针对最大功率点跟踪(Maximum power point tracking, MPPT)算法中传统滑模控制存在收敛速度慢、抖振显著等不足,提出一种基于RBF神经网络的光伏系统非线性反步积分滑模(Nonlinear backstepping integral sliding mode control, NBISMC)...针对最大功率点跟踪(Maximum power point tracking, MPPT)算法中传统滑模控制存在收敛速度慢、抖振显著等不足,提出一种基于RBF神经网络的光伏系统非线性反步积分滑模(Nonlinear backstepping integral sliding mode control, NBISMC)最大功率点跟踪策略。首先,采用RBF神经网络对各种气象条件下的光伏电池输出电压进行预测;其次,设计非线性积分滑模面以改善传统滑模控制存在稳态误差及超调量大的问题;最后,设计新型指数趋近律,在加快收敛速度的同时有效削弱了系统高频抖振;通过Lyapunov函数分析非线性反步积分滑模控制的可达性与稳定性,并在静态、动态和遮光条件下进行仿真试验。仿真试验结果表明,在温度和光照强度发生变化的工况下,相比于传统滑模控制,基于RBF神经网络的非线性反步积分滑模控制能在各种气象条件下快速、准确地跟踪光伏系统最大功率点,具有较强的鲁棒性。展开更多
A transition Fokker-Planck-Kolmogorov(FPK) equation describes the procedure of the probability density evolution whereby the dynamic response and reliability evaluation of mechanical systems could be carried out. The ...A transition Fokker-Planck-Kolmogorov(FPK) equation describes the procedure of the probability density evolution whereby the dynamic response and reliability evaluation of mechanical systems could be carried out. The transition FPK equation of vibratory energy harvesting systems is a four-dimensional nonlinear partial differential equation. Therefore, it is often very challenging to obtain an exact probability density. This paper aims to investigate the stochastic response of vibration energy harvesters(VEHs)under the Gaussian white noise excitation. The numerical path integration method is applied to different types of nonlinear VEHs. The probability density function(PDF)from the transition FPK equation of energy harvesting systems is calculated using the path integration method. The path integration process is introduced by using the GaussLegendre integration scheme, and the short-time transition PDF is formulated with the short-time Gaussian approximation. The stationary probability densities of the transition FPK equation for vibratory energy harvesters are determined. The procedure is applied to three different types of nonlinear VEHs under Gaussian white excitations. The approximately numerical outcomes are qualitatively and quantitatively supported by the Monte Carlo simulation(MCS).展开更多
This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transf...This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.展开更多
Some new inequalities involving improper integrals are established in the paper which generalize the related results due to Pachpatte and Rodrigues.Discrete analogues of the integral inequalities obtained are also der...Some new inequalities involving improper integrals are established in the paper which generalize the related results due to Pachpatte and Rodrigues.Discrete analogues of the integral inequalities obtained are also derived.An example is given to show that the bound in Theorem 1 is not improvable.展开更多
The velocity tracking control of a hydraulic servo system is studied. Sincethe dynamics of the system are highly nonlinear and have large extent of model uncertainties, suchas big changes in load and parameters, a der...The velocity tracking control of a hydraulic servo system is studied. Sincethe dynamics of the system are highly nonlinear and have large extent of model uncertainties, suchas big changes in load and parameters, a derivation and integral sliding mode variable structurecontrol scheme (DI-SVSC) is proposed. An integral controller is introduced to avoid the assumptionthat the derivative of desired signal must be known in conventional sliding mode variable structurecontrol, a nonlinear derivation controller is used to weaken the chattering of system. The designmethod of switching function in integral sliding mode control, nonlinear derivation coefficient andcontrollers of DI-SVSC is presented respectively. Simulation shows that the control approach is ofnice robustness and improves velocity tracking accuracy considerably.展开更多
In this paper,we are concerned with the regularity and symmetry of positive solutions of the following nonlinear integral system u(x) = ∫R n G α(x-y)v(y) q/|y|β dy,v(x) = ∫R n G α(x-y)u(y) p/|y|β...In this paper,we are concerned with the regularity and symmetry of positive solutions of the following nonlinear integral system u(x) = ∫R n G α(x-y)v(y) q/|y|β dy,v(x) = ∫R n G α(x-y)u(y) p/|y|β dy for x ∈ R n,where G α(x) is the kernel of Bessel potential of order α,0 ≤β 〈 α 〈 n,1 〈 p,q 〈 n-β/β and 1/p + 1 + 1/q + 1 〉 n-α + β/n.We show that positive solution pairs(u,v) ∈ L p +1(R n) × L q +1(R n) are Ho¨lder continuous,radially symmetric and strictly decreasing about the origin.展开更多
