期刊文献+
共找到123篇文章
< 1 2 7 >
每页显示 20 50 100
Fault Detection Based on Incremental Locally Linear Embedding for Satellite TX-I 被引量:1
1
作者 程月华 胡国飞 +2 位作者 陆宁云 姜斌 邢琰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第6期600-609,共10页
A fault detection method based on incremental locally linear embedding(LLE)is presented to improve fault detecting accuracy for satellites with telemetry data.Since conventional LLE algorithm cannot handle incremental... A fault detection method based on incremental locally linear embedding(LLE)is presented to improve fault detecting accuracy for satellites with telemetry data.Since conventional LLE algorithm cannot handle incremental learning,an incremental LLE method is proposed to acquire low-dimensional feature embedded in high-dimensional space.Then,telemetry data of Satellite TX-I are analyzed.Therefore,fault detection are performed by analyzing feature information extracted from the telemetry data with the statistical indexes T2 and squared prediction error(SPE)and SPE.Simulation results verify the fault detection scheme. 展开更多
关键词 incremental locally linear embedding(lle) telemetry data fault detection dimensionality reduction statistical indexes
在线阅读 下载PDF
Locally linear embedding-based seismic attribute extraction and applications 被引量:6
2
作者 刘杏芳 郑晓东 +2 位作者 徐光成 王玲 杨昊 《Applied Geophysics》 SCIE CSCD 2010年第4期365-375,400,401,共13页
How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle co... How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids. 展开更多
关键词 attribute optimization dimensionality reduction locally linear embedding(lle manifold learning principle component analysis(PCA)
在线阅读 下载PDF
基于LLE-DBSCAN-SMOTE数据处理的隧洞岩爆预测
3
作者 范成强 夏元友 +1 位作者 张宏伟 黄建 《中国安全科学学报》 CSCD 北大核心 2024年第12期140-148,共9页
