期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
Learning Bayesian network structure with immune algorithm 被引量:4
1
作者 Zhiqiang Cai Shubin Si +1 位作者 Shudong Sun Hongyan Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期282-291,共10页
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith... Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently. 展开更多
关键词 structure learning bayesian network immune algorithm local optimal structure VACCINATION
在线阅读 下载PDF
Causal constraint pruning for exact learning of Bayesian network structure 被引量:1
2
作者 TAN Xiangyuan GAO Xiaoguang +1 位作者 HE Chuchao WANG Zidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期854-872,共19页
How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible p... How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms. 展开更多
关键词 bayesian network structure learning exact learning algorithm causal constraint
在线阅读 下载PDF
Learning Bayesian networks using genetic algorithm 被引量:3
3
作者 Chen Fei Wang Xiufeng Rao Yimei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期142-147,共6页
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while th... A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach. 展开更多
关键词 bayesian networks Genetic algorithm structure learning Equivalent class
在线阅读 下载PDF
Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks:An Empirical Study
4
作者 Shahad Alzahrani Hatim Alsuwat Emad Alsuwat 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1635-1654,共20页
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ... Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data. 展开更多
关键词 bayesian networks data poisoning attacks latent variables structure learning algorithms adversarial attacks
在线阅读 下载PDF
Self-Organizing Genetic Algorithm Based Method for Constructing Bayesian Networks from Databases
5
作者 郑建军 刘玉树 陈立潮 《Journal of Beijing Institute of Technology》 EI CAS 2003年第1期23-27,共5页
The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learn... The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed. 展开更多