This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee t...This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feas.ibility of the proposed technique.展开更多
A numerical scheme for the nonlinear behavior of structure under wind excitation is investigated. With the white noise filter of turbulent-wind fluctuations, the nonlinear motion equation of structures subjected to wi...A numerical scheme for the nonlinear behavior of structure under wind excitation is investigated. With the white noise filter of turbulent-wind fluctuations, the nonlinear motion equation of structures subjected to wind load was modeled as the Ito' s stochastic differential equation. The state vector associated with such a model is a diffusion process. A continuous linearization strategy in the time-domain was adopted. Based on the solution series of its stochastic linearization equations, the formal probabilistic density of the structure response was developed by the path integral technique. It is shown by the numerical example of a guyed mast that compared with the frequency-domain method and the time-domain nonlinear analysis, the proposed approach is highlighted by high accuracy and effectiveness. The influence of the structure non-linearity on the dynamic reliability assessment is also analyzed in the example.展开更多
A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoot...A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching lines and branching-off solutions of this equation are constructed and justified. Numerical examples are presented.展开更多
This paper develops a new method to deal with the robust H-infinity control problem for a class of uncertain switched nonlinear systems by using integral sliding mode control.A robust H-infinity integral sliding surfa...This paper develops a new method to deal with the robust H-infinity control problem for a class of uncertain switched nonlinear systems by using integral sliding mode control.A robust H-infinity integral sliding surface is constructed such that the sliding mode is robust stable with a prescribed disturbance attenuation level γ for a class of switching signals with average dwell time.Furthermore,variable structure controllers are designed to maintain the state of switched system on the sliding surface from the initial time.A numerical example is given to illustrate the effectiveness of the proposed method.展开更多
The main goal of this work is to develop an effective technique for solving nonlinear systems of Volterra integral equations. The main tools are the cardinal spline functions on small compact supports. We solve a syst...The main goal of this work is to develop an effective technique for solving nonlinear systems of Volterra integral equations. The main tools are the cardinal spline functions on small compact supports. We solve a system of algebra equations to approximate the solution of the system of integral equations. Since the matrix for the algebraic system is nearly triangular, It is relatively painless to solve for the unknowns and an approximation of the original solution with high precision is accomplished. In order to enhance the accuracy, several cardinal splines are employed in the paper. Our schemes were compared with other techniques proposed in recent papers and the advantage of our method was exhibited with several numerical examples.展开更多
In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomi...In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].展开更多
In the steering process of tracked vehicle with hydrostatic drive,the motion and resistance states of the vehicle are always of uncertain and nonlinear characteristics,and these states may undergoe large-scale changes...In the steering process of tracked vehicle with hydrostatic drive,the motion and resistance states of the vehicle are always of uncertain and nonlinear characteristics,and these states may undergoe large-scale changes.Therefore,it is significant to enhance the steering stability of tracked vehicle with hydrostatic drive to meet the need of future battlefield.In this paper,a sliding mode control algorithm is proposed and applied to achieve desired yaw rates.The speed controller and the yaw rate controller are designed