期刊文献+
共找到666篇文章
< 1 2 34 >
每页显示 20 50 100
Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm
1
作者 Xiaoge Wei Yuming Zhang +2 位作者 Huaitao Song Hengjie Qin Guanjun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1295-1316,共22页
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi... Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential. 展开更多
关键词 Sparrow search algorithm optimization and improvement function test set evacuation path planning
在线阅读 下载PDF
Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm
2
作者 Zhuo Chen Ningning Wang +1 位作者 Wenbo Jin Dui Li 《Energy Engineering》 EI 2024年第4期1007-1026,共20页
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi... A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy. 展开更多
关键词 Waxy crude oil wax deposition rate chaotic map improved reptile search algorithm Elman neural network prediction accuracy
在线阅读 下载PDF
Estimation of state of health based on charging characteristics and back-propagation neural networks with improved atom search optimization algorithm 被引量:3
3
作者 Yu Zhang Yuhang Zhang Tiezhou Wu 《Global Energy Interconnection》 EI CAS CSCD 2023年第2期228-237,共10页
With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an import... With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an important role in maintaining a safe and stable operation of lithium-ion batteries. To address the problems of uncertain battery discharge conditions and low SOH estimation accuracy in practical applications, this paper proposes a SOH estimation method based on constant-current battery charging section characteristics with a back-propagation neural network with an improved atom search optimization algorithm. A temperature characteristic, equal-time temperature variation(Dt_DT), is proposed by analyzing the temperature data of the battery charging section with the incremental capacity(IC) characteristics obtained from an IC analysis as an input to the data-driven prediction model. Testing and analysis of the proposed prediction model are carried out using publicly available datasets. Experimental results show that the maximum error of SOH estimation results for the proposed method in this paper is below 1.5%. 展开更多
关键词 State of health Lithium-ion battery Dt_DT improved atom search optimization algorithm
在线阅读 下载PDF
Classification for Glass Bottles Based on Improved Selective Search Algorithm
4
作者 Shuqiang Guo Baohai Yue +2 位作者 Manyang Gao Xinxin Zhou Bo Wang 《Computers, Materials & Continua》 SCIE EI 2020年第7期233-251,共19页