关键词 bayesian networks structure learning from databases self-organizing genetic algorithm
在线阅读 下载PDF
基于Bayesian改进算法的回转窑故障诊断模型研究 被引量:21
6
作者 刘浩然 吕晓贺 +2 位作者 李轩 李世昭 史永红 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第7期1554-1561,共8页
贝叶斯网络是数据挖掘最有效和可靠的方法之一,而贝叶斯网络结构学习是贝叶斯网络研究的关键环节。针对现有经典结构学习算法——爬山算法易陷入局部最优、效率低的问题,通过计算互信息建立最大支撑树,并将最大支撑树与简化爬山算法相结... 贝叶斯网络是数据挖掘最有效和可靠的方法之一,而贝叶斯网络结构学习是贝叶斯网络研究的关键环节。针对现有经典结构学习算法——爬山算法易陷入局部最优、效率低的问题,通过计算互信息建立最大支撑树,并将最大支撑树与简化爬山算法相结合,提出了一种新的贝叶斯网络结构学习改进算法。通过与经典的爬山法和K2算法进行比较,结果表明该改进算法不仅能够得到较高准确率的模型,而且能够提高模型建立的效率。最后基于该改进算法,结合冀东水泥集团的水泥回转窑现场运行数据,建立了水泥回转窑故障诊断模型,实现了精确快速的故障诊断。 展开更多
关键词 最大支撑树 改进算法 贝叶斯网络结构学习 水泥回转窑 故障诊断模型
在线阅读 下载PDF
基于改进爬山算法的Bayesian网结构增量学习方法
7
作者 万猛 刘勇 《兰州理工大学学报》 CAS 北大核心 2013年第5期78-81,共4页
已建成的贝叶斯网与领域环境间可能存在较大偏差,加之领域本身固有的动态变化特征,因此在观察到新数据时,改善贝叶斯网的性能和优化网络结构是十分必要的.对传统爬山算法进行研究并改进Gamez等提出的爬山算法,该算法通过引入删除结点时... 已建成的贝叶斯网与领域环境间可能存在较大偏差,加之领域本身固有的动态变化特征,因此在观察到新数据时,改善贝叶斯网的性能和优化网络结构是十分必要的.对传统爬山算法进行研究并改进Gamez等提出的爬山算法,该算法通过引入删除结点时的禁忌表和环路禁忌表,避免搜索不必要的冗余结点,提高搜索效率,并给出禁忌表的更新方法.在ALARM数据集上进行实验,结果表明该算法是有效的. 展开更多
关键词 贝叶斯网络 增量学习 结构学习 爬山算法 禁忌表
在线阅读 下载PDF
改进贝叶斯网络在变压器故障诊断中的应用 被引量:2
8
作者 仝兆景 兰孟月 荆利菲 《电子科技》 2024年第5期47-53,70,共8页
针对变压器故障诊断精度低的问题,文中提出一种基于改进黏菌优化算法(Improved Slime Mould Algorithm,ISMA)优化贝叶斯网络(Bayesian Network,BN)的变压器故障诊断方法。通过爬山算法对定向最大支撑树搜索得到贝叶斯网络初始结构即初... 针对变压器故障诊断精度低的问题,文中提出一种基于改进黏菌优化算法(Improved Slime Mould Algorithm,ISMA)优化贝叶斯网络(Bayesian Network,BN)的变压器故障诊断方法。通过爬山算法对定向最大支撑树搜索得到贝叶斯网络初始结构即初始种群,在改进黏菌优化算法中引入反向学习策略,增加种群多样性。添加正弦-余弦算法(Sine Cosine Algorithm,SCA),更新解的位置以避免种群陷入局部最优。根据改良的无编码比值法选取变压器故障状态的特征,利用改进黏菌优化算法优化贝叶斯网络结构,提高基于贝叶斯网络的变压器故障诊断的准确率,并利用不同种类的测试函数验证了改进黏菌优化算法具有收敛速度快、收敛精度高的优良性能。仿真结果表明,ISMA-BN诊断模型的训练集和测试集准确率分别为98.2%和97.14%,具有一定的研究价值。 展开更多
关键词 故障诊断 改进黏菌优化算法 贝叶斯网络 结构学习 变压器 反向学习策略 正弦-余弦算法 测试函数
在线阅读 下载PDF
一种用于变压器故障诊断的贝叶斯网络优化方法 被引量:1
9
作者 仝兆景 荆利菲 兰孟月 《电子科技》 2024年第8期34-39,共6页
针对变压器故障诊断效率低的问题,文中将油中溶解气体分析与人工智能方法相结合,提出了一种改进蝗虫优化算法优化贝叶斯网络的变压器故障诊断方法。利用差分进化算法和与模拟退火算法对蝗虫算法进行改进,提高了算法的优化能力。将改进... 针对变压器故障诊断效率低的问题,文中将油中溶解气体分析与人工智能方法相结合,提出了一种改进蝗虫优化算法优化贝叶斯网络的变压器故障诊断方法。利用差分进化算法和与模拟退火算法对蝗虫算法进行改进,提高了算法的优化能力。将改进蝗虫算法应用于贝叶斯网络结构来学习构建变压器故障诊断模型,利用所提方法对变压器进行故障诊断。实验结果表明,该方法诊断正确率达到了92.7%,与其他算法所构建的诊断模型相比具有更高的故障诊断准确率。 展开更多
