In this paper, global input-to-state stability (ISS) for discrete-time piecewise affine systems with time-delay are considered Piecewise quadratic ISS-Lyapunov functions are adopted. Both Lyapunov-Razumikhiu and Lya...In this paper, global input-to-state stability (ISS) for discrete-time piecewise affine systems with time-delay are considered Piecewise quadratic ISS-Lyapunov functions are adopted. Both Lyapunov-Razumikhiu and Lyapunov-Krasovskii methods are used The theorems of Lyapunov-Razumikhin type and Lyapunov-Krasovskii type for piecewise affine systems with time-delay are shown respectively.展开更多
This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical m...This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical methods is established.The conditions of the exact and EM method for an SDCS with the property of mean-square exp-ISS are obtained without involving control Lyapunov functions or functional.Under the global Lipschitz coefficients and mean-square continuous measurable inputs,it is proved that the mean-square exp-ISS of an SDCS holds if and only if that of the EM method is preserved for a sufficiently small step size.The proposed results are evaluated by using numerical experiments to show their effectiveness.展开更多
This work investigates the input-to-state stability(ISS)problem for impulsive switched singular systems(ISSSs)with mismatched disturbances.In this paper,‘disturbance’is a general concept that includes model uncertai...This work investigates the input-to-state stability(ISS)problem for impulsive switched singular systems(ISSSs)with mismatched disturbances.In this paper,‘disturbance’is a general concept that includes model uncertainty,unknown system dynamic,external disturbance,etc.The modified uncertainty and disturbance estimator(UDE)-based control method is presented for singular systems and ISSSs,a virtual control is introduced to offset the effects of mismatched disturbances.On the basis of a discontinuous multiple Lyapunov functional and admissible edge-dependent average dwell time(AED-ADT)method,several sufficient conditions in terms of linear matrix inequalities(LMIs)are obtained to ensure that the closed-loop systems are regular,impulse-free and ISS.Finally,two examples are given to demonstrate the effectiveness of the proposed results.展开更多
We consider how small delays affect the integral-input-to-state stability(iss)property for a system.Our result is similar to the input-to-state stability(Iss)result obtained in[1]:the iss property will be preserved in...We consider how small delays affect the integral-input-to-state stability(iss)property for a system.Our result is similar to the input-to-state stability(Iss)result obtained in[1]:the iss property will be preserved in a practical and semi-global manner if the delay interval is small enough.However,since the iss quantifies the robust stability in terms of a generalized Li norm of the inputs instead of a generalized Loo norm of the inputs for the Iss case,the techniques and proofs for the Iss case do not apply to the iss case directly.While the proofs in[1]are based on the Lyapunov-Razumikhin approach,our proofs are based on the iss-Lyapunov functions for the zero-delay system.In addition to the interest by its own in showing how the iss property is affected by small delays,the result also serves to the study of the iss property for singularly perturbed systems.展开更多
In this paper, the property of practical input-to-state stability and its application to stability of cascaded nonlinear systems are investigated in the stochastic framework. Firstly, the notion of (practical) stoch...In this paper, the property of practical input-to-state stability and its application to stability of cascaded nonlinear systems are investigated in the stochastic framework. Firstly, the notion of (practical) stochastic input-to-state stability with respect to a stochastic input is introduced, and then by the method of changing supply functions, (a) an (practical) SISS-Lyapunov function for the overall system is obtained from the corresponding Lyapunov functions for cascaded (practical) SISS subsystems.展开更多
In this paper, the input-to-state stability (ISS) analysis is addressed for switched nonlinear delay systems. By introducing a novel Lyapunov-Krasovskii functional with indefinite derivative and the merging switchin...In this paper, the input-to-state stability (ISS) analysis is addressed for switched nonlinear delay systems. By introducing a novel Lyapunov-Krasovskii functional with indefinite derivative and the merging switching signal techniques, some new- criteria are established for switched nonlinear delay systems under asynchronous switching, which extends the existing results to the nonlinear systems with switching rules and delays. The ISS problem is also considered under synchronous switching for switched nonlinear systems by employing the similar techniques. Finally, a nonlinear delay model is provided to show the effectiveness of the proposed results.展开更多