The recycling of glass bottles can reduce the consumption of resources and contribute to environmental protection.At present,the classification of recycled glass bottles is difficult due to the many differences in spe... The recycling of glass bottles can reduce the consumption of resources and contribute to environmental protection.At present,the classification of recycled glass bottles is difficult due to the many differences in specifications and models.This paper proposes a classification algorithm for glass bottles that is divided into two stages,namely the extraction of candidate regions and the classification of classifiers.In the candidate region extraction stage,aiming at the problem of the large time overhead caused by the use of the SIFT(scale-invariant feature transform)descriptor in SS(selective search),an improved feature of HLSN(Haar-like based on SPP-Net)is proposed.An integral graph is introduced to accelerate the process of forming an HBSN vector,which overcomes the problem of repeated texture feature calculation in overlapping regions by SS.In the classification stage,the improved SS algorithm is used to extract target regions.The target regions are merged using a non-maximum suppression algorithm according to the classification scores of the respective regions,and the merged regions are classified using the trained classifier.Experiments demonstrate that,compared with the original SS,the improved SS algorithm increases the calculation speed by 13.8%,and its classification accuracy is 89.4%.Additionally,the classification algorithm for glass bottles has a certain resistance to noise. 展开更多
关键词 Classification of glass bottle HBSN feature improved selective search algorithm LightGBM
在线阅读 下载PDF
Improved hyper-spherical search algorithm for voltage total harmonic distortion minimization in 27-level inverter
5
作者 A A KHODADOOST ARANI H KARAMI +1 位作者 B VAHIDI G B GHAREHPETIAN 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2822-2832,共11页
Multi-level inverters(MLIs)have become popular in different applications such as industrial power control systems and distributed generations.There are different forms of MLIs.The cascaded MLIs(CMLIs)have some special... Multi-level inverters(MLIs)have become popular in different applications such as industrial power control systems and distributed generations.There are different forms of MLIs.The cascaded MLIs(CMLIs)have some special advantages among them such as more different output voltage levels using the same number of components and higher power quality.In this paper,a 27-level inverter switching algorithm considering total harmonic distortion(THD)minimization is investigated.Switching angles of the inverter switches are achieved by minimizing a THD-based objective function.In order to minimize the THD-based objective function,the hyper-spherical search(HSS)algorithm,as a novel optimization algorithm,is improved and the results of improved HSS(IHSS)are compared with HSS algorithm and other five evolutionary algorithms to show the advantages of IHSS algorithm. 展开更多
关键词 27-level inverter cascade multi-level inverter improved hyper-spherical search(IHSS)algorithm total harmonic distortion(THD)minimization
在线阅读 下载PDF
