期刊导航
期刊开放获取
唐山市科学技术情报研究..
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于HMFDE和t-SNE的旋转机械故障诊断方法
被引量:
2
1
作者
尹久
张杰
《机电工程》
CAS
北大核心
2024年第6期1058-1067,共10页
针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用...
针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用特征加权提出了混合多尺度波动散布熵方法,并将其用于提取旋转机械振动信号的故障特征;随后,采用t-SNE方法对混合故障特征进行了特征降维,挑选出了最能够反映故障特性的特征子集,构建了敏感特征样本;最后,采用郊狼优化算法对极限学习机的输入权重和隐含层阈值进行了优化,完成了旋转机械的故障识别和分类;以齿轮箱和滚动轴承故障数据集为对象,对基于HMFDE、t-SNE和COA-ELM的故障诊断方法进行了实验,验证了方法的有效性。研究结果表明:采用HMFDE-t-SNE-CAO-ELM故障诊断方法可以取得100%的故障识别准确率,该方法能够有效地诊断旋转机械的不同故障类型和损伤;相较于基于单一类型特征的故障诊断方法,其准确率分别可以提高0.68%、22.42%、29.18%(齿轮箱)和1.43%、8.23%、23.67%(滚动轴承),虽然牺牲了一定的计算效率,但准确率得到了明显的提高;相较于其他常规故障分类器,COA-ELM的故障识别准确率具有明显的优势。
展开更多
关键词
旋转机械
故障诊断
齿轮箱
滚动轴承
混合多尺度波动散布熵
t分布-随机邻域嵌入
郊狼优化算法
极限学习机
在线阅读
下载PDF
职称材料
基于HRCMFDE、LS、BA-SVM的行星齿轮箱故障诊断
被引量:
3
2
作者
庄敏
李革
+1 位作者
范智军
孔德成
《机电工程》
CAS
北大核心
2022年第11期1535-1543,共9页
针对行星齿轮箱的特征提取以及故障识别问题,提出了一种基于混合精细复合多尺度波动散布熵(HRCMFDE)特征提取、拉普拉斯分数(LS)特征降维优化和蝙蝠算法优化支持向量机(BA-SVM)故障识别的行星齿轮箱故障诊断方法。首先,提出了一种新的...
针对行星齿轮箱的特征提取以及故障识别问题,提出了一种基于混合精细复合多尺度波动散布熵(HRCMFDE)特征提取、拉普拉斯分数(LS)特征降维优化和蝙蝠算法优化支持向量机(BA-SVM)故障识别的行星齿轮箱故障诊断方法。首先,提出了一种新的时间序列复杂度测量方法—HRCMFDE(其由5种不同粗粒化方式的RCMFDE组成,具备更全面和可靠的特征提取性能),用于从振动信号中挖掘出反映行星齿轮箱状态的故障信息,构成初始的混合故障特征;然后,考虑到由HRCMFDE组成的故障特征具有较高的维数和冗余,利用LS对初始特征进行了优化,生成了低维的敏感特征;最后,利用基于蝙蝠算法优化的支持向量机,对行星齿轮系不同故障特征向量进行了训练和分类,利用真实故障数据集对基于HRCMFDE、LS、BA-SVM的方法进行了验证。研究结果表明:利用行星齿轮箱数据集对该方案进行的有效性实验,能够准确地识别出齿轮箱的不同故障,其单次分类的准确率达到了98.13%,多次分类的平均准确率也优于对比方法;该结果验证了基于混合精细复合多尺度波动散布熵特征提取的有效性,采用该方法能够对行星齿轮箱的故障进行诊断。
展开更多
关键词
特征提取
特征降维优化
故障分类识别
混合精细复合多尺度波动散布熵
拉普拉斯分数
蝙蝠算法优化支持向量机
在线阅读
下载PDF
职称材料
题名
基于HMFDE和t-SNE的旋转机械故障诊断方法
被引量:
2
1
作者
尹久
张杰
机构
湖北轻工职业技术学院机电工程学院
武汉理工大学机电工程学院
出处
《机电工程》
CAS
北大核心
2024年第6期1058-1067,共10页
基金
国家自然科学基金资助项目(51577065)。
文摘