关键词 变压器 蝗虫算法 差分进化算法 模拟退火算法 油中溶解气体 贝叶斯网络 故障诊断 结构学习
在线阅读 下载PDF
近似图引导的演化贝叶斯网络结构学习算法
10
作者 曾奕博 钱鸿 +2 位作者 李丙栋 窦亮 周爱民 《小型微型计算机系统》 CSCD 北大核心 2024年第1期52-61,共10页
贝叶斯网络结构学习是贝叶斯网络推理及应用的基础.搜索高质量的节点序是贝叶斯网络结构学习的一类重要方法.针对在节点序空间中,搜索高质量节点序存在的难以高效、准确评估解的问题,本文提出了一种近似图引导的演化贝叶斯网络结构学习... 贝叶斯网络结构学习是贝叶斯网络推理及应用的基础.搜索高质量的节点序是贝叶斯网络结构学习的一类重要方法.针对在节点序空间中,搜索高质量节点序存在的难以高效、准确评估解的问题,本文提出了一种近似图引导的演化贝叶斯网络结构学习算法.首先,该算法利用互信息构建无向近似图;其次,该算法通过结合节点序和无向近似图构造有向图结构,将其贝叶斯信息准则评分作为节点序的适应度来高效评估节点序,并在演化优化的框架下,使用提出的基于Kendall Tau Distance的交叉算子和基于逆度的变异算子搜索最优节点序;最后,将搜索到的最优节点序输入K2算法得到其对应的贝叶斯网络结构.在4种不同规模网络上的实验结果表明,该算法在收敛时间和准确度之间取得了较好的平衡,其评分相较于对比算法中的次优解分别提升了10.91%、12.28%、53.96%、10.87%. 展开更多
关键词 贝叶斯网络 结构学习 演化算法 近似图 互信息 K2算法
在线阅读 下载PDF
基于改进萤火虫算法的贝叶斯网络结构学习
11
作者 宋楠 邸若海 +3 位作者 王鹏 李晓艳 贺楚超 王储 《科学技术与工程》 北大核心 2024年第26期11314-11322,共9页
贝叶斯网络是目前不确定知识表达和推理领域最有效的理论模型之一,利用贝叶斯网络进行分析和推理前首先需要通过结构学习和参数学习获取其网络模型,其中结构学习是参数学习的基础。针对现有萤火虫算法不符合生物学规则以及学习贝叶斯网... 贝叶斯网络是目前不确定知识表达和推理领域最有效的理论模型之一,利用贝叶斯网络进行分析和推理前首先需要通过结构学习和参数学习获取其网络模型,其中结构学习是参数学习的基础。针对现有萤火虫算法不符合生物学规则以及学习贝叶斯网络结构存在效率低、容易陷入局部最优等问题,设计了一种基于互信息与性别机制的萤火虫算法(firefly algorithm based on mutual information and gender mechanism,MGM-FA)。首先,通过计算节点互信息得到贝叶斯网络骨架图,基于骨架图驱动MGM-FA算法生成初始种群;其次,引入基于性别机制的个性化贝叶斯网络种群更新策略,以保障贝叶斯网络个体的多样性;最后,引入局部优化器和扰动操作符,增强算法的寻优能力。分别在不同规模的标准网络上进行仿真实验,与现有同类型算法相比,该算法精度和效率均有所提升。 展开更多
关键词 贝叶斯网络 结构学习 结构先验 萤火虫算法 MGM-FA算法
在线阅读 下载PDF
基于缩放框架的改进贝叶斯网络结构优化算法
12
作者 祁煜翔 钱龙霞 +1 位作者 王友国 黄海平 《南京邮电大学学报(自然科学版)》 北大核心 2024年第6期128-138,共11页
贝叶斯网络在进行概率推理时,寻找最优的网络结构是一个NP-hard问题。为了准确模拟节点之间的因果关系,提出基于缩放框架的改进型网络结构学习算法。首先,利用缩放框架进行因果分析,通过斜率矩阵判断节点之间的因果关系强度,以此为基础... 贝叶斯网络在进行概率推理时,寻找最优的网络结构是一个NP-hard问题。为了准确模拟节点之间的因果关系,提出基于缩放框架的改进型网络结构学习算法。首先,利用缩放框架进行因果分析,通过斜率矩阵判断节点之间的因果关系强度,以此为基础构建网络搜索空间,提高了网络结构的初始评分;其次,使用基于评分方法的浣熊优化算法寻找评分最高的网络结构,增强了在贝叶斯网络中的评分搜索能力;最后,对评分最高的结构进行加弧、减弧和转向弧操作,寻找拟合程度最高的最优结构。通过在不同复杂度的标准网络上进行模拟实验,结果表明:所提算法收敛速度更快,能够在较短时间内找到最优结构,且结构学习的评分更高,收敛精度较高。由此说明该算法在准确性和搜寻效率方面更有优势。 展开更多
关键词 贝叶斯网络 结构学习 缩放框架 评分方法 浣熊优化算法
在线阅读 下载PDF
基于MMPC-FPSO贝叶斯网络混合结构学习方法 被引量:1
13