Object Recognition Algorithm Based on an Improved Convolutional Neural Network 被引量:1
6
作者 Zheyi Fan Yu Song Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第2期139-145,共7页
In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted... In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted from the original image.Then,candidate object windows are input into the improved CNN model to obtain deep features.Finally,the deep features are input into the Softmax and the confidence scores of classes are obtained.The candidate object window with the highest confidence score is selected as the object recognition result.Based on AlexNet,Inception V1 is introduced into the improved CNN and the fully connected layer is replaced by the average pooling layer,which widens the network and deepens the network at the same time.Experimental results show that the improved object recognition algorithm can obtain better recognition results in multiple natural scene images,and has a higher degree of accuracy than the classical algorithms in the field of object recognition. 展开更多
关键词 object recognition selective search algorithm improved convolutional neural network(CNN)
在线阅读 下载PDF
Symmetric Workpiece Localization Algorithms: Convergence and Improvements 被引量:2
7
作者 CHEN Shan-Yong LI Sheng-Yi DAI Yi-Fan 《自动化学报》 EI CSCD 北大核心 2006年第3期428-432,共5页
Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each sub... Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each subset of variables, where optimization of configuration variables is simplified as a linear least-squares problem (LSP). Convergence of current symmetric localization algorithms is discussed firstly. It is shown that simply taking the solution of the LSP as start of the next iteration may result in divergence or incorrect convergence. Therefore in our enhanced algorithms, line search is performed along the solution of the LSP in order to find a better point reducing the value of objective function. We choose this point as start of the next iteration. Better convergence is verified by numerical simulation. Besides, imposing boundary constraints on the LSP proves to be another efficient way. 展开更多
关键词 对称加工件 局限性 线性搜索 收敛性
在线阅读 下载PDF
Improved Interleaved Single-Ended Primary Inductor-Converter forSingle-Phase Grid-Connected System
8
作者 T.J.Thomas Thangam K.Muthu Vel 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3459-3478,共20页
The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated fr... The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated from the PV system is erratic and hence there is a need for an efficient converter to perform the extraction of maximum power.An improved interleaved Single-ended Primary Inductor-Converter(SEPIC)converter is employed in proposed work to extricate most of power from renewable source.This proposed converter minimizes ripples,reduces electromagnetic