The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal ...The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.展开更多
The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determinati...The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole.展开更多
Horizontal well drilling and multi-stage hydraulic fracturing are key technologies for the development of shale gas reservoirs.Instantaneous acquisition of hydraulic fracture parameters is crucial for evaluating fract...Horizontal well drilling and multi-stage hydraulic fracturing are key technologies for the development of shale gas reservoirs.Instantaneous acquisition of hydraulic fracture parameters is crucial for evaluating fracturing effectiveness,optimizing processes,and predicting gas productivity.This paper establishes a transient flow model for shale gas wells based on the boundary element method,achieving the characterization of stimulated reservoir volume for a single stage.By integrating pressure monitoring data following the pumping shut-in period of hydraulic fracturing for well testing interpretation,a workflow for inverting fracture parameters of shale gas wells is established.This new method eliminates the need for prolonged production testing and can interpret parameters of individual hydraulic fracture segments,offering significant advantages over the conventional pressure transient analysismethod.The practical application of thismethodology was conducted on 10 shale gaswellswithin the Changning shale gas block of Sichuan,China.The results show a high correlation between the interpreted single-stage total length and surface area of hydraulic fractures and the outcomes of gas production profile tests.Additionally,significant correlations are observed between these parameters and cluster number,horizontal stress difference,and natural fracture density.This demonstrates the effectiveness of the proposed fracture parameter inversion method and the feasibility of field application.The findings of this study aim to provide solutions and references for the inversion of fracture parameters in shale gas wells.展开更多
In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province, China. To solve problems caused by great measuring depth and extra thick overburden soil layers in ...In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province, China. To solve problems caused by great measuring depth and extra thick overburden soil layers in the mine, a series of improved techniques were developed for the traditional hydraulic fracturing technique and equipment to increase their pressure-enduring ability and to ensure safe and flexible removal of the sealing packers with other experimental apparatus. Successful in-situ stress measurement at 37 points within 7 boreholes, which were mostly over 1000 m deep, was completed. Through the measurement, detailed information of in-situ stress state has been provided for mining design of the mine. The improved hydraulic fracturing technique and equipment also provide reliable tools for in-situ stress measurement at great depth of other mines.展开更多
In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy...In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.展开更多
A new method, which is based on formation fracturing test and Kaiser effect method, has been developed for confirming the oilfield in-situ stress in this paper. The new method has been used in a certain oilfield of Ch...A new method, which is based on formation fracturing test and Kaiser effect method, has been developed for confirming the oilfield in-situ stress in this paper. The new method has been used in a certain oilfield of China and the determined oilfield in-situ stresses is more accurate than that based on one single method.展开更多
The fracture initiation behavior for hydraulic fracturing treatments highlighted the necessity of proposing fracture criteria that precisely predict the fracture initiation type and location during the hydraulic fract...The fracture initiation behavior for hydraulic fracturing treatments highlighted the necessity of proposing fracture criteria that precisely predict the fracture initiation type and location during the hydraulic fracturing process.In the present study,a Mohr-Coulomb criterion with a tensile cut-off is incorporated into the finite element code to determine the fracture initiation type and location during the hydraulic fracturing process.This fracture criterion considers the effect of fracture inclination angle,the internal friction angle and the loading conditions on the distribution of stress field around the fracture tip.The results indicate that the internal friction angle resists the shear fracture initiation.Moreover,as the internal friction angle increases,greater external loads are required to maintain the hydraulic fracture extension.Due to the increased pressure of the injected water,the tensile fracture ultimately determines the fracture initiation type.However,the shear fracture preferentially occurs as the stress anisotropy coefficient increases.Both the maximum tensile stress and equivalent maximum shear stress decrease as the stress anisotropy coefficient increases,which indicates that the greater the stress anisotropy coefficient,the higher the external loading required to propagate a new fracture.The numerical results obtained in this paper provide theoretical supports for establishing basis on investigating of the hydraulic fracturing characteristics under different conditions.展开更多
