In the realm of nonlinear physics, it is crucial to establish precise traveling wave solutions and solitary wave solutions for a variety of nonlinear models, as this aids our exploration of these fields. In this paper...In the realm of nonlinear physics, it is crucial to establish precise traveling wave solutions and solitary wave solutions for a variety of nonlinear models, as this aids our exploration of these fields. In this paper, we propose a new method to construct precise solitary wave solutions if nonlinear equation with complex structure. As an application, we employ this method to solve the Burgers-Fisher equation, yielding a multitude of new solitary wave solutions. This approach demonstrates a broader applicability in addressing nonlinear evolution equations (NLEEs).展开更多
In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with thr...In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with threearbitrary functions are obtained including hyperbolic function solutions,trigonometric function solutions,and rationalsolutions.This method can be applied to other higher-dimensional nonlinear partial differential equations.展开更多
In this paper, the Toda equation and the discrete nonlinear Schrdinger equation with a saturable nonlinearity via the discrete " (G′/G")-expansion method are researched. As a result, with the aid of the symbolic ...In this paper, the Toda equation and the discrete nonlinear Schrdinger equation with a saturable nonlinearity via the discrete " (G′/G")-expansion method are researched. As a result, with the aid of the symbolic computation, new hyperbolic function solution and trigonometric function solution with parameters of the Toda equation are obtained. At the same time, new envelop hyperbolic function solution and envelop trigonometric function solution with parameters of the discrete nonlinear Schro¨dinger equation with a saturable nonlinearity are obtained. This method can be applied to other nonlinear differential-difference equations in mathematical physics.展开更多
文摘In the realm of nonlinear physics, it is crucial to establish precise traveling wave solutions and solitary wave solutions for a variety of nonlinear models, as this aids our exploration of these fields. In this paper, we propose a new method to construct precise solitary wave solutions if nonlinear equation with complex structure. As an application, we employ this method to solve the Burgers-Fisher equation, yielding a multitude of new solitary wave solutions. This approach demonstrates a broader applicability in addressing nonlinear evolution equations (NLEEs).
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101Key Disciplines of Shanghai Municipality under Grant No.S30104
文摘In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with threearbitrary functions are obtained including hyperbolic function solutions,trigonometric function solutions,and rationalsolutions.This method can be applied to other higher-dimensional nonlinear partial differential equations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61072147,11071159)the Natural Science Foundation of Shanghai Municipality (Grant No.09ZR1410800)+1 种基金the Science Foundation of Key Laboratory of Mathematics Mechanization (Grant No.KLMM0806)the Shanghai Leading Academic Discipline Project (Grant Nos.J50101, S30104)
文摘In this paper, the Toda equation and the discrete nonlinear Schrdinger equation with a saturable nonlinearity via the discrete " (G′/G")-expansion method are researched. As a result, with the aid of the symbolic computation, new hyperbolic function solution and trigonometric function solution with parameters of the Toda equation are obtained. At the same time, new envelop hyperbolic function solution and envelop trigonometric function solution with parameters of the discrete nonlinear Schro¨dinger equation with a saturable nonlinearity are obtained. This method can be applied to other nonlinear differential-difference equations in mathematical physics.