Passive torque servo system (PTSS) simulates aerodynamic load and exerts the load on actuation system, but PTSS endures position coupling disturbance from active motion of actuation system, and this inherent disturb...Passive torque servo system (PTSS) simulates aerodynamic load and exerts the load on actuation system, but PTSS endures position coupling disturbance from active motion of actuation system, and this inherent disturbance is called extra torque. The most important issue for PTSS controller design is how to eliminate the influence of extra torque. Using backstepping technique, adaptive fuzzy torque control (AFTC) algorithm is proposed for PTSS in this paper, which reflects the essential characteristics of PTSS and guarantees transient tracking performance as well as final tracking accuracy. Takagi-Sugeno (T-S) fuzzy logic system is utilized to compensate parametric uncertainties and unstructured uncertainties. The output velocity of actuator identified model is introduced into AFTC aiming to eliminate extra torque. The closed-loop stability is studied using small gain theorem and the control system is proved to be semiglobally uniformly ultimately bounded. The proposed AFTC algorithm is applied to an electric load simulator (ELS), and the comparative experimental results indicate that AFTC controller is effective for PTSS.展开更多
The input-to-state stability (ISS) problem is studied for switched systems with infinite subsystems. By using multiple Lyapunov function method, a sufficient ISS condition is given based on a quantitative relation o...The input-to-state stability (ISS) problem is studied for switched systems with infinite subsystems. By using multiple Lyapunov function method, a sufficient ISS condition is given based on a quantitative relation of the control and the values of the Lyapunov functions of the subsystems before and after the switching instants. In terms of the average dwell-time of the switching laws, some sufficient ISS conditions are obtained for switched nonlinear systems and switched linear systems, respectively.展开更多
This paper studies the stability problem for networked control systems.A general result,called network gain theorem,is introduced to determine the input-to-state stability(ISS)for interconnected nonlinear systems.We s...This paper studies the stability problem for networked control systems.A general result,called network gain theorem,is introduced to determine the input-to-state stability(ISS)for interconnected nonlinear systems.We show how this result generalises the previously known small gain theorem and cyclic small gain theorem for ISS.For the case of linear networked systems,a complete characterisation of the stability condition is provided,together with two distributed algorithms for computing the network gain:the classical Jacobi iterations and a message-passing algorithm.For the case of nonlinear networked systems,characterisation of the ISS condition can be done using M-functions,and Jacobi iterations can be used to compute the network gain.展开更多
In this paper,input-to-state stability of nonlinear time-delay systems on time scales is investigated.Due to the advantages of the strict Lyapunov functionals in uncertainty quantification and robustness analysis,one ...In this paper,input-to-state stability of nonlinear time-delay systems on time scales is investigated.Due to the advantages of the strict Lyapunov functionals in uncertainty quantification and robustness analysis,one always prefers to construct the strict Lyapunov functionals to analyse stability of time-delay systems.However,it may be not an easy task to do this for some timedelay systems.This paper proposes an input-to-state stability theorem based on a time-scale uniformly asymptotically stable function.The advantage of this theorem is that it is dependent on the non-strict Lyapunov functional,whose time-scale derivative can be non-negative on some time intervals.Then,some approaches are established to construct the strict Lyapunov functionals based on the non-strict ones.It is shown that input-to-state stability theorems can be also formulated in terms of these strict Lyapunov functionals.Finally,to illustrate the effectiveness of the main results,an example is given.展开更多
Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significan...Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significance for the high-quality illumination of phosphor-converted WLEDs.Here,a novel red-emitting phosphor K_(2)Zn(PO_(3))_(4)∶Mn^(2+)is synthesized by standard high temperature solid state reaction in ambient atmosphere,which is a new member of self-reduction system.An effective synthesis strategy is proposed to optimize its photoluminescent performances.Combined with X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy,oxygen vacancy defects introduced by Mn doping are proved to play an important role in the transition of Mn^(4+)→Mn^(2+).Thermoluminescence analysis reveals that the distribution of trap levels,especially the deep ones,is effectively regulated by the controllable crystallization and significantly affect the thermal stability of phosphors.Then a defect-assisted model is proposed to address the inner mechanism of the phenomenon.The carriers trapped by deep trap levels can be released under the high-temperature stimulus,which return back to the luminescent centers and participate in the radiative recombination to improve thermal stability.This study provides a new crystallographic idea and theoretical support for obtaining luminescent materials with high thermal stability.展开更多
In order to increase the stability of the Mongolia power system, a single-phase automatic reclosing device (SPAR) was introduced on double-circuit power lines built with a size of 330 kV, operating on a voltage of 220...In order to increase the stability of the Mongolia power system, a single-phase automatic reclosing device (SPAR) was introduced on double-circuit power lines built with a size of 330 kV, operating on a voltage of 220 kV and a length of 250 km. These overhead power lines (L-213, L-214) connect the 220/110/35 kV “Songino” substation with the “Mandal” substation and form system networks. This paper presents the challenges encountered when implementing single-phase automatic reclosing (SPAR) devices and compares the changes in power system parameters before and after SPAR deployment for a long 220 kV line. Simulations and analyses were carried out using DIgSILENT PowerFactory software, focusing on rotor angle stability, and the overall impact on the power system during short-circuit faults. The evaluation also utilized measurement data from the Wide Area Monitoring System (WAMS) to compare system behavior pre- and post-implementation of SPAR. The findings reveal that SPAR significantly enhances system reliability and stability, effectively mitigating the risk of oscillations and stability loss triggered by short circuits. This improvement contributes to a more resilient power system, reducing the potential for disturbances caused by faults.展开更多
Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are a...Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are accurate but computationally expensive and unsuitable for high-throughput screening. This study introduces a machine learning (ML) framework trained on high-dimensional data from the Open Quantum Materials Database (OQMD) to predict formation energy, a key stability metric. Among the evaluated models, deep learning outperformed Gradient Boosting Machines and Random Forest, achieving up to 0.88 R2 prediction accuracy. Feature importance analysis identified thermodynamic, electronic, and structural properties as the primary drivers of stability, offering interpretable insights into material behavior. Compared to DFT, the proposed ML framework significantly reduces computational costs, enabling the rapid screening of thousands of compounds. These results highlight ML’s transformative potential in materials discovery, with direct applications in energy storage, semiconductors, and catalysis.展开更多
This study presents a novel method to evaluate the safety of open-pit slopes by means of three-dimensional numerical modeling with the finite difference method. The method presented here uses a block model as a vehicl...This study presents a novel method to evaluate the safety of open-pit slopes by means of three-dimensional numerical modeling with the finite difference method. The method presented here uses a block model as a vehicle to carry relevant information from the rock mass and automatically construct the numerical model. The results suggest that the method is promising because of its capacity to accurately incorporate a large amount of high-complexity rock data by considering spatial location and material behavior. It is expected that the innovations in this method will make the design, construction, and operation of open-pit iron mines safer and more economical.展开更多
BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of cor...BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.展开更多
Plant diversity plays a crucial role in maintaining the stability of ecological function.Based on field investigations and experimental analyses,artificial grassland plots with varying sowing times,adjacent natural gr...Plant diversity plays a crucial role in maintaining the stability of ecological function.Based on field investigations and experimental analyses,artificial grassland plots with varying sowing times,adjacent natural grassland(CK),and open-pit coal mine dumps in the Muli mining area of Qinghai Province were selected as research subjects for this study.The characteristics of plant diversity and community stability were measured and analyzed,and the relationships between these factors and their influencing variables were evaluated.The results indicated significant differences in the vegetation community characteristics and plant diversity among the various grasslands.Coverage,aboveground biomass,belowground biomass,soil total nitrogen,and soil total carbon were the highest when the growth period was three years.Plant diversity and community stability in the natural grassland were significantly greater than that in the artificial grassland and open-pit coal mine dumps.A significant positive correlation was observed between plant diversity and community stability,suggesting that plant diversity can serve as an index of community stability.The order of stability,from highest to lowest,was CK>11a>10a>8a>9a>6a>7a>3a>2a>1a>0a.Years were identified as the primary factors affecting plant diversity and community stability by altering the soil pH.These results elucidate the relationships and driving mechanisms between plant diversity and community stability in grasslands,providing a scientific basis for maintaining community stability in artificial grassland ecosystems in alpine mining areas.展开更多
In this paper,we establish a stability estimate for the isoperimetric inequality of horospherically convex domains in hyperbolic plane.This estimate involves a relationship between the Hausdorff distance to a geodesic...In this paper,we establish a stability estimate for the isoperimetric inequality of horospherically convex domains in hyperbolic plane.This estimate involves a relationship between the Hausdorff distance to a geodesic ball and the deficit in the isoperimetric inequality,where the coefficient of the deficit is a universal constant.展开更多
基金supported by National Natural Science Foundation of China (No. 60874006)Natural Science Foundation of Hei-longjiang Province for Youth (No. QC2009C99)
文摘In this paper, global input-to-state stability (ISS) for discrete-time piecewise affine systems with time-delay are considered Piecewise quadratic ISS-Lyapunov functions are adopted. Both Lyapunov-Razumikhiu and Lyapunov-Krasovskii methods are used The theorems of Lyapunov-Razumikhin type and Lyapunov-Krasovskii type for piecewise affine systems with time-delay are shown respectively.