Pre-driven longwall retracement roadway(PLRR)is commonly used in large mine shaft.The support crushing disasters occur frequently during the retracement,and roof management is necessary.Taking the 31107 panel as resea...Pre-driven longwall retracement roadway(PLRR)is commonly used in large mine shaft.The support crushing disasters occur frequently during the retracement,and roof management is necessary.Taking the 31107 panel as research background,the roof breaking structure of PLRR is analyzed.It is concluded that the roof cutting with vertical hydraulic fracture(HF)at a specified position,that is,fixed-length roof cutting,can reduce support load and keep immediate roof intact.The extended finite element method(XFEM)is applied to simulate hydraulic fracturing.The results show that both the axial and transverse hydraulic fracturing cannot effectively create vertical HFs.Therefore,a novel construction method of vertical HF based on the stress shadow effect(SSE)is proposed.The stress reversal region and HF orientation caused by the prefabricated hydraulic fracture(PF)are verified in simulation.The sub-vertical HFs are obtained between two PFs,the vertical extension range of which is much larger than that of directional hydraulic fracturing.The new construction method was used to determine the field plan for fixed-length roof cutting.The roof formed a stable suspended structure and deformation of the main PLRR was improved after hydraulic fracturing.展开更多
Geological characteristics,geomechanical behavior and hydraulic fracture propagation mechanism in the Marcellus shale gas play are analyzed and compared with China’s Fuling shale play.Successful experiences in hydrau...Geological characteristics,geomechanical behavior and hydraulic fracture propagation mechanism in the Marcellus shale gas play are analyzed and compared with China’s Fuling shale play.Successful experiences in hydraulic fracturing and shale gas development in the Marcellus shale gas play are summarized,which might be applicable in other shale plays.The main factors contributing to the successful development of the Marcellus shale gas play include adoption of advanced drilling and completion technologies,increases of hydraulic fracturing stages,proppant concentration and fluid injection volume.The geological and geomechanical mechanisms related to those technologies are analyzed,particularly the in-situ stress impacts on hydraulic fracturing.The minimum horizontal stress controls where the fractures are initiated,and the maximum horizontal stress dominates the direction of the hydraulic fracture propagation.Hydraulic fracturing performed in the shale reservoir normally has no stress barriers in most cases because the shale has a high minimum horizontal stress,inducing hydraulic fractures propagating beyond the reservoir zone,resulting in inefficient stimulation.This is a common problem in shale plays,and its mechanism is studied in the paper.It is also found that the on-azimuth well has a higher productivity than the off-azimuth well,because shear fractures are created in the off-azimuth well,causing main fractures to kink and increasing fracture tortuosity and friction.The Fuling shale gas play has a markedly higher minimum horizontal stress and much smaller horizontal stress difference.The high minimum horizontal stress causes a much higher formation breakdown pressure;therefore,hydraulic fracturing in the Fuling shale gas play needs a higher treatment pressure,which implies higher difficulty in fracture propagation.The small difference in the two horizontal stresses in the Fuling shale gas play generates shorter and more complex hydraulic fractures,because hydraulic fractures in this case are prone to curve to preexisting fractures.To overcome these difficulties,we recommend reducing well spacing and increasing proppant concentration to increase gas productivity for the Fuling shale gas development.展开更多
To predict fracture height in hydraulic fracturing, we developed and solved a hydraulic fracture height mathematical model aiming at high stress and multi-layered complex formations based on studying the effect of pla...To predict fracture height in hydraulic fracturing, we developed and solved a hydraulic fracture height mathematical model aiming at high stress and multi-layered complex formations based on studying the effect of plastic region generated by stress concentration at fracture tip on the growth of fracture height. Moreover, we compared the results from this model with results from two other fracture height prediction models(MFEH, Frac Pro) to verify the accuracy of the model. Sensitivity analysis by case computation of the model shows that the hydraulic fracture growth in ladder pattern, and the larger the fracture height, the more obvious the ladder growth pattern is. Fracture height growth is mainly influenced by the in-situ stresses. Fracture toughness of rock can prohibit the growth of fracture height to some extent. Moreover, the increase of fracturing fluid density can facilitate the propagation of the lower fracture tip.展开更多
Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake ha...Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (-20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.展开更多
