastic medium with several inclusions of various physical and mechanical hierarchical structures [2]. An iterative process is developed for solving the direct problem for the case of three hierarchical inclusions of l, m, s-th ranks based on the use of 2D integro-differential equations. The degree of hierarchy of inclusions is determined by the values of their ranks, which may be different, while the first rank is associated with the atomic structure, the following ranks are associated with increasing geometric sizes, which contain inclusions of lower ranks and sizes. Hierarchical inclusions are located in different layers one above the other: the upper one is abnormally plastic, the second is abnormally elastic and the third is abnormally dense. The degree of filling with inclusions of each rank for all three hierarchical inclusions is different. Modeling is carried out from smaller sizes to large inclusions;as a result, it becomes possible to determine the necessary parameters of the formed material from acoustic monitoring data.
基金the Natural Science Foundation of China (59990470, 59725514, 59985004), andRobotics Laboratory, Chinese Academy of Sciences fo
文摘Using group and subassembly cluster methods, the hierarchical structure of a product is ?generated automatically, which largely reduces the complexity of planning. Based on genetic algorithm, the optimal of assembly sequence of each structure level can be obtained by sequence-by-sequence search. As a result, a better assembly sequence of the product can be generated by combining the assembly sequences of all hierarchical structures, which provides more parallelism and flexibility for assembly operations. An industrial example is solved by this new approach.
文摘Aim To analyze the traditional hierarchical Kalman filtering fusion algorithm theoretically and point out that the traditional Kalman filtering fusion algorithm is complex and can not improve the tracking precision well, even it is impractical, and to propose the weighting average fusion algorithm. Methods The theoretical analysis and Monte Carlo simulation methods were ed to compare the traditional fusion algorithm with the new one,and the comparison of the root mean square error statistics values of the two algorithms was made. Results The hierarchical fusion algorithm is not better than the weighting average fusion and feedback weighting average algorithm The weighting filtering fusion algorithm is simple in principle, less in data, faster in processing and better in tolerance.Conclusion The weighting hierarchical fusion algorithm is suitable for the defective sensors.The feedback of the fusion result to the single sersor can enhance the single sensorr's precision. especially once one sensor has great deviation and low accuracy or has some deviation of sample period and is asynchronous to other sensors.
基金supported by the National Natural Science Foundation of China (60879024)
文摘Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical approach is proposed to solve the resource allocation problem for IMA systems in distributed environments. Firstly, the worst case response time of tasks with arbitrary deadlines is analyzed for the two-level scheduler. Then, the hierarchical resource allocation approach is presented in two levels. At the platform level, a task assignment algorithm based on genetic simulated annealing (GSA) is proposed to assign a set of pre-defined tasks to different processing nodes in the form of task groups, so that resources can be allocated as partitions and mapped to task groups. While yielding to all the resource con- straints, the algorithm tries to find an optimal task assignment with minimized communication costs and balanced work load. At the node level, partition parameters are optimized, so that the computational resource can be allocated further. An example is shown to illustrate the hierarchal resource allocation approach and manifest the validity. Simulation results comparing the performance of the proposed GSA with that of traditional genetic algorithms are presented in the context of task assignment in IMA systems.
基金supported by Zhejiang Provincial Natural Science Foundation of China (No.Y1090866)supported by Dan Simon and Dawei Du of Cleveland State University, and Jeff Abell of General Motors, whose ideas were instrumental in the development of this research
文摘Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective optimization (BBMO) is introduced, which uses the cluster attribute of islands to naturally decompose the problem. The proposed algorithm makes use of nondominated sorting approach to improve the convergence ability efficiently. It also combines the crowding distance to guarantee the diversity of Pareto optimal solutions. We compare the BBMO with two representative state-of-the-art evolutionary multi-objective optimization methods, non-dominated sorting genetic algorithm-II (NSGA-II) and archive-based micro genetic algorithm (AMGA) in terms of three metrics. Simulation results indicate that in most cases, the proposed BBMO is able to find much better spread of solutions and converge faster to true Pareto optimal fronts than NSGA-II and AMGA do.
基金supported by National Key Research and Development Program of China(Grant No.2018YFC0704903).