基金supported by the National Natural Science Foundation of China(6127312660904032)the Natural Science Foundation of Guangdong Province(10251064101000008)
文摘This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical methods is established.The conditions of the exact and EM method for an SDCS with the property of mean-square exp-ISS are obtained without involving control Lyapunov functions or functional.Under the global Lipschitz coefficients and mean-square continuous measurable inputs,it is proved that the mean-square exp-ISS of an SDCS holds if and only if that of the EM method is preserved for a sufficiently small step size.The proposed results are evaluated by using numerical experiments to show their effectiveness.
基金Supported by National Natural Science Foundation of China(10571036)the Key Discipline Development Program of Beijing Municipal Commission (XK100080537)
基金Supported by National Natural Science Foundation of China (60872046) the Key Discipline Development Program of Beijing Municipal Commission (XK100080537)
基金supported by the National Natural Science Foundation of China under Grant No.61977042the Foundation for Innovative Research Groups of National Natural Science Foundation of China under Grant No.61821004。
文摘This work investigates the input-to-state stability(ISS)problem for impulsive switched singular systems(ISSSs)with mismatched disturbances.In this paper,‘disturbance’is a general concept that includes model uncertainty,unknown system dynamic,external disturbance,etc.The modified uncertainty and disturbance estimator(UDE)-based control method is presented for singular systems and ISSSs,a virtual control is introduced to offset the effects of mismatched disturbances.On the basis of a discontinuous multiple Lyapunov functional and admissible edge-dependent average dwell time(AED-ADT)method,several sufficient conditions in terms of linear matrix inequalities(LMIs)are obtained to ensure that the closed-loop systems are regular,impulse-free and ISS.Finally,two examples are given to demonstrate the effectiveness of the proposed results.
文摘We consider how small delays affect the integral-input-to-state stability(iss)property for a system.Our result is similar to the input-to-state stability(Iss)result obtained in[1]:the iss property will be preserved in a practical and semi-global manner if the delay interval is small enough.However,since the iss quantifies the robust stability in terms of a generalized Li norm of the inputs instead of a generalized Loo norm of the inputs for the Iss case,the techniques and proofs for the Iss case do not apply to the iss case directly.While the proofs in[1]are based on the Lyapunov-Razumikhin approach,our proofs are based on the iss-Lyapunov functions for the zero-delay system.In addition to the interest by its own in showing how the iss property is affected by small delays,the result also serves to the study of the iss property for singularly perturbed systems.
基金the National Natural Science Foundation of China (No.60221301, No.60428304).
文摘In this paper, the property of practical input-to-state stability and its application to stability of cascaded nonlinear systems are investigated in the stochastic framework. Firstly, the notion of (practical) stochastic input-to-state stability with respect to a stochastic input is introduced, and then by the method of changing supply functions, (a) an (practical) SISS-Lyapunov function for the overall system is obtained from the corresponding Lyapunov functions for cascaded (practical) SISS subsystems.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61773235,61273123,61374004,61403227part by Program for New Century Excellent Talents in University under Grant No.NCET-13-0878part by the Taishan Scholar Project of Shandong Province of China under Grant No.tsqn20161033
文摘In this paper, the input-to-state stability (ISS) analysis is addressed for switched nonlinear delay systems. By introducing a novel Lyapunov-Krasovskii functional with indefinite derivative and the merging switching signal techniques, some new- criteria are established for switched nonlinear delay systems under asynchronous switching, which extends the existing results to the nonlinear systems with switching rules and delays. The ISS problem is also considered under synchronous switching for switched nonlinear systems by employing the similar techniques. Finally, a nonlinear delay model is provided to show the effectiveness of the proposed results.
