A new system of generalized mixed implicit equilibrium problems is introduced and studied in Banach spaces. First, the notion of the Yosida proximal mapping for generalized mixed implicit equilibrium problems is intro...A new system of generalized mixed implicit equilibrium problems is introduced and studied in Banach spaces. First, the notion of the Yosida proximal mapping for generalized mixed implicit equilibrium problems is introduced. By using the notion, a system of generalized equation problems is considered, and its equivalence with the system of generalized mixed implicit equilibrium problems is also proved. Next, by applying the system of generalized equation problems, we suggest and analyze an iterative algorithm to compute the approximate solutions of the system of generalized mixed implicit equilibrium problems. The strong convergence of the iterative sequences generated by the algorithm is proved under quite mild conditions. The results are new and unify and generalize some recent results in this field.展开更多
A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems...A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems and generalized mixed implicit quasi-variational inequality problems as many special cases. By employing the auxiliary principle technique, some predictor-corrector iterative algorithms for solving the GMIQEP are suggested and analyzed. The convergence of the suggested algorithm only requires the continuity and the partially relaxed implicit strong monotonicity of the mappings展开更多
A class of strongly nonlinear implicit complementarity problems for set-valued mappings in Hilbert spaces is studied,Thereupon a new existence theorem is established and proved to be a solution to that kind of problems.
The multivalued general mixed implicit equilibrium-like problems are introduced and studied. To solve these problems, a new predictor-corrector iterative algorithm is proposed and analyzed using the auxiliary principl...The multivalued general mixed implicit equilibrium-like problems are introduced and studied. To solve these problems, a new predictor-corrector iterative algorithm is proposed and analyzed using the auxiliary principle technique. The convergence of the suggested algorithm is also proved in weaker conditions.展开更多
This paper presents a new simple method of implicit time integration with two control parameters for solving initial-value problems of dynamics such that its accuracy is at least of order two along with the conditiona...This paper presents a new simple method of implicit time integration with two control parameters for solving initial-value problems of dynamics such that its accuracy is at least of order two along with the conditional and unconditional stability regions of the parameters. When the control parameters in the method are optimally taken in their regions, the accuracy may be improved to reach of order three. It is found that the new scheme can achieve lower numerical amplitude dissipation and period dispersion than some of the existing methods, e.g. the Newmark method and Zhai's approach, when the same time step size is used. The region of time step dependent on the parameters in the new scheme is explicitly obtained. Finally, some examples of dynamic problems are given to show the accuracy and efficiency of the proposed scheme applied in dynamic systems.展开更多
In this paper,we prove existence results of soutions for the nonlinear implicit complementarity problems NICP(T,S,K) where K is a closed weakly locally compact convex cone in a reflexive Banach space E,T is a nonlinea...In this paper,we prove existence results of soutions for the nonlinear implicit complementarity problems NICP(T,S,K) where K is a closed weakly locally compact convex cone in a reflexive Banach space E,T is a nonlinear operator from K into E* (i. e.,the dual space of E) and S is a nonlinear operator from K into E. Our results are the essential improvements and extension of the results obtained previously by several authors including Thera,Ding,and Zeng.展开更多
In the paper, we extend the implicit iterative method for linear ill-posed operator equations to solve nonlinear ill-posed problems. We show that under some conditions the error sequence of solutions of the nonlinear ...In the paper, we extend the implicit iterative method for linear ill-posed operator equations to solve nonlinear ill-posed problems. We show that under some conditions the error sequence of solutions of the nonlinear implicit iterative method is monotonically decreasing and, with this monotonicity, prove convergence of the new method for both the exact and perturbed equations.展开更多
In this paper, a class of smoothing modulus-based iterative method was presented for solving implicit complementarity problems. The main idea was to transform the implicit complementarity problem into an equivalent im...In this paper, a class of smoothing modulus-based iterative method was presented for solving implicit complementarity problems. The main idea was to transform the implicit complementarity problem into an equivalent implicit fixed-point equation, then introduces a smoothing function to obtain its approximation solutions. The convergence analysis of the algorithm was given, and the efficiency of the algorithms was verified by numerical experiments.展开更多
Abstract In this paper the implicit obstacle problem of fully nonlinear second order elliptic equations associated with impulsive control problem are investigated.The comparion principle for viscosity solutions is pro...Abstract In this paper the implicit obstacle problem of fully nonlinear second order elliptic equations associated with impulsive control problem are investigated.The comparion principle for viscosity solutions is proved,the existence and uniqueness results are disscussed.展开更多
This paper considers multi-dimensional Riemann problem in another kind of view. The author gets solution of (1.1)(1.2) in Theorem 3.4 and proves itu uniqueness. A new method of solution constructing is applied, which ...This paper considers multi-dimensional Riemann problem in another kind of view. The author gets solution of (1.1)(1.2) in Theorem 3.4 and proves itu uniqueness. A new method of solution constructing is applied, which is different from the usual self-similar transformation. The author also discusses some generalized concepts in multi-dimensional situation (such as 'convex condition', 'left value' and 'right value', etc). An example is finally given to demonstrate that rarefaction wave solution of (1.1)(1.2) is not self-similar.展开更多
