期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进MDSMOTE与PSO-SVM在汽车组合仪表分类预测中的应用 被引量:2
1
作者 肖圳 何彦 +3 位作者 李育锋 吴鹏程 刘德高 杜江 《工程设计学报》 CSCD 北大核心 2022年第1期20-27,共8页
汽车组合仪表生产过程中质检项目多且检测时间长,这在一定程度上制约了其生产效率的进一步提升。为此,提出一种基于改进最远点合成少数类过采样技术(max distance synthetic minority over-sampling technique,MDSMOTE)的支持向量机(sup... 汽车组合仪表生产过程中质检项目多且检测时间长,这在一定程度上制约了其生产效率的进一步提升。为此,提出一种基于改进最远点合成少数类过采样技术(max distance synthetic minority over-sampling technique,MDSMOTE)的支持向量机(support vector machine,SVM)分类预测方法。首先,结合专家经验对汽车组合仪表的原始生产数据进行特征筛选,并在MDSMOTE中引入类不平衡率IR,以对所筛选的特征数据进行扩充;然后,利用粒子群优化(particle swarm optimization,PSO)算法对SVM的误差惩罚因子C和核函数参数γ进行优化;最后,建立优化的SVM分类预测模型,并对汽车组合仪表进行分类。通过与其他分类预测模型在不同数据集上的预测结果进行对比可知,基于改进MDSMOTE的SVM分类预测模型的准确率、F值和几何平均值等评价指标均优于其他模型。所提出方法在汽车仪表产品分类上表现出较强的泛化能力和稳定性,可为仪表制造企业生产效率的提升提供有效参考。 展开更多
关键词 汽车组合仪表 分类预测 改进最远点合成少数类过采样技术 支持向量机 粒子群优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部