作者 董文佳 方洋旺 +1 位作者 彭维仕 闫晓斌 《空军工程大学学报》 CSCD 北大核心 2024年第2期76-84,共9页
针对贝叶斯网络结构学习的过程中网络结构规模随节点数增加呈指数增长,导致网络结构搜索空间增大,进而导致网络结构学习算法效率低下的问题,提出一种基于最大最小父子集合约束与萤火虫粒子群搜索算法的贝叶斯网络混合结构学习方法。首先... 针对贝叶斯网络结构学习的过程中网络结构规模随节点数增加呈指数增长,导致网络结构搜索空间增大,进而导致网络结构学习算法效率低下的问题,提出一种基于最大最小父子集合约束与萤火虫粒子群搜索算法的贝叶斯网络混合结构学习方法。首先,针对粒子群算法在解决贝叶斯网络结构学习过程中,随机初始化网络结构种群导致算法搜索效率低下,网络结构准确性低的问题提出一种基于改进的最大最小父子集合算法的种群约束方法。其次,针对传统的基于粒子群评分搜索方法速度慢,精度低,易陷入局部最优的问题,提出一种基于萤火虫算子的粒子寻优策略。最后,为了验证所提方法的正确性和优越性,将上述方法用于3种标准网络的结构学习。仿真结果表明:所提算法与传统的基于粒子群的结构学习方法相比,所得的贝叶斯信息准则评分与标准网络评分的差距分别缩小了68.7%、65.5%、34.1%。 展开更多
关键词 结构学习 贝叶斯网络 粒子群算法 MMPC算法
在线阅读 下载PDF
基于全流程并行遗传算法的贝叶斯网络结构学习
14
作者 蔡一鸣 马力 +1 位作者 陆恒杨 方伟 《系统工程与电子技术》 EI CSCD 北大核心 2024年第5期1703-1711,共9页
为解决海量数据情况下学习贝叶斯网络(Bayesian network,BN)结构的算法性能急剧降低问题,基于Spark框架设计了一种全流程并行遗传算法用于BN结构学习(简称为SparkGA-BN)。SparkGA-BN包含互信息计算并行化、遗传算子并行化和适应度评分... 为解决海量数据情况下学习贝叶斯网络(Bayesian network,BN)结构的算法性能急剧降低问题,基于Spark框架设计了一种全流程并行遗传算法用于BN结构学习(简称为SparkGA-BN)。SparkGA-BN包含互信息计算并行化、遗传算子并行化和适应度评分并行化3个部分。互信息并行计算可以高效减少搜索空间;在演化前增加对种群信息与选择信息的广播来对全种群执行选择操作。选择与交叉算子共用选择信息以并行执行,从而高效演化并减少数据落盘时间。对约束和评分两阶段产生的中间数据作记忆化存储,提升数据复用率和全局执行效率。实验结果表明,所提算法在执行效率和学习准确率方面均优于对比算法。 展开更多
关键词 贝叶斯网络 结构学习 遗传算法 并行结构学习 SPARK
在线阅读 下载PDF
互信息与爬山法相结合的贝叶斯网络结构学习 被引量:12
15
作者 金焱 胡云安 +1 位作者 张瑾 宋艳波 《计算机应用与软件》 CSCD 北大核心 2012年第9期122-125,共4页
针对爬山法容易陷入局部最优,而随机重复爬山法时间开销过大的问题,将互信息与爬山法相结合,提出了MI&HC贝叶斯网络结构学习算法。首先利用互信息构建初始网络结构,再从该网络结构开始利用爬山法进行贝叶斯网络结构学习。仿真结果表... 针对爬山法容易陷入局部最优,而随机重复爬山法时间开销过大的问题,将互信息与爬山法相结合,提出了MI&HC贝叶斯网络结构学习算法。首先利用互信息构建初始网络结构,再从该网络结构开始利用爬山法进行贝叶斯网络结构学习。仿真结果表明:MI&HC算法,对小型稀疏网络结构的学习效果非常好,对较大型的网络结构的学习也能得到令人满意的结果;该算法不需要节点顺序这一先验信息,却能获得与K2算法相当的学习效果。 展开更多
关键词 互信息 爬山法 贝叶斯网络 结构学习
在线阅读 下载PDF
基于混合樽海鞘-差分进化算法的贝叶斯网络结构学习算法 被引量:15
16
作者 刘彬 范瑞星 +3 位作者 刘浩然 张力悦 王海羽 张春兰 《通信学报》 EI CSCD 北大核心 2019年第7期151-161,共11页
针对目前利用启发式算法学习贝叶斯网络结构易陷入局部最优、寻优效率低的问题,提出一种基于混合樽海鞘-差分进化算法的贝叶斯网络结构学习算法。该算法在种群划分阶段提出自适应的规模因子平衡局部搜索与全局搜索,在子种群更新阶段利... 针对目前利用启发式算法学习贝叶斯网络结构易陷入局部最优、寻优效率低的问题,提出一种基于混合樽海鞘-差分进化算法的贝叶斯网络结构学习算法。该算法在种群划分阶段提出自适应的规模因子平衡局部搜索与全局搜索,在子种群更新阶段利用改进的变异算子与交叉算子构建樽海鞘搜索策略与差分搜索策略,更新不同的子种群,在合并子种群阶段利用两点变异算子增加种群多样性。由算法的收敛性分析可知,通过种群的迭代搜索可以找到最佳结构。实验结果表明,与其他算法相比,所提算法收敛精度与寻优效率均有提升。 展开更多