基金National High-tech Research and Development Program of China (2009AA04Z412)"111" ProjectBUAA Fund of Graduate Education and Development
文摘Passive torque servo system (PTSS) simulates aerodynamic load and exerts the load on actuation system, but PTSS endures position coupling disturbance from active motion of actuation system, and this inherent disturbance is called extra torque. The most important issue for PTSS controller design is how to eliminate the influence of extra torque. Using backstepping technique, adaptive fuzzy torque control (AFTC) algorithm is proposed for PTSS in this paper, which reflects the essential characteristics of PTSS and guarantees transient tracking performance as well as final tracking accuracy. Takagi-Sugeno (T-S) fuzzy logic system is utilized to compensate parametric uncertainties and unstructured uncertainties. The output velocity of actuator identified model is introduced into AFTC aiming to eliminate extra torque. The closed-loop stability is studied using small gain theorem and the control system is proved to be semiglobally uniformly ultimately bounded. The proposed AFTC algorithm is applied to an electric load simulator (ELS), and the comparative experimental results indicate that AFTC controller is effective for PTSS.
基金the National Natural Science Foundation of China (Grant No. 60674038)
文摘The input-to-state stability (ISS) problem is studied for switched systems with infinite subsystems. By using multiple Lyapunov function method, a sufficient ISS condition is given based on a quantitative relation of the control and the values of the Lyapunov functions of the subsystems before and after the switching instants. In terms of the average dwell-time of the switching laws, some sufficient ISS conditions are obtained for switched nonlinear systems and switched linear systems, respectively.
基金supported in part by the National Natural Science Foundation of China(Nos.U21A20476,U1911401,U22A20221,62273100,62073090).
文摘This paper studies the stability problem for networked control systems.A general result,called network gain theorem,is introduced to determine the input-to-state stability(ISS)for interconnected nonlinear systems.We show how this result generalises the previously known small gain theorem and cyclic small gain theorem for ISS.For the case of linear networked systems,a complete characterisation of the stability condition is provided,together with two distributed algorithms for computing the network gain:the classical Jacobi iterations and a message-passing algorithm.For the case of nonlinear networked systems,characterisation of the ISS condition can be done using M-functions,and Jacobi iterations can be used to compute the network gain.
基金This work was supported by the National Natural Science Foundation of China[61873150]the China Postdoctoral Science Foundation[2020M672110].
文摘In this paper,input-to-state stability of nonlinear time-delay systems on time scales is investigated.Due to the advantages of the strict Lyapunov functionals in uncertainty quantification and robustness analysis,one always prefers to construct the strict Lyapunov functionals to analyse stability of time-delay systems.However,it may be not an easy task to do this for some timedelay systems.This paper proposes an input-to-state stability theorem based on a time-scale uniformly asymptotically stable function.The advantage of this theorem is that it is dependent on the non-strict Lyapunov functional,whose time-scale derivative can be non-negative on some time intervals.Then,some approaches are established to construct the strict Lyapunov functionals based on the non-strict ones.It is shown that input-to-state stability theorems can be also formulated in terms of these strict Lyapunov functionals.Finally,to illustrate the effectiveness of the main results,an example is given.
文摘Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significance for the high-quality illumination of phosphor-converted WLEDs.Here,a novel red-emitting phosphor K_(2)Zn(PO_(3))_(4)∶Mn^(2+)is synthesized by standard high temperature solid state reaction in ambient atmosphere,which is a new member of self-reduction system.An effective synthesis strategy is proposed to optimize its photoluminescent performances.Combined with X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy,oxygen vacancy defects introduced by Mn doping are proved to play an important role in the transition of Mn^(4+)→Mn^(2+).Thermoluminescence analysis reveals that the distribution of trap levels,especially the deep ones,is effectively regulated by the controllable crystallization and significantly affect the thermal stability of phosphors.Then a defect-assisted model is proposed to address the inner mechanism of the phenomenon.The carriers trapped by deep trap levels can be released under the high-temperature stimulus,which return back to the luminescent centers and participate in the radiative recombination to improve thermal stability.This study provides a new crystallographic idea and theoretical support for obtaining luminescent materials with high thermal stability.