针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用特征加权提出了混合多尺度波动散布熵方法,并将其用于提取旋转机械振动信号的故障特征;随后,采用t-SNE方法对混合故障特征进行了特征降维,挑选出了最能够反映故障特性的特征子集,构建了敏感特征样本;最后,采用郊狼优化算法对极限学习机的输入权重和隐含层阈值进行了优化,完成了旋转机械的故障识别和分类;以齿轮箱和滚动轴承故障数据集为对象,对基于HMFDE、t-SNE和COA-ELM的故障诊断方法进行了实验,验证了方法的有效性。研究结果表明:采用HMFDE-t-SNE-CAO-ELM故障诊断方法可以取得100%的故障识别准确率,该方法能够有效地诊断旋转机械的不同故障类型和损伤;相较于基于单一类型特征的故障诊断方法,其准确率分别可以提高0.68%、22.42%、29.18%(齿轮箱)和1.43%、8.23%、23.67%(滚动轴承),虽然牺牲了一定的计算效率,但准确率得到了明显的提高;相较于其他常规故障分类器,COA-ELM的故障识别准确率具有明显的优势。
关键词
旋转机械
故障诊断
齿轮箱
滚动轴承
混合多尺度波动散布熵
t分布-随机邻域嵌入
郊狼优化算法
极限学习机
Keywords
rotating machinery
fault diagnosis
gear box
rolling bearing
hybrid
multi-scale
fluctuation
dispersion
entropy
(
hmfde
)
t-distributed stochastic neighbor embedding(t-SNE)
coyote optimization algorithm(COA)
extreme learning machine(ELM)
分类号
TH133.3 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
基于HRCMFDE、LS、BA-SVM的行星齿轮箱故障诊断
被引量:
3
2
作者
庄敏
李革
范智军
孔德成
机构
杭州科技职业技术学院智能制造学院
浙江理工大学机械与自动控制学院
河南工业大学机电工程学院
郑州机械研究所有限公司
出处
《机电工程》
CAS
北大核心
2022年第11期1535-1543,共9页
基金
国家自然科学基金资助项目(51775516,51375459)
浙江大学访问学者资助项目(FX2018140)。
文摘
针对行星齿轮箱的特征提取以及故障识别问题,提出了一种基于混合精细复合多尺度波动散布熵(HRCMFDE)特征提取、拉普拉斯分数(LS)特征降维优化和蝙蝠算法优化支持向量机(BA-SVM)故障识别的行星齿轮箱故障诊断方法。首先,提出了一种新的时间序列复杂度测量方法—HRCMFDE(其由5种不同粗粒化方式的RCMFDE组成,具备更全面和可靠的特征提取性能),用于从振动信号中挖掘出反映行星齿轮箱状态的故障信息,构成初始的混合故障特征;然后,考虑到由HRCMFDE组成的故障特征具有较高的维数和冗余,利用LS对初始特征进行了优化,生成了低维的敏感特征;最后,利用基于蝙蝠算法优化的支持向量机,对行星齿轮系不同故障特征向量进行了训练和分类,利用真实故障数据集对基于HRCMFDE、LS、BA-SVM的方法进行了验证。研究结果表明:利用行星齿轮箱数据集对该方案进行的有效性实验,能够准确地识别出齿轮箱的不同故障,其单次分类的准确率达到了98.13%,多次分类的平均准确率也优于对比方法;该结果验证了基于混合精细复合多尺度波动散布熵特征提取的有效性,采用该方法能够对行星齿轮箱的故障进行诊断。
关键词
特征提取
特征降维优化
故障分类识别
混合精细复合多尺度波动散布熵
拉普拉斯分数
蝙蝠算法优化支持向量机
Keywords
feature extraction
feature dimensionality reduction optimization
fault classification and identification
hybrid
refined composite
multi-scale
fluctuation
dispersion
entropy
(HRCMFDE)
Laplacian score(LS)
bat algorithm optimized support vector machine(BA-SVM)
分类号
TH132.425 [机械工程—机械制造及自动化]
TH17 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于HMFDE和t-SNE的旋转机械故障诊断方法
尹久
张杰
《机电工程》
CAS
北大核心
2024
2
在线阅读
下载PDF
职称材料
2
基于HRCMFDE、LS、BA-SVM的行星齿轮箱故障诊断
庄敏
李革
范智军
孔德成
《机电工程》
CAS
北大核心
2022
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部