To solve the technical cruxes of the conventional system in deep rock mass, an automatic testing system for hydraulic fracturing that includes a single tube for hydraulic loop, a pressure-relief valve, central-tubeles...To solve the technical cruxes of the conventional system in deep rock mass, an automatic testing system for hydraulic fracturing that includes a single tube for hydraulic loop, a pressure-relief valve, central-tubeless packers, and a multichannel real-time data acquisition system was used for in-situ stresses measurement at great depths (over 1000 m) in a coalfield in Juye of Northern China. The values and orientations of horizontal principal stresses were determined by the new system. The virgin stress field and its distributing law were decided by the linear regression from the logged 37 points in seven boreholes. Besides, the typical boreholes arranged in both the adjacent zone and far away zone of the faults were analyzed, respectively. The results show that a stress concentration phenomenon and a deflection in the orientation of the maximal horizontal stress exist in the adjacent zone of the faults, which further provides theoretical basis for design and optimization of mining.展开更多
In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on ...In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on coal reservoir permeability and production capacity are significant for CBM development.This study investigated the CBM development zone in the Zhengzhuang area of the Qinshui Basin.According to the low mechanical strength of coal reservoirs,this study derived a calculation model of the in-situ stress of coal reservoirs based on the multi-loop hydraulic fracturing method and analyzed the impacts of initial fractures on the calculated results.Moreover,by combining the data such as the in-situ stress,permeability,and drainage and recovery data of CBM wells,this study revealed the spatial distribution patterns of the current in-situ stress of the coal reservoirs and discussed the impacts of the insitu stress on the permeability and production capacity.The results are as follows.(1)Under given fracturing pressure,longer initial fractures are associated with higher calculated maximum horizontal principal stress values.Therefore,ignoring the effects of the initial fractures will cause the calculated values of the in-situ stress to be less than the actual values.(2)As the burial depth increases,the fracturing pressure,closure pressure,and the maximum and minimum horizontal principal stress of the coal reservoirs in the Zhengzhuang area constantly increase.The average gradients of the maximum and minimum horizontal principal stress are 3.17 MPa/100 m and 2.05 MPa/100 m,respectively.(3)Coal reservoir permeability is significantly controlled by the magnitude and state of the current in-situ stress.The coal reservoir permeability decreases exponentially with an increase in the effective principal stress.Moreover,a low lateral pressure coefficient(less than 1)is associated with minor horizontal compressive effects and high coal reservoir permeability.(4)Under similar conditions,such as resource endowments,CBM well capacity is higher in primary structural coal regions with moderate paleotectonic stress modification,low current in-situ stress,and lateral pressure coefficient of less than 1.展开更多
基金National Natural Science Foundation of China (51974176, 52174194, 51934004)Shandong Provincial Colleges and Universities Youth Innovation and Technology Support Program (2019KJH006)+1 种基金Taishan Scholars Project (TS20190935)Shandong outstanding youth fund (ZR2020JQ22).
文摘The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.
基金supported by the National Natural Science Foundation of China(Grant No.42174118)a research grant(Grant No.ZDJ 2020-7)from the National Institute of Natural Hazards,Ministry of Emergency Management of China.
文摘The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole.
基金funded by the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance,grant numbers“2020CX020202,2020CX030202 and 2020CX010403”.
文摘Horizontal well drilling and multi-stage hydraulic fracturing are key technologies for the development of shale gas reservoirs.Instantaneous acquisition of hydraulic fracture parameters is crucial for evaluating fracturing effectiveness,optimizing processes,and predicting gas productivity.This paper establishes a transient flow model for shale gas wells based on the boundary element method,achieving the characterization of stimulated reservoir volume for a single stage.By integrating pressure monitoring data following the pumping shut-in period of hydraulic fracturing for well testing interpretation,a workflow for inverting fracture parameters of shale gas wells is established.This new method eliminates the need for prolonged production testing and can interpret parameters of individual hydraulic fracture segments,offering significant advantages over the conventional pressure transient analysismethod.The practical application of thismethodology was conducted on 10 shale gaswellswithin the Changning shale gas block of Sichuan,China.The results show a high correlation between the interpreted single-stage total length and surface area of hydraulic fractures and the outcomes of gas production profile tests.Additionally,significant correlations are observed between these parameters and cluster number,horizontal stress difference,and natural fracture density.This demonstrates the effectiveness of the proposed fracture parameter inversion method and the feasibility of field application.The findings of this study aim to provide solutions and references for the inversion of fracture parameters in shale gas wells.