关键词 贝叶斯网络结构学习 樽海鞘算法 差分进化算法 自适应
在线阅读 下载PDF
基于改进鲸鱼优化策略的贝叶斯网络结构学习算法 被引量:19
17
作者 刘浩然 张力悦 +2 位作者 范瑞星 王海羽 张春兰 《电子与信息学报》 EI CSCD 北大核心 2019年第6期1434-1441,共8页
针对当前贝叶斯网络结构学习算法易陷入局部最优和寻优效率低的问题,该文提出一种基于改进鲸鱼优化策略的贝叶斯网络结构学习算法。该算法首先提出一种新的方法建立较优的初始种群,然后利用不产生非法结构的交叉变异算子构建适用于贝叶... 针对当前贝叶斯网络结构学习算法易陷入局部最优和寻优效率低的问题,该文提出一种基于改进鲸鱼优化策略的贝叶斯网络结构学习算法。该算法首先提出一种新的方法建立较优的初始种群,然后利用不产生非法结构的交叉变异算子构建适用于贝叶斯网络结构学习的改进捕食行为,同时采用动态调节参数增强算法个体寻优的能力,通过适应度排序更新种群,最终获得最优的贝叶斯网络结构。仿真结果表明,该算法具有全局收敛性,寻优效率高,精确率高于其它同类优化算法。 展开更多
关键词 贝叶斯网络结构学习 改进鲸鱼优化算法 改进捕食行为 动态调节参数
在线阅读 下载PDF
基于蚁群算法的贝叶斯网结构学习 被引量:6
18
作者 冀俊忠 张鸿勋 +1 位作者 胡仁兵 刘椿年 《北京工业大学学报》 EI CAS CSCD 北大核心 2011年第6期933-939,954,共8页
针对具有丢失数据的贝叶斯网结构学习问题,提出了一种将数据的完备化与结构的蚁群优化相结合的学习方法.随机初始化未观察到的数据,得到完整的数据集,并利用蚁群算法学习得到初始网络结构;然后进行迭代学习,在每次迭代中根据当前最好的... 针对具有丢失数据的贝叶斯网结构学习问题,提出了一种将数据的完备化与结构的蚁群优化相结合的学习方法.随机初始化未观察到的数据,得到完整的数据集,并利用蚁群算法学习得到初始网络结构;然后进行迭代学习,在每次迭代中根据当前最好的贝叶斯网结构,利用EM估计和随机的采样插入对数据进行完备化,在完备数据下,利用改进的蚁群优化过程使结构不断进化,直到获得全局最优解.实验结果表明,该方法能有效地从不完备数据中学习贝叶斯网结构且与新近的MS-EM、EGA、BN-GS方法相比,具有更高的学习精度. 展开更多
关键词 贝叶斯网 结构学习 丢失数据 蚁群算法 模拟退火
在线阅读 下载PDF
一种针对水泥回转窑故障诊断的贝叶斯网络模型 被引量:5
19
作者 刘浩然 李轩 +1 位作者 马明 李世昭 《计量学报》 CSCD 北大核心 2014年第5期500-506,共7页
为了实现水泥回转窑的故障诊断,采用贝叶斯网络建立了水泥回转窑故障智能诊断模型。在模型建立过程中,提出了一种基于数据样本、不依赖先验知识的贝叶斯网络结构学习改进算法。在利用改进结构学习算法建立诊断模型贝叶斯网络的基础上... 为了实现水泥回转窑的故障诊断,采用贝叶斯网络建立了水泥回转窑故障智能诊断模型。在模型建立过程中,提出了一种基于数据样本、不依赖先验知识的贝叶斯网络结构学习改进算法。在利用改进结构学习算法建立诊断模型贝叶斯网络的基础上,利用MLE算法和变量消除法完成了模型的参数学习和诊断推理。为了验证水泥回转窑故障诊断贝叶斯网络模型的准确率以及可行性,利用现场数据进行了大量的测试实验。 展开更多
关键词 计量学 故障诊断模型 改进结构学习算法 水泥回转窑 贝叶斯网络
在线阅读 下载PDF
贝叶斯网络结构稀疏学习研究进展 被引量:8
20
作者 郭珉 石洪波 冀素琴 《模式识别与人工智能》 EI CSCD 北大核心 2016年第10期907-923,共17页
贝叶斯网络结构稀疏化学习因其既能简化结构又能保留原始网络中的重要信息,已经成为当前贝叶斯网络的研究热点.文中首先讨论贝叶斯网络结构稀疏学习的必要性、贝叶斯网络稀疏性的定义,并在此基础上介绍现有的贝叶斯网络结构稀疏学习研... 贝叶斯网络结构稀疏化学习因其既能简化结构又能保留原始网络中的重要信息,已经成为当前贝叶斯网络的研究热点.文中首先讨论贝叶斯网络结构稀疏学习的必要性、贝叶斯网络稀疏性的定义,并在此基础上介绍现有的贝叶斯网络结构稀疏学习研究思路.然后,回顾一般的贝叶斯网络结构学习方法,并分析它们在高维背景下存在的问题,进而发现基于评分的方法通常适合于贝叶斯网络结构的稀疏学习,因此重点介绍贝叶斯网络结构稀疏学习的目标函数和优化求解算法.最后,探讨未来贝叶斯网络结构稀疏学习的一些研究方向. 展开更多
关键词 贝叶斯网络 结构学习 稀疏 目标函数 优化算法
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部