文摘In order to increase the stability of the Mongolia power system, a single-phase automatic reclosing device (SPAR) was introduced on double-circuit power lines built with a size of 330 kV, operating on a voltage of 220 kV and a length of 250 km. These overhead power lines (L-213, L-214) connect the 220/110/35 kV “Songino” substation with the “Mandal” substation and form system networks. This paper presents the challenges encountered when implementing single-phase automatic reclosing (SPAR) devices and compares the changes in power system parameters before and after SPAR deployment for a long 220 kV line. Simulations and analyses were carried out using DIgSILENT PowerFactory software, focusing on rotor angle stability, and the overall impact on the power system during short-circuit faults. The evaluation also utilized measurement data from the Wide Area Monitoring System (WAMS) to compare system behavior pre- and post-implementation of SPAR. The findings reveal that SPAR significantly enhances system reliability and stability, effectively mitigating the risk of oscillations and stability loss triggered by short circuits. This improvement contributes to a more resilient power system, reducing the potential for disturbances caused by faults.
文摘Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are accurate but computationally expensive and unsuitable for high-throughput screening. This study introduces a machine learning (ML) framework trained on high-dimensional data from the Open Quantum Materials Database (OQMD) to predict formation energy, a key stability metric. Among the evaluated models, deep learning outperformed Gradient Boosting Machines and Random Forest, achieving up to 0.88 R2 prediction accuracy. Feature importance analysis identified thermodynamic, electronic, and structural properties as the primary drivers of stability, offering interpretable insights into material behavior. Compared to DFT, the proposed ML framework significantly reduces computational costs, enabling the rapid screening of thousands of compounds. These results highlight ML’s transformative potential in materials discovery, with direct applications in energy storage, semiconductors, and catalysis.
文摘This study presents a novel method to evaluate the safety of open-pit slopes by means of three-dimensional numerical modeling with the finite difference method. The method presented here uses a block model as a vehicle to carry relevant information from the rock mass and automatically construct the numerical model. The results suggest that the method is promising because of its capacity to accurately incorporate a large amount of high-complexity rock data by considering spatial location and material behavior. It is expected that the innovations in this method will make the design, construction, and operation of open-pit iron mines safer and more economical.
文摘BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.
基金financial support provided by the Research and Application Demonstration of Native Ecological Grass Seed Breeding Technology in“Black Soil Beaches”(2024-SF-101)。
文摘Plant diversity plays a crucial role in maintaining the stability of ecological function.Based on field investigations and experimental analyses,artificial grassland plots with varying sowing times,adjacent natural grassland(CK),and open-pit coal mine dumps in the Muli mining area of Qinghai Province were selected as research subjects for this study.The characteristics of plant diversity and community stability were measured and analyzed,and the relationships between these factors and their influencing variables were evaluated.The results indicated significant differences in the vegetation community characteristics and plant diversity among the various grasslands.Coverage,aboveground biomass,belowground biomass,soil total nitrogen,and soil total carbon were the highest when the growth period was three years.Plant diversity and community stability in the natural grassland were significantly greater than that in the artificial grassland and open-pit coal mine dumps.A significant positive correlation was observed between plant diversity and community stability,suggesting that plant diversity can serve as an index of community stability.The order of stability,from highest to lowest,was CK>11a>10a>8a>9a>6a>7a>3a>2a>1a>0a.Years were identified as the primary factors affecting plant diversity and community stability by altering the soil pH.These results elucidate the relationships and driving mechanisms between plant diversity and community stability in grasslands,providing a scientific basis for maintaining community stability in artificial grassland ecosystems in alpine mining areas.
文摘In this paper,we establish a stability estimate for the isoperimetric inequality of horospherically convex domains in hyperbolic plane.This estimate involves a relationship between the Hausdorff distance to a geodesic ball and the deficit in the isoperimetric inequality,where the coefficient of the deficit is a universal constant.