基金supported by the National Natural Science Foundation of China (No. 50490271)
文摘In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province, China. To solve problems caused by great measuring depth and extra thick overburden soil layers in the mine, a series of improved techniques were developed for the traditional hydraulic fracturing technique and equipment to increase their pressure-enduring ability and to ensure safe and flexible removal of the sealing packers with other experimental apparatus. Successful in-situ stress measurement at 37 points within 7 boreholes, which were mostly over 1000 m deep, was completed. Through the measurement, detailed information of in-situ stress state has been provided for mining design of the mine. The improved hydraulic fracturing technique and equipment also provide reliable tools for in-situ stress measurement at great depth of other mines.
文摘In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.
文摘A new method, which is based on formation fracturing test and Kaiser effect method, has been developed for confirming the oilfield in-situ stress in this paper. The new method has been used in a certain oilfield of China and the determined oilfield in-situ stresses is more accurate than that based on one single method.
基金Project(2017YFC1503102)supported by the National Key Research and Development ProgramProjects(51874065,U1903112)supported by the National Natural Science Foundation of China。
文摘The fracture initiation behavior for hydraulic fracturing treatments highlighted the necessity of proposing fracture criteria that precisely predict the fracture initiation type and location during the hydraulic fracturing process.In the present study,a Mohr-Coulomb criterion with a tensile cut-off is incorporated into the finite element code to determine the fracture initiation type and location during the hydraulic fracturing process.This fracture criterion considers the effect of fracture inclination angle,the internal friction angle and the loading conditions on the distribution of stress field around the fracture tip.The results indicate that the internal friction angle resists the shear fracture initiation.Moreover,as the internal friction angle increases,greater external loads are required to maintain the hydraulic fracture extension.Due to the increased pressure of the injected water,the tensile fracture ultimately determines the fracture initiation type.However,the shear fracture preferentially occurs as the stress anisotropy coefficient increases.Both the maximum tensile stress and equivalent maximum shear stress decrease as the stress anisotropy coefficient increases,which indicates that the greater the stress anisotropy coefficient,the higher the external loading required to propagate a new fracture.The numerical results obtained in this paper provide theoretical supports for establishing basis on investigating of the hydraulic fracturing characteristics under different conditions.
基金financially supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_2358)the National Key Research and Development Program of China(2020YFB1314204)National Natural Science Foundation of China(No.52074239)。
文摘Pre-driven longwall retracement roadway(PLRR)is commonly used in large mine shaft.The support crushing disasters occur frequently during the retracement,and roof management is necessary.Taking the 31107 panel as research background,the roof breaking structure of PLRR is analyzed.It is concluded that the roof cutting with vertical hydraulic fracture(HF)at a specified position,that is,fixed-length roof cutting,can reduce support load and keep immediate roof intact.The extended finite element method(XFEM)is applied to simulate hydraulic fracturing.The results show that both the axial and transverse hydraulic fracturing cannot effectively create vertical HFs.Therefore,a novel construction method of vertical HF based on the stress shadow effect(SSE)is proposed.The stress reversal region and HF orientation caused by the prefabricated hydraulic fracture(PF)are verified in simulation.The sub-vertical HFs are obtained between two PFs,the vertical extension range of which is much larger than that of directional hydraulic fracturing.The new construction method was used to determine the field plan for fixed-length roof cutting.The roof formed a stable suspended structure and deformation of the main PLRR was improved after hydraulic fracturing.
文摘Geological characteristics,geomechanical behavior and hydraulic fracture propagation mechanism in the Marcellus shale gas play are analyzed and compared with China’s Fuling shale play.Successful experiences in hydraulic fracturing and shale gas development in the Marcellus shale gas play are summarized,which might be applicable in other shale plays.The main factors contributing to the successful development of the Marcellus shale gas play include adoption of advanced drilling and completion technologies,increases of hydraulic fracturing stages,proppant concentration and fluid injection volume.The geological and geomechanical mechanisms related to those technologies are analyzed,particularly the in-situ stress impacts on hydraulic fracturing.The minimum horizontal stress controls where the fractures are initiated,and the maximum horizontal stress dominates the direction of the hydraulic fracture propagation.Hydraulic fracturing performed in the shale reservoir normally has no stress barriers in most cases because the shale has a high minimum horizontal stress,inducing hydraulic fractures propagating beyond the reservoir zone,resulting in inefficient stimulation.This is a common problem in shale plays,and its mechanism is studied in the paper.It is also found that the on-azimuth well has a higher productivity than the off-azimuth well,because shear fractures are created in the off-azimuth well,causing main fractures to kink and increasing fracture tortuosity and friction.The Fuling shale gas play has a markedly higher minimum horizontal stress and much smaller horizontal stress difference.The high minimum horizontal stress causes a much higher formation breakdown pressure;therefore,hydraulic fracturing in the Fuling shale gas play needs a higher treatment pressure,which implies higher difficulty in fracture propagation.The small difference in the two horizontal stresses in the Fuling shale gas play generates shorter and more complex hydraulic fractures,because hydraulic fractures in this case are prone to curve to preexisting fractures.To overcome these difficulties,we recommend reducing well spacing and increasing proppant concentration to increase gas productivity for the Fuling shale gas development.