In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit n...In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit numerical method is employed to solve the direct problem.For the inverse problem,we first obtain the fractional sensitivity equation by means of the digamma function,and then we propose an efficient numerical method,that is,the Levenberg-Marquardt algorithm based on a fractional derivative,to estimate the unknown order of a Riemann-Liouville fractional derivative.In order to demonstrate the effectiveness of the proposed numerical method,two cases in which the measurement values contain random measurement error or not are considered.The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a RiemannLiouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.展开更多
A new system of generalized mixed implicit equilibrium problems (SGMIEP) involving nonmonotone set-valued mappings is introduced and studied in real reflexive Banach spaces. First, an auxiliary mixed equilibrium pro...A new system of generalized mixed implicit equilibrium problems (SGMIEP) involving nonmonotone set-valued mappings is introduced and studied in real reflexive Banach spaces. First, an auxiliary mixed equilibrium problem (AMEP) is introduced. The existence and the uniqueness of the solutions to the AMEP are proved under quite mild assumptions without any coercive conditions. Next, by using the solution mapping of the AMEP, a system of generalized equation problems (SGEP) is considered, and its equivalence with the SGMIEP is shown. By using the SGEP, a new iterative algorithm for solving the SGMIEP is proposed and analyzed. The strong convergence of the iterative sequences generated by the algorithm is proved under suitable conditions. These results are new, which unify and generalize some recent results in this field.展开更多
We applied the projection and contraction method to nonlinear complementarity problem (NCP). Moveover, we proposed an inexact implicit method for (NCP) and proved the convergence.
This paper proposes a modified iterative algorithm using a viscosity approximation method with a weak contraction.The purpose is to find a common element of the set of common fixed points of an infinite family of none...This paper proposes a modified iterative algorithm using a viscosity approximation method with a weak contraction.The purpose is to find a common element of the set of common fixed points of an infinite family of nonexpansive mappings and the set of a finite family of equilibrium problems that is also a solution to a variational inequality.Under suitable conditions,some strong convergence theorems are established in the framework of Hilbert spaces.The results presented in the paper improve and extend the corresponding results of Colao et al.(Colao,V.,Acedo,G.L.,and Marino,G.An implicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings.Nonlinear Anal.71,2708–2715(2009)),Plubtieng and Punpaeng(Plubtieng,S.and Punpaeng,R.A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces.J.Math.Anal.Appl.336,455–469(2007)),Colao et al.(Colao,V.,Marino,G.,and Xu,H.K.An iterative method for finding common solutions of equilibrium problem and fixed point problems.J.Math.Anal.Appl.344,340–352(2008)),Yao et al.(Yao,Y.,Liou,Y.C.,and Yao,J.C.Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings.Fixed Point Theory Application 2007,Article ID 64363(2007)DOI 10.1155/2007/64363),and others.展开更多
The high-order implicit finite difference schemes for solving the fractional- order Stokes' first problem for a heated generalized second grade fluid with the Dirichlet boundary condition and the initial condition ar...The high-order implicit finite difference schemes for solving the fractional- order Stokes' first problem for a heated generalized second grade fluid with the Dirichlet boundary condition and the initial condition are given. The stability, solvability, and convergence of the numerical scheme are discussed via the Fourier analysis and the matrix analysis methods. An improved implicit scheme is also obtained. Finally, two numerical examples are given to demonstrate the effectiveness of the mentioned schemes展开更多
This paper focuses on derivation of a uniform order 8 implicit block method for the direct solution of general second order differential equations through continuous coefficients of Linear Multi-step Method (LMM). The...This paper focuses on derivation of a uniform order 8 implicit block method for the direct solution of general second order differential equations through continuous coefficients of Linear Multi-step Method (LMM). The continuous formulation and its first derivatives were evaluated at some selected grid and off grid points to obtain our proposed method. The superiority of the method over the existing methods is established numerically.展开更多
This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several mo...This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several modifications are presented.Numerical examples show the modified algorithms always work and can greatly reduce the computational costs.展开更多
An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. ...An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.展开更多
基金Project supported by the Scientific Research Fund of Sichuan Normal University(No.09ZDL04)the Sichuan Province Leading Academic Discipline Project(No.SZD0406)
文摘A new system of generalized mixed implicit equilibrium problems is introduced and studied in Banach spaces. First, the notion of the Yosida proximal mapping for generalized mixed implicit equilibrium problems is introduced. By using the notion, a system of generalized equation problems is considered, and its equivalence with the system of generalized mixed implicit equilibrium problems is also proved. Next, by applying the system of generalized equation problems, we suggest and analyze an iterative algorithm to compute the approximate solutions of the system of generalized mixed implicit equilibrium problems. The strong convergence of the iterative sequences generated by the algorithm is proved under quite mild conditions. The results are new and unify and generalize some recent results in this field.