interference due tofilter elements and the contin-uous input current improves the power output of PV panel.A Crow Search Algo-rithm(CSA)based Proportional Integral(PI)controller is utilized for controlling the converter switches effectively by optimizing the parameters of PI controller.The optimized PI controller reduces ripples present in Direct Current(DC)vol-tage,maintains constant voltage at proposed converter output and reduces over-shoots with minimum settling and rise time.This voltage is given to single phase grid via 1�Voltage Source Inverter(VSI).The command pulses of 1�VSI are produced by simple PI controller.The response of the proposed converter is thus improved with less input current.After implementing CSA based PI the efficiency of proposed converter obtained is 96%and the Total Harmonic Distor-tion(THD)is found to be 2:4%.The dynamics and closed loop operation is designed and modeled using MATLAB Simulink tool and its behavior is performed. 展开更多
关键词 improved interleaved DC-DC SEPIC converter crow search algorithm PI controller voltage source inverter PV array single phase grid
在线阅读 下载PDF
Deep kernel extreme learning machine classifier based on the improved sparrow search algorithm
9
作者 Zhao Guangyuan Lei Yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第3期15-29,共15页
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat... In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy. 展开更多
关键词 deep kernel extreme learning machine(DKELM) improved sparrow search algorithm(ISSA) CLASSIFIER parameters optimization
原文传递
基于改进麻雀搜索算法的光伏MPPT方法
10
作者 梁秋艳 孙井也 +2 位作者 迟佳 田文豪 赵子瀚 《电源技术》 北大核心 2025年第3期662-668,共7页
光伏阵列P-U特性曲线在局部遮阴状态下呈现多峰状态,传统的最大功率追踪算法容易陷入局部最优状态。针对此问题,提出了一种基于改进麻雀搜索算法的最大功率点跟踪(maximum power point tracking,MPPT)方法。在麻雀搜索算法中引入遗传算... 光伏阵列P-U特性曲线在局部遮阴状态下呈现多峰状态,传统的最大功率追踪算法容易陷入局部最优状态。针对此问题,提出了一种基于改进麻雀搜索算法的最大功率点跟踪(maximum power point tracking,MPPT)方法。在麻雀搜索算法中引入遗传算法和Lévy飞行策略,使算法的全局搜索能力得以增强,并且可以跳出局部最优解。在MATLAB/Simulink中建立仿真模型,并与粒子群优化算法和原始麻雀搜索算法进行比较。仿真结果表明,基于改进麻雀搜索算法的MPPT方法在不同光照条件下均显示出更高的效率和稳定性。 展开更多
关键词 光伏系统 最大功率点跟踪 麻雀搜索算法 改进算法
在线阅读 下载PDF
基于改进布谷鸟搜索算法的压气机特性曲线预测
11
作者 王巍 李哲 +3 位作者 刘祎阳 姜孝谟 刘朋 李士龙 《推进技术》 北大核心 2025年第1期219-227,共9页
为了提高压气机特性曲线的预测精度和边界工况点的泛化能力,本文提出了一种改进布谷鸟搜索算法优化BP(ICS-BP)的模型,应用于某轴流压气机流量-压比特性预测方法研究,并对比分析了采用传统BP、遗传算法优化BP(GA-BP)、布谷鸟搜索算法优化... 为了提高压气机特性曲线的预测精度和边界工况点的泛化能力,本文提出了一种改进布谷鸟搜索算法优化BP(ICS-BP)的模型,应用于某轴流压气机流量-压比特性预测方法研究,并对比分析了采用传统BP、遗传算法优化BP(GA-BP)、布谷鸟搜索算法优化BP(CS-BP)、径向基函数神经网络(RBF)、极限学习机(ELM)、自优化支持向量机(MSVM)和ICS-BP模型的预测结果。分析显示,ICS-BP模型整体预测结果的相对误差最小,普遍在±1%以内,评价指标展现出最高的精度和鲁棒性,预测结果具有最佳的泛化能力,且优化后的模型解决BP易陷入局部最优的问题;ELM和RBF模型运行速度较快的情况下依然具有良好的整体预测精度,但对于边界工况点预测效果欠佳,适用于对时间成本要求高的场景。针对7F重型燃气轮机和NASA74A型号压气机特性曲线,通过ICS-BP模型预测的压比特性精度较高,整体预测结果的平均绝对百分误差分别为1.129%和0.590%,进一步验证了其在特性预测方面的优势。 展开更多
关键词 压气机特性 曲线预测 改进布谷鸟搜索算法 神经网络 泛化能力
在线阅读 下载PDF
计及小概率场景能源管线风险的综合能源系统多目标扩展规划
12
作者 黄南天 赵暄远 +1 位作者 蔡国伟 郭玉 《电气工程学报》 北大核心 2025年第1期197-207,共11页