为解决岩爆预测中预测指标关联以及原始数据存在离群点与数据不平衡等问题,提出基于局部线性嵌入(LLE)-基于密度的带噪声应用空间聚类(DBSCAN)-合成少数类过采样(SMOTE)数据处理的岩爆预测方法。首先,选取围岩最大切向应力σ_(θ)、岩... 为解决岩爆预测中预测指标关联以及原始数据存在离群点与数据不平衡等问题,提出基于局部线性嵌入(LLE)-基于密度的带噪声应用空间聚类(DBSCAN)-合成少数类过采样(SMOTE)数据处理的岩爆预测方法。首先,选取围岩最大切向应力σ_(θ)、岩石单轴抗压强度σ_(c)、岩石单轴抗拉强度σ_(t)、弹性应变能指数W_(et)、脆性系数σ_(c)/σ_(t)、应力系数σ_(θ)/σ_(c)和表征围岩应力梯度的应力集度值β构建岩爆预测指标体系;其次,采用LLE算法进行数据降维处理以消除指标间的交叉关联影响,引入DBSCAN算法去除数据离群点;然后,引入SMOTE技术进行数据平衡化;最后,分别采用决策树(DT)、随机森林(RF)与梯度提升树(GBDT)算法构建3类岩爆预测模型,对比分析数据处理前后数据训练模型的预测精度,并通过江边水电站引水隧洞实测岩爆数据进行工程验证。结果表明:预测指标由原始数据的7维降至4维,以及采用分级离群值处理后的3类算法模型的预测准确率皆为同类模型中最高,江边水电站工程岩爆预测验证了数据处理后的模型预测准确率明显高于基于原始岩爆数据建立的同类模型。 展开更多
关键词 局部线性嵌入(lle) 基于密度的带噪声应用空间聚类(DBSCAN) 合成少数类过采样(SMOTE) 数据处理 岩爆预测
在线阅读 下载PDF
基于正交迭代的增量LLE算法 被引量:11
4
作者 朱明旱 罗大庸 +1 位作者 易励群 王一军 《电子学报》 EI CAS CSCD 北大核心 2009年第1期132-136,共5页
LLE(Locally Linear Embedding)算法是一种较好的流形学习算法,但它只能以批处理的方式进行.只要有新的样本加入,就必须重作该算法的全部内容,而原处理结果被全部丢弃.本文提出了一种基于正交迭代的增量LLE算法,能有效地利用前面的处理... LLE(Locally Linear Embedding)算法是一种较好的流形学习算法,但它只能以批处理的方式进行.只要有新的样本加入,就必须重作该算法的全部内容,而原处理结果被全部丢弃.本文提出了一种基于正交迭代的增量LLE算法,能有效地利用前面的处理结果,实现增量处理.实验表明该算法是有效的. 展开更多
关键词 局部线性嵌入 流形学习 正交迭代 增量
在线阅读 下载PDF
基于分维LLE和Fisher判别的故障诊断方法 被引量:13
5
作者 张伟 周维佳 李斌 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第2期325-333,共9页
针对非线性系统故障诊断难以解决的问题,通过改进的局部线性嵌入映射算法解决了非线性数据的特征映射问题。首先,通过线性拟合改进了基于分形维估计的内在维数的估计。然后,将故障状态与空间分布结合起来,通过确定数据点在空间超球内的... 针对非线性系统故障诊断难以解决的问题,通过改进的局部线性嵌入映射算法解决了非线性数据的特征映射问题。首先,通过线性拟合改进了基于分形维估计的内在维数的估计。然后,将故障状态与空间分布结合起来,通过确定数据点在空间超球内的分布完成故障的检测,在这个过程中将超球的确定与LLE算法中基于核函数的样本外数据扩展结合起来,大大减少了计算量,提高了算法的实时性。然后,利用Fisher判别分析进行故障匹配,通过计算最优的投影向量与历史故障数据投影向量的相似度的计算,完成故障识别,从而为复杂非线性系统故障诊断提供了一种新的有效的方法。 展开更多
关键词 局部线性嵌入(lle) 故障诊断 非线性降维 内在维数 FISHER判别
在线阅读 下载PDF
基于LLE的彩色图象人脸检测 被引量:8
6
作者 吴俊强 周激流 何坤 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期796-800,共5页