基金Project supported by the Natural Science Foundation of Sichuan Educational Commission (No.2003A081)
文摘A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems and generalized mixed implicit quasi-variational inequality problems as many special cases. By employing the auxiliary principle technique, some predictor-corrector iterative algorithms for solving the GMIQEP are suggested and analyzed. The convergence of the suggested algorithm only requires the continuity and the partially relaxed implicit strong monotonicity of the mappings
文摘A class of strongly nonlinear implicit complementarity problems for set-valued mappings in Hilbert spaces is studied,Thereupon a new existence theorem is established and proved to be a solution to that kind of problems.
基金Project supported by the National Natural Science Foundation of China(No.10771173)
文摘The multivalued general mixed implicit equilibrium-like problems are introduced and studied. To solve these problems, a new predictor-corrector iterative algorithm is proposed and analyzed using the auxiliary principle technique. The convergence of the suggested algorithm is also proved in weaker conditions.
基金The project supported by the National Key Basic Research and Development Foundation of the Ministry of Science and Technology of China (G2000048702, 2003CB716707)the National Science Fund for Distinguished Young Scholars (10025208)+1 种基金 the National Natural Science Foundation of China (Key Program) (10532040) the Research Fund for 0versea Chinese (10228028).
文摘This paper presents a new simple method of implicit time integration with two control parameters for solving initial-value problems of dynamics such that its accuracy is at least of order two along with the conditional and unconditional stability regions of the parameters. When the control parameters in the method are optimally taken in their regions, the accuracy may be improved to reach of order three. It is found that the new scheme can achieve lower numerical amplitude dissipation and period dispersion than some of the existing methods, e.g. the Newmark method and Zhai's approach, when the same time step size is used. The region of time step dependent on the parameters in the new scheme is explicitly obtained. Finally, some examples of dynamic problems are given to show the accuracy and efficiency of the proposed scheme applied in dynamic systems.
文摘In this paper,we prove existence results of soutions for the nonlinear implicit complementarity problems NICP(T,S,K) where K is a closed weakly locally compact convex cone in a reflexive Banach space E,T is a nonlinear operator from K into E* (i. e.,the dual space of E) and S is a nonlinear operator from K into E. Our results are the essential improvements and extension of the results obtained previously by several authors including Thera,Ding,and Zeng.
基金supported by the Key Disciplines of Shanghai Municipality (Operations Research & Cybernetics, No. S30104)the Shanghai Leading Academic Discipline Project (No. J50101)
文摘In the paper, we extend the implicit iterative method for linear ill-posed operator equations to solve nonlinear ill-posed problems. We show that under some conditions the error sequence of solutions of the nonlinear implicit iterative method is monotonically decreasing and, with this monotonicity, prove convergence of the new method for both the exact and perturbed equations.
文摘In this paper, a class of smoothing modulus-based iterative method was presented for solving implicit complementarity problems. The main idea was to transform the implicit complementarity problem into an equivalent implicit fixed-point equation, then introduces a smoothing function to obtain its approximation solutions. The convergence analysis of the algorithm was given, and the efficiency of the algorithms was verified by numerical experiments.
文摘Abstract In this paper the implicit obstacle problem of fully nonlinear second order elliptic equations associated with impulsive control problem are investigated.The comparion principle for viscosity solutions is proved,the existence and uniqueness results are disscussed.