文摘For a city,analyzing its advantages,disadvantages and the level of economic development in a country is important,especially for the cities in China developing at flying speed.The corresponding literatures for the cities in China have not considered the indicators of economy and industry in detail.In this paper,based on multiple indicators of economy and industry,the urban hierarchical structure of 285 cities above the prefecture level in China is investigated.The indicators from the economy,industry,infrastructure,medical care,population,education,culture,and employment levels are selected to establish a new indicator system for analyzing urban hierarchical structure.The factor analysis method is used to investigate the relationship between the variables of selected indicators and obtain the score of each common factor and comprehensive scores and rankings for 285 cities above the prefecture level in China.According to the comprehensive scores,285 cities above the prefecture level are clustered into 15 levels by using K-means clustering algorithm.Then,the hierarchical structure system of the cities above the prefecture level in China is obtained and corresponding policy implications are proposed.The results and implications can not only be applied to the urban planning and development in China but also offer a reference on other developing countries.The methodologies used in this paper can also be applied to study the urban hierarchical structure in other countries.
文摘Purpose: To discuss the problems arising from hierarchical cluster analysis of co-occurrence matrices in SPSS, and the corresponding solutions. Design/methodology/approach: We design different methods of using the SPSS hierarchical clustering module for co-occurrence matrices in order to compare these methods. We offer the correct syntax to deactivate the similarity algorithm for clustering analysis within the hierarchical clustering module of SPSS. Findings: When one inputs co-occurrence matrices into the data editor of the SPSS hierarchical clustering module without deactivating the embedded similarity algorithm, the program calculates similarity twice, and thus distorts and overestimates the degree of similarity. Practical implications: We offer the correct syntax to block the similarity algorithm for clustering analysis in the SPSS hierarchical clustering module in the case of co-occurrence matrices. This syntax enables researchers to avoid obtaining incorrect results. Originality/value: This paper presents a method of editing syntax to prevent the default use of a similarity algorithm for SPSS's hierarchical clustering module. This will help researchers, especially those from China, to properly implement the co-occurrence matrix when using SPSS for hierarchical cluster analysis, in order to provide more scientific and rational results.
文摘A class of large-scale systems, where the overall objective function is a nonlinear function of performance index of each subsystem, is investigated in this paper. This type of large-scale control problem is non-separable in the sense of conventional hierarchical control. Hierarchical control is extended in the paper to large-scale non-separable control problems, where multiobjective optimization is used as separation strategy. The large-scale non-separable control problem is embedded, under certain conditions, into a family of the weighted Lagrangian formulation. The weighted Lagrangian formulation is separable with respect to subsystems and can be effectively solved using the interaction balance approach at the two lower levels in the proposed three-level solution structure. At the third level, the weighting vector for the weighted Lagrangian formulation is adjusted iteratively to search the optimal weighting vector with which the optimal of the original large-scale non-separable control problem is obtained. Theoretical base of the algorithm is established. Simulation shows that the algorithm is effective.
基金supported by ZTE Industry-Academia-Research Cooperation Funds
文摘Entity relation is an essential component of some famous knowledge bases,such as Freebase,Yago and Knowledge Graph,while the hyponymy plays an important role in entity relations that show the relationship between the more general terms(hypernyms)and the more specific instances of the terms(hyponyms).In this paper,we present a comprehensive scheme of open-domain Chinese entity hypernym hierarchical construction.Some of the most important unsupervised and heuristic approaches for building hierarchical structure are covered in sufficient detail along with reasonable analyses.We experimentally evaluate the proposed methods and compare them with other baselines.The result shows high precision of our method and the proposed scheme will be further improved with larger scale corpora.
文摘Purpose: When producing mining operations in high-stress rock massive, technogenic seismicity is manifested. Forecasting and prevention of these events is given much attention in all countries with a developed mining industry. From the point of view of the paradigm of physical mesomechanics, which includes a synergetic approach to changing the state of rock massive of different material composition, this problem can be solved with the help of monitoring methods tuned to the study of hierarchical structural media. Changes in the environment, leading to short-term precursors of dynamic phenomena, are explained within the framework of hierarchical heterogeneity and nonlinearity from observations of wave fields and seismic catalog. For that purpose it is needed to develop new algorithms of modeling wave field propagation through the local objects with hierarchical structure. Design/Methodology/Approach: It had been constructed an algorithm for 3D modeling electromagnetic field for arbitrary type of source of excitation in N-layered medium with a hierarchic conductive and magnetic intrusion, located in the layer number J. It had been constructed algorithms for 2D modeling of sound diffraction and linear polarized transversal seismic wave on an anomaly elastic or dense intrusion of hierarchic structure, located in the layer number J of N-layered elastic medium. We used the method of integral and integral-differential equations for a space frequency presentation of wave field distribution. Findings: From the theory it is obvious that for such complicated medium each wave field contains its own information about the inner structure of the hierarchical inclusion. Therefore it is needed to interpret the monitoring data for each wave field apart, and not mixes the data base. Practical Value/Implications: These results will be the base for constructing new systems of monitoring observations of dynamical geological systems. Especially it is needed to prevent rock shocks in deep mines by their exploitation or natural hazards.