分析了人脸与非人脸之间的本质区别,提出了运用局部线形嵌入(LLE)的非线性降维方法,解决非线性结构的高维数据(图象)低维表示的问题,实现了高维输入数据点映射到一个全局低维坐标系,同时保留了邻接点之间的空间关系(即高维空间的几何结... 分析了人脸与非人脸之间的本质区别,提出了运用局部线形嵌入(LLE)的非线性降维方法,解决非线性结构的高维数据(图象)低维表示的问题,实现了高维输入数据点映射到一个全局低维坐标系,同时保留了邻接点之间的空间关系(即高维空间的几何结构).此算法不仅能够有效地发现数据的非线性结构,同时还具有平移、旋转不变性.运用LLE算法对图象进行降维,再对降维后的数据运用支持向量机(SVM)分类器进行人脸和非人脸的分类.实验结果表明,该人脸检测方法测率较高,并且不受姿态、表情和光照的影响. 展开更多
关键词 局部线性嵌入 lle 非线性降维 支持向量机 人脸检测
在线阅读 下载PDF
基于LLE和BP神经网络的人脸识别 被引量:6
7
作者 吴俊强 周激流 +1 位作者 何坤 郎方年 《激光杂志》 CAS CSCD 北大核心 2006年第5期71-73,共3页
利用LLE非线性降维方法提取人脸特征,然后将提取出来的特征输入到BP神经网络进行训练得到人脸类间的判别信息,进行人脸识别。利用LLE降维方法既能够降低数据维数,减少运算量,又很好的保留了各类人脸样本的拓扑结构,避免人脸图像光照、... 利用LLE非线性降维方法提取人脸特征,然后将提取出来的特征输入到BP神经网络进行训练得到人脸类间的判别信息,进行人脸识别。利用LLE降维方法既能够降低数据维数,减少运算量,又很好的保留了各类人脸样本的拓扑结构,避免人脸图像光照、姿态等因素对人脸识别的影响。在ORL人脸库上的实验结果表明了,这种方法是有效的。 展开更多
关键词 局部线性嵌入:lle 非线性降维 BP神经网络 人脸识别
在线阅读 下载PDF
基于LLE和SVM的人像识别方法 被引量:13
8
作者 郭锋 刘丽丽 吕凝 《吉林大学学报(信息科学版)》 CAS 2008年第1期48-54,共7页
在人像识别方面,传统的特征提取方法大都是线性的,不能很好地保持样本的拓扑结构。支持向量机能提高学习的泛化能力,防止过学习,是一种很好的分类器。为此,提出一种增强的LLE(Locally Linear Em- bedding)和SVM(support Vector Machine... 在人像识别方面,传统的特征提取方法大都是线性的,不能很好地保持样本的拓扑结构。支持向量机能提高学习的泛化能力,防止过学习,是一种很好的分类器。为此,提出一种增强的LLE(Locally Linear Em- bedding)和SVM(support Vector Machine)结合的人像识别方法,采用PCA(Principal Component Analysis)与LLE相结合算法,对光照归一化处理过的人脸图像进行特征提取,利用SVM的分类机制对人脸图像样本集进行训练和识别。在ORL(Olivetti Research Laboratory)人脸数据库上实验表明,该算法稳健、快速,识别率达到了90%以上。 展开更多
关键词 人脸识别 局部线性嵌入 主成分分析法 支持向量机
在线阅读 下载PDF
自组织LLE算法及其在人脸识别中的应用 被引量:5
9
作者 冯海亮 李见为 黄鸿 《光学精密工程》 EI CAS CSCD 北大核心 2008年第9期1732-1737,共6页
提出了一种改进了的自组织LLE算法(SO—LLE),该算法不仅能自动确定数据点邻域值、减少运算量,而且能有效地发现嵌入于高维人脸图像的低维子流形。对SO-LLE算法进行了详细的理论分析,并应用多种数据集进行了仿真实验。在Yale和PIE... 提出了一种改进了的自组织LLE算法(SO—LLE),该算法不仅能自动确定数据点邻域值、减少运算量,而且能有效地发现嵌入于高维人脸图像的低维子流形。对SO-LLE算法进行了详细的理论分析,并应用多种数据集进行了仿真实验。在Yale和PIE人脸数据库的仿真实验结果表明:SO—LLE方法的平均识别率提高了5%~40%,有效地提高了人脸识别的性能。 展开更多
关键词 人脸识别 流形学习 局部线性嵌入 自组织映射
在线阅读 下载PDF
一种基于LLE特征融合的故障识别方法 被引量:4