随着能源系统不断转型及新型负荷的快速发展,在极端高温及极端低温等小概率用能场景下,需求侧用能行为日渐复杂,综合能源系统安全稳定运行风险逐渐提升。因此,提出计及小概率高用能场景下能源管线超负荷运行风险的综合能源系统多目标扩... 随着能源系统不断转型及新型负荷的快速发展,在极端高温及极端低温等小概率用能场景下,需求侧用能行为日渐复杂,综合能源系统安全稳定运行风险逐渐提升。因此,提出计及小概率高用能场景下能源管线超负荷运行风险的综合能源系统多目标扩展规划方法。建立基于耦合对抗变分自编码器的场景生成模型,生成冷-热-电-气负荷场景,获取典型场景与小概率高用能场景;在此基础上,以系统扩展规划成本最低及小概率高用能场景能源管线风险最低为目标,建立计及小概率高用能场景的冷-热-电-气综合能源系统扩展规划模型;采用改进麻雀搜索优化算法进行算例求解,实现冷-热-电-气综合能源系统扩展规划,提升综合能源系统扩展规划经济性与运行可靠性。 展开更多
关键词 综合能源系统 扩展规划 小概率高用能场景 耦合对抗变分自编码器 改进麻雀搜索优化算法
在线阅读 下载PDF
基于障碍密度优先策略改进A^(*)算法的AGV路径规划
13
作者 陈一馨 段宇轩 +2 位作者 刘豪 谭世界 郑天乐 《郑州大学学报(工学版)》 北大核心 2025年第2期26-34,共9页
针对传统A^(*)算法在障碍物较多的实际场景下进行AGV路径规划时,存在路径拐点多、路径冗余节点过多以及易陷入局部最优解等问题,提出一种改进A^(*)算法,采用栅格法进行环境建模。首先,在启发函数中引入障碍物密度函数K(n)改进代价函数,... 针对传统A^(*)算法在障碍物较多的实际场景下进行AGV路径规划时,存在路径拐点多、路径冗余节点过多以及易陷入局部最优解等问题,提出一种改进A^(*)算法,采用栅格法进行环境建模。首先,在启发函数中引入障碍物密度函数K(n)改进代价函数,用于更准确地估计当前节点到目标节点的实际代价;其次,采用动态邻域搜索策略提高算法的搜索效率和运行效率;最后,通过冗余节点处理策略减少路径拐点和删除冗余节点,得到只包含起点、转折点以及终点的路径。采用不同尺寸和复杂度的栅格环境地图进行仿真实验,结果表明:所提改进A^(*)算法与传统A^(*)算法以及其他改进的A^(*)算法相比,路径长度分别缩短了4.71%和2.07%,路径拐点数量分别减少了45.45%和20.54%,路径存在节点分别减少了82.24%和62.45%。 展开更多
关键词 路径规划 栅格地图 改进A^(*)算法 启发函数 动态邻域搜索 冗余节点优化
在线阅读 下载PDF
基于最优参数VMD和改进散布熵的轴承亚健康状态识别
14
作者 魏文军 甘洁 《铁道科学与工程学报》 北大核心 2025年第2期887-899,共13页
针对轴承的亚健康状态存在噪声干扰、模态混叠、状态特征提取困难的问题,提出一种最优参数变分模态分解(variational mode decomposition, VMD)和改进散布熵的轴承亚健康状态识别方法 。首先,设计改进的麻雀搜索算法(improved sparrow s... 针对轴承的亚健康状态存在噪声干扰、模态混叠、状态特征提取困难的问题,提出一种最优参数变分模态分解(variational mode decomposition, VMD)和改进散布熵的轴承亚健康状态识别方法 。首先,设计改进的麻雀搜索算法(improved sparrow search algorithm, ISSA)来自适应地搜索VMD最优分解参数,从而提高VMD分解效率和质量,然后根据所确定的最优参数对信号进行VMD分解,得到一系列本征模态函数(intrinsic mode function, IMF),接着计算每个IMF与原始信号之间的皮尔逊相关系数(pearson correlation coefficient, PCC),选择相关系数大于0.3的IMF分量来重构信号,以实现信号的降噪和状态特征增强。其次,为了更好地表征轴承信号的复杂度和不规则性,并有效区分轴承健康和亚健康状态,在散布熵中引入时移多尺度分析和分数阶微积分,以提取多个尺度上的轴承微细状态特征。最后,利用欧氏距离刻画轴承状态曲线,根据切比雪夫不等式设定亚健康阈值,当欧氏距离大于亚健康阈值时给出相应预警,完成轴承亚健康状态识别。在XJTU-SY和IMS轴承数据集上的试验结果表明:ISSA算法相比其他优化算法具有更高的收敛速度和精度,最优化参数VMD能有效消除模态混叠问题,改进散布熵能准确提取轴承全寿命状态微细特征。所提算法无须对模型进行训练便能准确识别轴承亚健康状态并给出预警,有利于维护人员更好地维护轴承运行状态。 展开更多
关键词 轴承 亚健康状态识别 最优参数VMD 改进麻雀搜索算法 时移多尺度分数阶散布熵
在线阅读 下载PDF
考虑道路拥堵的电动车路径及充电策略
15
作者 温廷新 孟昊廷 《交通运输工程与信息学报》 2025年第1期212-226,共15页
【背景】近年来,车辆保有量的增加使道路拥堵日趋严重,导致电动车配送难以在客户满意时间窗内送达,且电动车存在续航里程短、充电时间长的特点,易导致其配送时效性差、客户满意度降低。【目标】针对电动车配送存在的不足,优化考虑道路... 【背景】近年来,车辆保有量的增加使道路拥堵日趋严重,导致电动车配送难以在客户满意时间窗内送达,且电动车存在续航里程短、充电时间长的特点,易导致其配送时效性差、客户满意度降低。【目标】针对电动车配送存在的不足,优化考虑道路拥堵的电动车配送路径及充电策略。【方法】首先,构建了包含车辆自身参数和道路阻抗等因素的电动车电耗测度模型,以及考虑固定成本、车辆使用成本、电能消耗成本和时间窗惩罚成本最小化的数学模型;其次,提出了改进的自适应大邻域搜索算法,根据问题特性,设计了高效的破坏算子和修复算子以扩大解的搜索空间;最后,使用了充电站节点调整策略,通过优化充电站的选择和访问顺序,在满足车辆续航需求的前提下,实现运输成本和充电成本的最小化。【数据】利用Solomon提出的不同规模的算例进行实验,以便对所提算法的性能进行全面的对比与测算。【结果】所提算法相较于传统的自适应大邻域搜索算法,求解质量和求解效率大幅提高,验证了所提算法的有效性。【应用】分析了不同充电策略、不同载重和不同拥堵时长对配送总成本、配送总时长等指标的影响,为物流企业电动车车辆路径优化管理带来一定启示。 展开更多
关键词 电动车车辆路径问题 充电策略 道路拥堵 改进的自适应大邻域搜索算法
在线阅读 下载PDF
基于自适应模型降阶的三维非线性磁场快速计算方法
16
作者 刘禹彤 任自艳 +2 位作者 迟连强 张殿海 张艳丽 《电工技术学报》 北大核心 2025年第1期1-12,共12页