through the kinematics and dynamics analysis.In addition,the nonlinear derivative and integral sliding mode control algorithm is designed,which is supposed to efficiently reduce the integration saturation and the disturbances from the unsmooth road surfaces through a conditional integrator approach.Moreover,it improves the response speed of the system and reduces the chattering by the derivative controller.The hydrostatic tracked vehicle module is modeled with a multi-body dynamic software RecurDyn and the steering control strategy module is modeled by MATLAB/Simulink.The co-simulation results of the whole model show that the control strategy can improve the vehicle steering response speed and also ensure a smooth control output with small chattering and strong robustness.展开更多
文摘针对最大功率点跟踪(Maximum power point tracking, MPPT)算法中传统滑模控制存在收敛速度慢、抖振显著等不足,提出一种基于RBF神经网络的光伏系统非线性反步积分滑模(Nonlinear backstepping integral sliding mode control, NBISMC)最大功率点跟踪策略。首先,采用RBF神经网络对各种气象条件下的光伏电池输出电压进行预测;其次,设计非线性积分滑模面以改善传统滑模控制存在稳态误差及超调量大的问题;最后,设计新型指数趋近律,在加快收敛速度的同时有效削弱了系统高频抖振;通过Lyapunov函数分析非线性反步积分滑模控制的可达性与稳定性,并在静态、动态和遮光条件下进行仿真试验。仿真试验结果表明,在温度和光照强度发生变化的工况下,相比于传统滑模控制,基于RBF神经网络的非线性反步积分滑模控制能在各种气象条件下快速、准确地跟踪光伏系统最大功率点,具有较强的鲁棒性。
基金supported by the National Natural Science Foundation of China(Nos.11702119 and51779111)the Natural Science Foundation of Jiangsu Province of China(Nos.BK20170565 and BK20170581)
文摘A transition Fokker-Planck-Kolmogorov(FPK) equation describes the procedure of the probability density evolution whereby the dynamic response and reliability evaluation of mechanical systems could be carried out. The transition FPK equation of vibratory energy harvesting systems is a four-dimensional nonlinear partial differential equation. Therefore, it is often very challenging to obtain an exact probability density. This paper aims to investigate the stochastic response of vibration energy harvesters(VEHs)under the Gaussian white noise excitation. The numerical path integration method is applied to different types of nonlinear VEHs. The probability density function(PDF)from the transition FPK equation of energy harvesting systems is calculated using the path integration method. The path integration process is introduced by using the GaussLegendre integration scheme, and the short-time transition PDF is formulated with the short-time Gaussian approximation. The stationary probability densities of the transition FPK equation for vibratory energy harvesters are determined. The procedure is applied to three different types of nonlinear VEHs under Gaussian white excitations. The approximately numerical outcomes are qualitatively and quantitatively supported by the Monte Carlo simulation(MCS).
基金supported by National Natural Science Foundation of China (No. 60574014, No. 60425310)Doctor Subject Foundation of China (No. 200805330004)+2 种基金Program for New Century Excellent Talents in University (No. NCET-06-0679)Natural Science Foundation of Hunan Province of China (No. 08JJ1010)Science Foundation of Education Department of Hunan Province (No. 08C106)
文摘This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.
基金Supported by the Natural Science Foundation of Guangdong Pronvince( 0 1 1 471 ) and Education Bu-reau( 0 1 76)
文摘Some new inequalities involving improper integrals are established in the paper which generalize the related results due to Pachpatte and Rodrigues.Discrete analogues of the integral inequalities obtained are also derived.An example is given to show that the bound in Theorem 1 is not improvable.
文摘The velocity tracking control of a hydraulic servo system is studied. Sincethe dynamics of the system are highly nonlinear and have large extent of model uncertainties, suchas big changes in load and parameters, a derivation and integral sliding mode variable structurecontrol scheme (DI-SVSC) is proposed. An integral controller is introduced to avoid the assumptionthat the derivative of desired signal must be known in conventional sliding mode variable structurecontrol, a nonlinear derivation controller is used to weaken the chattering of system. The designmethod of switching function in integral sliding mode control, nonlinear derivation coefficient andcontrollers of DI-SVSC is presented respectively. Simulation shows that the control approach is ofnice robustness and improves velocity tracking accuracy considerably.