10
作者 胡建中 吴瑶 谢小欣 《中国机械工程》 EI CAS CSCD 北大核心 2013年第24期3345-3348,共4页
针对传统的故障识别中未能充分利用特征信息的问题,提出一种基于局部线性嵌入(LLE)特征融合的故障识别方法,通过初步提取信号时域和时频域的特征获得原始特征集,利用LLE算法对原始特征集进行二次特征提取,进一步融合两组特征集并使用KN... 针对传统的故障识别中未能充分利用特征信息的问题,提出一种基于局部线性嵌入(LLE)特征融合的故障识别方法,通过初步提取信号时域和时频域的特征获得原始特征集,利用LLE算法对原始特征集进行二次特征提取,进一步融合两组特征集并使用KNN算法进行故障识别。仿真信号数据分析与实际故障分析证明了所提方法对故障样本识别的可行性和有效性。 展开更多
关键词 特征提取 局部线性嵌入(lle) 特征融合 故障识别
在线阅读 下载PDF
LLE重构和SVD分解的地震信号降噪方法 被引量:4
11
作者 崔业勤 高建国 丁国超 《计算机工程与应用》 CSCD 北大核心 2016年第15期266-270,共5页
针对现有地震信号降噪方法处理地震剖面的弯曲同相轴效果不佳,提出联合局部线性嵌入(LLE)和奇异值分解(SVD)方法的地震信号降噪技术。利用LLE的重构思想,对地震数据采样点用其近邻进行重构,实现非线性模式的弯曲同相轴的线性化处理,并... 针对现有地震信号降噪方法处理地震剖面的弯曲同相轴效果不佳,提出联合局部线性嵌入(LLE)和奇异值分解(SVD)方法的地震信号降噪技术。利用LLE的重构思想,对地震数据采样点用其近邻进行重构,实现非线性模式的弯曲同相轴的线性化处理,并去除一定程度的随机噪声;根据地震资料有效信号具有良好相关性的特性,采用SVD分解对LLE重构后的地震数据进行有效信号和噪声分离,剔除不相干的噪声,最终实现地震数据的随机噪声压制。在正演模型和真实地震资料上进行了实验,实验结果表明:与传统SVD方法相比,提出的方法很好地消除了随机噪声,有效信号基本上无丢失。 展开更多
关键词 局部线性嵌入 奇异值分解 重构 分解 地震信号 去噪
在线阅读 下载PDF
基于LLE的分类算法及其在被动毫米波目标识别中的应用 被引量:4
12
作者 罗磊 李跃华 《电子与信息学报》 EI CSCD 北大核心 2010年第6期1306-1310,共5页
该文针对模式识别中的单类分类问题,根据LLE算法思想,考虑数据分布的低维流形,提出了一种单类分类算法。基于流形学习算法发现了被动毫米波信号的短时傅里叶谱中低维流形的存在,并讨论了其特性。将新算法应用于被动毫米波金属目标识别,... 该文针对模式识别中的单类分类问题,根据LLE算法思想,考虑数据分布的低维流形,提出了一种单类分类算法。基于流形学习算法发现了被动毫米波信号的短时傅里叶谱中低维流形的存在,并讨论了其特性。将新算法应用于被动毫米波金属目标识别,相对目前流行的分类算法,取得了更好的效果,且算法对输入参数不敏感,在数据混叠程度较高时仍有很好的鲁棒性。 展开更多
关键词 目标识别 毫米波 流形学习 局部线性嵌入 单类分类
在线阅读 下载PDF
基于融合特征提取与LLE方法的表情识别 被引量:10
13
作者 兰兰 陈万忠 魏庭松 《吉林大学学报(信息科学版)》 CAS 2017年第4期384-391,共8页
为保证所提取特征表征作用的全面性,提出一种基于几何特征和局部纹理特征相结合的特征提取方法。将基于主动表观模型(AAM:Active Appearance Model)特征点标记提取的几何特征和基于局部二值模式(LBP:Local Binary Pattern)提取的眼部和... 为保证所提取特征表征作用的全面性,提出一种基于几何特征和局部纹理特征相结合的特征提取方法。将基于主动表观模型(AAM:Active Appearance Model)特征点标记提取的几何特征和基于局部二值模式(LBP:Local Binary Pattern)提取的眼部和嘴部纹理特征进行融合,融合后的特征经局部线性嵌入(LLE:Locally Linear Embedding)方法进行特征降维,并使用多分类的支持向量机(SVM:Support Vector Machine)进行分类识别。该方法分别选取JAFFE数据集7类表情和小样本数据集Yale的4类表情进行实验,识别准确率分别达到了98.57%和91.67%,从而证明了该方法的有效性。 展开更多