为了解决有限元法(FEM)仿真分析中三维非线性磁场计算效率低、成本高的问题,该文提出一种基于本征正交分解(POD)的三维非线性磁场问题自适应模型降阶方法。该方法基于贪婪策略,将POD与径向基函数(RBF)相结合,同时采用改进的麻雀搜索算法... 为了解决有限元法(FEM)仿真分析中三维非线性磁场计算效率低、成本高的问题,该文提出一种基于本征正交分解(POD)的三维非线性磁场问题自适应模型降阶方法。该方法基于贪婪策略,将POD与径向基函数(RBF)相结合,同时采用改进的麻雀搜索算法(ISSA)计算RBF的最优宽度参数组合,构建更适配高阶系统的降阶模型。以TEAM24标准问题——非线性时变旋转实验装置的磁场模型和一台单相牵引变压器模型为算例,验证降阶模型的高效性能。结果表明:该方法在具有较高精度的同时具有高加速比,建立的模型具有较好的可泛化性。 展开更多
关键词 本征正交分解 改进的麻雀搜索算法 模型降阶 贪婪算法 三维非线性磁场
在线阅读 下载PDF
一种改进的Tabu Search算法及其在区域电网无功优化中的应用 被引量:4
17
作者 李益华 林文南 《电力科学与技术学报》 CAS 2008年第2期60-65,共6页
提出将改进的Tabu(禁忌)搜索算法用于区域电网无功电压优化控制问题的求解.首先根据已知的实际电网的历史数据获得可行的初始解,然后对区域电网采用改进的禁忌搜索方法进行无功优化.在求解的过程中,由于对Tabu表中所记录的"移动&qu... 提出将改进的Tabu(禁忌)搜索算法用于区域电网无功电压优化控制问题的求解.首先根据已知的实际电网的历史数据获得可行的初始解,然后对区域电网采用改进的禁忌搜索方法进行无功优化.在求解的过程中,由于对Tabu表中所记录的"移动"采取"有条件地释放Tabu表中的记录"这一策略,可以使搜索有效地跳出局部极小值点,更好地找到最优解.通过IEEE-14节点算例验证了该算法的有效性. 展开更多
关键词 无功优化 区域电网 改进Tabu搜索算法
在线阅读 下载PDF
基于深度学习集合优化模型的径流区间预测研究
18
作者 黄靖涵 王兆才 +1 位作者 吴俊豪 姚之远 《水利学报》 北大核心 2025年第2期240-252,265,共14页
由于极端天气事件趋多趋强和径流变化的复杂性,实现准确的径流预测具有挑战性,且以往研究多基于确定数值的点预测,难以考虑不确定性影响,导致预测结果缺乏实用性。本研究开发了基于气象和水文变量的径流区间预测深度学习集合模型。首先... 由于极端天气事件趋多趋强和径流变化的复杂性,实现准确的径流预测具有挑战性,且以往研究多基于确定数值的点预测,难以考虑不确定性影响,导致预测结果缺乏实用性。本研究开发了基于气象和水文变量的径流区间预测深度学习集合模型。首先通过皮尔逊相关系数(PCC)筛选出影响径流的关键驱动变量;接着将原始数据通过变分模态分解(VMD)分解为多个模态分量(IMFs);然后利用互补集合经验模态分解法(CEEMD)对分量进行二次分解,捕捉更多的数据细节;径流的点预测结果由融合注意力机制的门控循环单元(AM-GRU)来取得,并使用改进的麻雀优化算法(ISSA)优化GRU的学习率、隐藏层维数等超参数以提升模型性能;最后,引入了非参数核密度估计(NKDE)进行径流区间预测。采用构建的组合模型VMD-CEEMD-ISSA-AM-GRU(VCIAG)对嘉陵江流域的9个水文站点进行多期预测。计算结果表明:本文模型在短期尺度表现优异,多个站点的纳什效率系数(NSE)接近1;在洪水预报方面,模型在东津沱站、武胜站、金溪站的NSE分别为0.73、0.92和0.92;此外,通过沙普利值法(Shapley)量化了输入变量对径流的影响。本研究提出的VCIAG模型不仅在径流点预测精度方面表现出色,而且在不确定性的区间预测方面也有显著优势,可为管理者提供更加准确、可靠的径流信息,从而在实践中更好地支持径流风险评估和科学决策方案的制定。 展开更多
关键词 深度学习集合模型 径流区间预测 模态分解 改进的麻雀优化算法 注意力机制
在线阅读 下载PDF
基于相似日与ISC-BiLSTM的短期光伏功率预测方法
19
作者 杨轶航 韩璐 +3 位作者 史华勃 邓鑫隆 陈梓桐 孙如田 《太阳能学报》 北大核心 2025年第1期676-685,共10页
针对传统光伏功率预测方法的精度和鲁棒性难以兼顾的不足,提出一种结合相似日理论、改进麻雀算法(ISSA)与SE通道注意力机制的卷积(CNN)双向长短期记忆(BiLSTM)神经网络模型(简写为ISC-BiLSTM),能实现短期光伏功率的准确预测。该方法首... 针对传统光伏功率预测方法的精度和鲁棒性难以兼顾的不足,提出一种结合相似日理论、改进麻雀算法(ISSA)与SE通道注意力机制的卷积(CNN)双向长短期记忆(BiLSTM)神经网络模型(简写为ISC-BiLSTM),能实现短期光伏功率的准确预测。该方法首先通过相关性计算,筛选出影响光伏功率的主要气象因子;再使用模糊C均值聚类(FCM)方法对存在相似天气特征的相似日进行聚类;然后通过加入SE的CNN对主要气象参数与历史功率的时空特征进行充分提取;接着利用BiLSTM对数据序列间的依赖关系进行捕捉;最后通过ISSA对模型的超参数进行寻优,并选择超参数最优的模型进行功率预测。对比实验与仿真结果表明,该方法预测误差较低,能实现日前分钟级短期光伏功率的准确预测。 展开更多
关键词 光伏发电 预测 神经网络 注意力机制 改进麻雀算法 模糊聚类
在线阅读 下载PDF
考虑工人约束的分布式柔性作业车间调度问题研究
20
作者 闫炳龙 叶春明 《组合机床与自动化加工技术》 北大核心 2025年第4期188-194,共7页
针对带有工人约束的分布式柔性作业车间调度问题(DFJSPWC),构建了以最小化最大完工时间和最小化总能耗为优化目标的调度模型,并提出了一种改进文化基因算法进行求解。根据问题特点,该算法综合考虑工厂选择、工序排序、机器选择和工人分... 针对带有工人约束的分布式柔性作业车间调度问题(DFJSPWC),构建了以最小化最大完工时间和最小化总能耗为优化目标的调度模型,并提出了一种改进文化基因算法进行求解。根据问题特点,该算法综合考虑工厂选择、工序排序、机器选择和工人分配4个子问题,采用了四层编码方式,并采用紧前左移插入解码方法提高算法的收敛速度;针对传统文化基因算法容易陷入局部最优的问题,设计了一种自适应局部搜索方法和精英分层保留策略,丰富种群的多样性并增强算法的局部寻优能力;最后,将所提算法与其他算法进行对比,结果表明该算法在求解所提问题时具有显著优势。 展开更多
关键词 工人约束 分布式柔性作业车间 改进文化基因算法 自适应局部搜索
在线阅读 下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部