基金Chen research is supported by NSF of China (10961015)Yang research is supported by NSF of China (10961016)the GAN PO555 Program of Jiangxi
文摘In this paper,we are concerned with the regularity and symmetry of positive solutions of the following nonlinear integral system u(x) = ∫R n G α(x-y)v(y) q/|y|β dy,v(x) = ∫R n G α(x-y)u(y) p/|y|β dy for x ∈ R n,where G α(x) is the kernel of Bessel potential of order α,0 ≤β 〈 α 〈 n,1 〈 p,q 〈 n-β/β and 1/p + 1 + 1/q + 1 〉 n-α + β/n.We show that positive solution pairs(u,v) ∈ L p +1(R n) × L q +1(R n) are Ho¨lder continuous,radially symmetric and strictly decreasing about the origin.
基金Project supported by the National Natural Science Foundation of China (Grant No 60674026)the Key Project of Chinese Ministry of Education (Grant No 107058)+1 种基金the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016)the Jiangsu Provincial Program for Postgraduate Scientific Innovative Research of Jiangnan University (Grant No CX07B_116z)and PIRT Jiangnan
文摘This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feas.ibility of the proposed technique.
文摘A numerical scheme for the nonlinear behavior of structure under wind excitation is investigated. With the white noise filter of turbulent-wind fluctuations, the nonlinear motion equation of structures subjected to wind load was modeled as the Ito' s stochastic differential equation. The state vector associated with such a model is a diffusion process. A continuous linearization strategy in the time-domain was adopted. Based on the solution series of its stochastic linearization equations, the formal probabilistic density of the structure response was developed by the path integral technique. It is shown by the numerical example of a guyed mast that compared with the frequency-domain method and the time-domain nonlinear analysis, the proposed approach is highlighted by high accuracy and effectiveness. The influence of the structure non-linearity on the dynamic reliability assessment is also analyzed in the example.
文摘A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching lines and branching-off solutions of this equation are constructed and justified. Numerical examples are presented.
基金supported by the National Natural Science Foundation of China(No.60874024,60574013)
文摘This paper develops a new method to deal with the robust H-infinity control problem for a class of uncertain switched nonlinear systems by using integral sliding mode control.A robust H-infinity integral sliding surface is constructed such that the sliding mode is robust stable with a prescribed disturbance attenuation level γ for a class of switching signals with average dwell time.Furthermore,variable structure controllers are designed to maintain the state of switched system on the sliding surface from the initial time.A numerical example is given to illustrate the effectiveness of the proposed method.
文摘The main goal of this work is to develop an effective technique for solving nonlinear systems of Volterra integral equations. The main tools are the cardinal spline functions on small compact supports. We solve a system of algebra equations to approximate the solution of the system of integral equations. Since the matrix for the algebraic system is nearly triangular, It is relatively painless to solve for the unknowns and an approximation of the original solution with high precision is accomplished. In order to enhance the accuracy, several cardinal splines are employed in the paper. Our schemes were compared with other techniques proposed in recent papers and the advantage of our method was exhibited with several numerical examples.
文摘In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].
基金Supported by the National Natural Science Foundation of China(51475044)。
文摘In the steering process of tracked vehicle with hydrostatic drive,the motion and resistance states of the vehicle are always of uncertain and nonlinear characteristics,and these states may undergoe large-scale changes.Therefore,it is significant to enhance the steering stability of tracked vehicle with hydrostatic drive to meet the need of future battlefield.In this paper,a sliding mode control algorithm is proposed and applied to achieve desired yaw rates.The speed controller and the yaw rate controller are designed through the kinematics and dynamics analysis.In addition,the nonlinear derivative and integral sliding mode control algorithm is designed,which is supposed to efficiently reduce the integration saturation and the disturbances from the unsmooth road surfaces through a conditional integrator approach.Moreover,it improves the response speed of the system and reduces the chattering by the derivative controller.The hydrostatic tracked vehicle module is modeled with a multi-body dynamic software RecurDyn and the steering control strategy module is modeled by MATLAB/Simulink.The co-simulation results of the whole model show that the control strategy can improve the vehicle steering response speed and also ensure a smooth control output with small chattering and strong robustness.