关键词 表情识别 主动表观模型 局部二值模式 局部线性嵌入 支持向量机
在线阅读 下载PDF
基于Semi-Supervised LLE的人脸表情识别方法 被引量:1
14
作者 冯海亮 黄鸿 +1 位作者 李见为 魏明 《沈阳建筑大学学报(自然科学版)》 EI CAS 2008年第6期1109-1113,共5页
目的为提取有效的鉴别特征和降低鉴别向量的维数来识别人脸表情图像.方法将流行学习(Manifold learning,ML)和半监督学习(Semi-Supervised learning,SSL)结合起来,利用人脸表情图像数据本身的非线性流形结构信息和部分标签信息来调整点... 目的为提取有效的鉴别特征和降低鉴别向量的维数来识别人脸表情图像.方法将流行学习(Manifold learning,ML)和半监督学习(Semi-Supervised learning,SSL)结合起来,利用人脸表情图像数据本身的非线性流形结构信息和部分标签信息来调整点与点之间的距离形成距离矩阵,而后基于被调整的距离矩阵进行线性近邻重建来实现维数约简,提取低维鉴别特征用于人脸表情识别.结果该方法能充分利用数据的结构信息和有限的标签信息,使具有标签信息的同类样本之间的距离最小化,不同类数据之间的距离最大化,进而可以有效地提取数据的低维鉴别子流形,使得分类性能要优于非监督的维数约简方法.结论笔者提出的半监督局部线性嵌入算法能有效地提高人脸表情识别的性能. 展开更多
关键词 流形学习 半监督学习 局部线性嵌入 维数约简 人脸表情识别
在线阅读 下载PDF
基于VFW和LLE的视频图像处理与特征提取技术 被引量:1
15
作者 王刚 周激流 +3 位作者 吴俊强 琚生根 张力支 吴慧琳 《计算机应用与软件》 CSCD 北大核心 2008年第12期24-26,共3页
结合人脸考勤系统项目实例介绍了用VFW(Video for Windows)实现视频图像采集、编辑和LLE(Locally Linear Enbed-ding)对采集的图像进行特征提取技术,并利用该技术建立了SCU_TS人脸库。结果表明,该技术实用、可靠,为视频应用程序的开发... 结合人脸考勤系统项目实例介绍了用VFW(Video for Windows)实现视频图像采集、编辑和LLE(Locally Linear Enbed-ding)对采集的图像进行特征提取技术,并利用该技术建立了SCU_TS人脸库。结果表明,该技术实用、可靠,为视频应用程序的开发提供了一种行之有效的方法。 展开更多
关键词 视频流 视频采集 单帧图像 VFW库 lle 人脸库
在线阅读 下载PDF
基于模糊聚类的LLE和SVM的人脸识别 被引量:5
16
作者 高晴 闫德勤 +1 位作者 楚永贺 徐丽丽 《微型机与应用》 2015年第6期56-58,共3页
针对传统的局部线性嵌入算法易受近邻点个数的影响,以及支持向量机的错分点过多对识别率产生的影响,提出了一种基于模糊聚类的局部线性嵌入和支持向量机的人脸识别方法。利用改进的算法对人脸库中的图像进行特征提取,然后采用支持向量... 针对传统的局部线性嵌入算法易受近邻点个数的影响,以及支持向量机的错分点过多对识别率产生的影响,提出了一种基于模糊聚类的局部线性嵌入和支持向量机的人脸识别方法。利用改进的算法对人脸库中的图像进行特征提取,然后采用支持向量机分类器对人脸进行训练和识别。实验表明,该方法提高了人脸的识别率。 展开更多
关键词 人脸识别 局部线性嵌入 模糊聚类 支持向量机
在线阅读 下载PDF
基于逆迭代的增量LLE算法 被引量:1
17
作者 朱明旱 罗大庸 《计算机工程与应用》 CSCD 北大核心 2010年第17期176-178,共3页