基金National Tian-Yuan Mathematics Foundation of China!Grant No: 1937015
文摘This paper considers multi-dimensional Riemann problem in another kind of view. The author gets solution of (1.1)(1.2) in Theorem 3.4 and proves itu uniqueness. A new method of solution constructing is applied, which is different from the usual self-similar transformation. The author also discusses some generalized concepts in multi-dimensional situation (such as 'convex condition', 'left value' and 'right value', etc). An example is finally given to demonstrate that rarefaction wave solution of (1.1)(1.2) is not self-similar.
基金supported by the National Natural Science Foundation of China(Grants 11472161,11102102,and 91130017)the Independent Innovation Foundation of Shandong University(Grant 2013ZRYQ002)the Natural Science Foundation of Shandong Province(Grant ZR2014AQ015)
文摘In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit numerical method is employed to solve the direct problem.For the inverse problem,we first obtain the fractional sensitivity equation by means of the digamma function,and then we propose an efficient numerical method,that is,the Levenberg-Marquardt algorithm based on a fractional derivative,to estimate the unknown order of a Riemann-Liouville fractional derivative.In order to demonstrate the effectiveness of the proposed numerical method,two cases in which the measurement values contain random measurement error or not are considered.The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a RiemannLiouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.
基金Project supported by the Sichuan Province Leading Academic Discipline Project(No.SZD0406)the Scientific Research Fund of Sichuan Normal University(No.11ZDL01)
文摘A new system of generalized mixed implicit equilibrium problems (SGMIEP) involving nonmonotone set-valued mappings is introduced and studied in real reflexive Banach spaces. First, an auxiliary mixed equilibrium problem (AMEP) is introduced. The existence and the uniqueness of the solutions to the AMEP are proved under quite mild assumptions without any coercive conditions. Next, by using the solution mapping of the AMEP, a system of generalized equation problems (SGEP) is considered, and its equivalence with the SGMIEP is shown. By using the SGEP, a new iterative algorithm for solving the SGMIEP is proposed and analyzed. The strong convergence of the iterative sequences generated by the algorithm is proved under suitable conditions. These results are new, which unify and generalize some recent results in this field.
基金Supported by the National Natural Science Foundation of China (No. 202001036)
文摘We applied the projection and contraction method to nonlinear complementarity problem (NCP). Moveover, we proposed an inexact implicit method for (NCP) and proved the convergence.
基金supported by the Natural Science Foundation of Yibin University(No.2009Z3)
文摘This paper proposes a modified iterative algorithm using a viscosity approximation method with a weak contraction.The purpose is to find a common element of the set of common fixed points of an infinite family of nonexpansive mappings and the set of a finite family of equilibrium problems that is also a solution to a variational inequality.Under suitable conditions,some strong convergence theorems are established in the framework of Hilbert spaces.The results presented in the paper improve and extend the corresponding results of Colao et al.(Colao,V.,Acedo,G.L.,and Marino,G.An implicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings.Nonlinear Anal.71,2708–2715(2009)),Plubtieng and Punpaeng(Plubtieng,S.and Punpaeng,R.A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces.J.Math.Anal.Appl.336,455–469(2007)),Colao et al.(Colao,V.,Marino,G.,and Xu,H.K.An iterative method for finding common solutions of equilibrium problem and fixed point problems.J.Math.Anal.Appl.344,340–352(2008)),Yao et al.(Yao,Y.,Liou,Y.C.,and Yao,J.C.Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings.Fixed Point Theory Application 2007,Article ID 64363(2007)DOI 10.1155/2007/64363),and others.
基金supported by the National Natural Science Foundation of China (No. 10971175)the Scientific Research Fund of Hunan Provincial Education Department (No. 09A093)
文摘The high-order implicit finite difference schemes for solving the fractional- order Stokes' first problem for a heated generalized second grade fluid with the Dirichlet boundary condition and the initial condition are given. The stability, solvability, and convergence of the numerical scheme are discussed via the Fourier analysis and the matrix analysis methods. An improved implicit scheme is also obtained. Finally, two numerical examples are given to demonstrate the effectiveness of the mentioned schemes
文摘This paper focuses on derivation of a uniform order 8 implicit block method for the direct solution of general second order differential equations through continuous coefficients of Linear Multi-step Method (LMM). The continuous formulation and its first derivatives were evaluated at some selected grid and off grid points to obtain our proposed method. The superiority of the method over the existing methods is established numerically.
基金Project supported by the Key Disciplines of Shanghai Municipality (Grant No.S30104)the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several modifications are presented.Numerical examples show the modified algorithms always work and can greatly reduce the computational costs.
文摘An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.