基金Supported by the Natural Science Foundation of Heilongjiang Province of China(YQ2019E007).
文摘To predict fracture height in hydraulic fracturing, we developed and solved a hydraulic fracture height mathematical model aiming at high stress and multi-layered complex formations based on studying the effect of plastic region generated by stress concentration at fracture tip on the growth of fracture height. Moreover, we compared the results from this model with results from two other fracture height prediction models(MFEH, Frac Pro) to verify the accuracy of the model. Sensitivity analysis by case computation of the model shows that the hydraulic fracture growth in ladder pattern, and the larger the fracture height, the more obvious the ladder growth pattern is. Fracture height growth is mainly influenced by the in-situ stresses. Fracture toughness of rock can prohibit the growth of fracture height to some extent. Moreover, the increase of fracturing fluid density can facilitate the propagation of the lower fracture tip.
基金the auspice of National Key Basic Project(973)(granted No.2008CB425702)National Science and Technology Project(granted No.SinoProbe-06)
文摘Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (-20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50490271)
文摘To solve the technical cruxes of the conventional system in deep rock mass, an automatic testing system for hydraulic fracturing that includes a single tube for hydraulic loop, a pressure-relief valve, central-tubeless packers, and a multichannel real-time data acquisition system was used for in-situ stresses measurement at great depths (over 1000 m) in a coalfield in Juye of Northern China. The values and orientations of horizontal principal stresses were determined by the new system. The virgin stress field and its distributing law were decided by the linear regression from the logged 37 points in seven boreholes. Besides, the typical boreholes arranged in both the adjacent zone and far away zone of the faults were analyzed, respectively. The results show that a stress concentration phenomenon and a deflection in the orientation of the maximal horizontal stress exist in the adjacent zone of the faults, which further provides theoretical basis for design and optimization of mining.
基金sponsored by the National Natural Science Foundation of China(42002181)projecta public bidding project of 2020 Shanxi Provincial Science and Technology Program(20201101002-03).
文摘In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on coal reservoir permeability and production capacity are significant for CBM development.This study investigated the CBM development zone in the Zhengzhuang area of the Qinshui Basin.According to the low mechanical strength of coal reservoirs,this study derived a calculation model of the in-situ stress of coal reservoirs based on the multi-loop hydraulic fracturing method and analyzed the impacts of initial fractures on the calculated results.Moreover,by combining the data such as the in-situ stress,permeability,and drainage and recovery data of CBM wells,this study revealed the spatial distribution patterns of the current in-situ stress of the coal reservoirs and discussed the impacts of the insitu stress on the permeability and production capacity.The results are as follows.(1)Under given fracturing pressure,longer initial fractures are associated with higher calculated maximum horizontal principal stress values.Therefore,ignoring the effects of the initial fractures will cause the calculated values of the in-situ stress to be less than the actual values.(2)As the burial depth increases,the fracturing pressure,closure pressure,and the maximum and minimum horizontal principal stress of the coal reservoirs in the Zhengzhuang area constantly increase.The average gradients of the maximum and minimum horizontal principal stress are 3.17 MPa/100 m and 2.05 MPa/100 m,respectively.(3)Coal reservoir permeability is significantly controlled by the magnitude and state of the current in-situ stress.The coal reservoir permeability decreases exponentially with an increase in the effective principal stress.Moreover,a low lateral pressure coefficient(less than 1)is associated with minor horizontal compressive effects and high coal reservoir permeability.(4)Under similar conditions,such as resource endowments,CBM well capacity is higher in primary structural coal regions with moderate paleotectonic stress modification,low current in-situ stress,and lateral pressure coefficient of less than 1.