Locally Linear Embedding(LLE)算法是一种很好的流形学习算法,但是它只能以批处理的方式进行,只要有新的样本加入,就必须重作该算法的全部内容。而原来的运算结果被全部丢弃。提出了一种基于逆迭代的增量LLE算法,实现了流形的增量学习... Locally Linear Embedding(LLE)算法是一种很好的流形学习算法,但是它只能以批处理的方式进行,只要有新的样本加入,就必须重作该算法的全部内容。而原来的运算结果被全部丢弃。提出了一种基于逆迭代的增量LLE算法,实现了流形的增量学习。在Swiss roll和S-curve数据库上的实验表明,该算法与LLE算法所计算出的投影值误差小于0.001%,运行的耗时少,具有很好的应用价值。 展开更多
关键词 局部线性嵌入 流形学习 逆迭代 增量
在线阅读 下载PDF
利用LLE和PCA方法提高地震数据信噪比 被引量:1
18
作者 李瑛 杨丽娟 张春娥 《控制工程》 CSCD 北大核心 2016年第11期1779-1783,共5页
地震数据具有高维特性,而现有的地震数据去噪方法难以处理高维空间的非线性模式数据,如地震剖面的弯曲同相轴。为此,提出利用局部线性嵌入(LLE)和主成分分析(PCA)方法对含有非线性模式的地震数据进行去噪处理。首先,利用LLE重构方式对... 地震数据具有高维特性,而现有的地震数据去噪方法难以处理高维空间的非线性模式数据,如地震剖面的弯曲同相轴。为此,提出利用局部线性嵌入(LLE)和主成分分析(PCA)方法对含有非线性模式的地震数据进行去噪处理。首先,利用LLE重构方式对地震图像采样点用其近邻进行重建;然后,利用PCA分解对LLE重构后的地震图像进行有效信号和噪声分离,去除不相关的噪声。最后,在正演模型和真实地震资料上的实验结果表明,提出的方法有效地消除了随机噪声。 展开更多
关键词 局部线性嵌入 主成分分析 地震图像 信噪比 重建
在线阅读 下载PDF
基于LLE和LSSVM的滚动轴承故障诊断 被引量:1
19
作者 李力 李冕 陈法法 《煤矿机械》 2015年第7期308-310,共3页
针对滚动轴承故障特征混叠难以有效区分的问题,提出基于局部线性嵌入(LLE)与最小二乘支持向量机(LSSVM)结合的故障诊断方法。在由振动信号时域和频域统计指标构造的多维特征空间中,通过LLE算法对多维特征空间进行非线性降维处理,得到初... 针对滚动轴承故障特征混叠难以有效区分的问题,提出基于局部线性嵌入(LLE)与最小二乘支持向量机(LSSVM)结合的故障诊断方法。在由振动信号时域和频域统计指标构造的多维特征空间中,通过LLE算法对多维特征空间进行非线性降维处理,得到初始低维流形结构。将低维流形结构导入LSSVM中进行学习训练与故障辨识。应用于滚动轴承故障分析表明,该方法不仅对高维复杂的非线性故障特征具有良好的降维性能,而且故障识别率较之传统方法有明显提高,能够有效识别出高维特征空间的非线性故障特征。 展开更多
关键词 局部线性嵌入(lle) 最小二乘支持向量机(LSSVM) 滚动轴承故障 诊断
在线阅读 下载PDF
基于改进型深度LLE和随机森林的人脸检测算法 被引量:1
20
作者 宋全有 李万高 《电子器件》 CAS 北大核心 2014年第4期626-630,共5页
针对人脸检测问题的特点,提出一种基于改进型深度LLE(Locally Linear Embedding)算法和随机森林相结合的人脸检测算法。首先,通过采集图像的深度信息,结合图像的颜色信息,构建三维图像信息数据库,再通过改进的LLE算法得到最优降维结果,... 针对人脸检测问题的特点,提出一种基于改进型深度LLE(Locally Linear Embedding)算法和随机森林相结合的人脸检测算法。首先,通过采集图像的深度信息,结合图像的颜色信息,构建三维图像信息数据库,再通过改进的LLE算法得到最优降维结果,按一定比例选取训练集,输入随机森林算法建立数据分类器;最后,将测试集输入到训练完成的分类器中,实现人脸图像的检测。选取Yale,JAFFE 2类数据集与传统算法进行对比实验,验证算法的优越性和可行性。实验结果表明:所提出的算法可以有效地完成人脸检测,检测率高于传统算法7%左右。 展开更多
关键词 人脸检测 局部线性嵌入 深度 降维 随机森林
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部