BACKGROUND Inadequate glycemic control in patients with type 2 diabetes(T2DM)is a major public health problem and a significant risk factor for the progression of diabetic complications.AIM To evaluate the effects of ...BACKGROUND Inadequate glycemic control in patients with type 2 diabetes(T2DM)is a major public health problem and a significant risk factor for the progression of diabetic complications.AIM To evaluate the effects of intensive and supportive glycemic management strategies over a 12-month period in individuals with T2DM with glycated hemoglobin(HbA1c)≥10%and varying backgrounds of glycemic control.METHODS This prospective observational study investigated glycemic control in patients with poorly controlled T2DM over 12 months.Participants were categorized into four groups based on prior glycemic history:Newly diagnosed,previously well controlled with recent worsening,previously off-target but now worsening,and HbA1c consistently above 10%.HbA1c levels were monitored quarterly,and patients received medical,educational,and dietary support as needed.The analysis focused on the success rates of good glycemic control and the associated factors within each group.RESULTS The study showed significant improvements in HbA1c levels in all participants.The most significant improvement was observed in individuals newly diagnosed with diabetes:65%achieved an HbA1c target of≤7%.The results varied between participants with different glycemic control histories,followed by decreasing success rates:39%in participants with previously good glycemic control,21%in participants whose glycemic control had deteriorated compared to before,and only 10%in participants with persistently poor control,with mean HbA1c levels of 6.3%,7.7%,8.2%,and 9.7%,respectively.After one year,65.2%of the“newly diagnosed patients”,39.3%in the“previously controlled group”,21.9%in the“previously off-target but now worsened'”group and 10%in the“poorly controlled from the start”group had achieved HbA1c levels of 7 and below.CONCLUSION In poorly controlled diabetes,the rate at which treatment goals are achieved is associated with the glycemic background characteristics,emphasizing the need for tailored strategies.Therefore,different and comprehensive treatment approaches are needed for patients with persistent uncontrolled diabetes.展开更多
The increasing accumulation of space debris threatens the integrity and functionality of satellites and complicates orbital operations.This paper constructs an advanced rigid-flexible coupling dynamic model for tether...The increasing accumulation of space debris threatens the integrity and functionality of satellites and complicates orbital operations.This paper constructs an advanced rigid-flexible coupling dynamic model for tethered satellite systems,tailored to enhance space debris management.Utilizing the nodal position finite element method,the model significantly improves the precision of simulating tether dynamics and captures the complex interactions involving satellite and debris attitude dynamics.This advancement allows for detailed examination of potential tether entanglements and provides crucial data for optimizing deorbiting processes.To overcome the limitations of conventional control techniques,a robust adaptive sliding mode control strategy is developed.This approach is specifically designed to manage the unpredictable conditions of the low-Earth orbit and ensure precise satellite attitude control,critical for successful debris removal.Validated through extensive numerical simulations,our model and control strategy demonstrate substantial improvements in operational reliability and safety,significantly enhancing the success rate of deorbiting missions.展开更多
The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow ...The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.展开更多
The integration of visual elements,such as emojis,into educational content represents a promising approach to enhancing student engagement and comprehension.However,existing efforts in emoji integration often lack sys...The integration of visual elements,such as emojis,into educational content represents a promising approach to enhancing student engagement and comprehension.However,existing efforts in emoji integration often lack systematic frameworks capable of addressing the contextual and pedagogical nuances required for effective implementation.This paper introduces a novel framework that combines Data-Driven Error-Correcting Output Codes(DECOC),Long Short-Term Memory(LSTM)networks,and Multi-Layer Deep Neural Networks(ML-DNN)to identify optimal emoji placements within computer science course materials.The originality of the proposed system lies in its ability to leverage sentiment analysis techniques and contextual embeddings to align emoji recommendations with both the emotional tone and learning objectives of course content.A meticulously annotated dataset,comprising diverse topics in computer science,was developed to train and validate the model,ensuring its applicability across a wide range of educational contexts.Comprehensive validation demonstrated the system’s superior performance,achieving an accuracy of 92.4%,precision of 90.7%,recall of 89.3%,and an F1-score of 90.0%.Comparative analysis with baselinemodels and relatedworks confirms themodel’s ability tooutperformexisting approaches inbalancing accuracy,relevance,and contextual appropriateness.Beyond its technical advancements,this framework offers practical benefits for educators by providing an Artificial Intelligence-assisted(AI-assisted)tool that facilitates personalized content adaptation based on student sentiment and engagement patterns.By automating the identification of appropriate emoji placements,teachers can enhance digital course materials with minimal effort,improving the clarity of complex concepts and fostering an emotionally supportive learning environment.This paper contributes to the emerging field of AI-enhanced education by addressing critical gaps in personalized content delivery and pedagogical support.Its findings highlight the transformative potential of integrating AI-driven emoji placement systems into educational materials,offering an innovative tool for fostering student engagement and enhancing learning outcomes.The proposed framework establishes a foundation for future advancements in the visual augmentation of educational resources,emphasizing scalability and adaptability for broader applications in e-learning.展开更多
Objective:Studies on the occupational health risks and experiences of healthcare waste handlers since the decline in coronavirus disease 2019(COVID-19)incidence are scarce in Nigeria.The current study aimed to examine...Objective:Studies on the occupational health risks and experiences of healthcare waste handlers since the decline in coronavirus disease 2019(COVID-19)incidence are scarce in Nigeria.The current study aimed to examine what seemed as the"hidden"and rarely researched area of practice from the standpoint of different stakeholders in a Nigerian Lassa fever treatment hospital.The primary objective was to understand the nature of waste handlers'practices and experiences and identify areas for improvement centred on supporting the development of best practices,in accordance with the World Health Organisation(WHO)guidelines.Methods:This study employed a qualitative case study design,gathering data from healthcare waste handlers(n=34)through four focus groups.Additionally,four in-depth interviews were conducted with ward managers and the infection control team to gain insight into the organisational framing of waste handling practice,the perceived challenges faced by waste handlers from their perspectives,and the provision of training and support.The qualitative data were audio-recorded and transcribed verbatim through manual processes and subjected to a reflexive thematic analysis conducted manually.Results:The findings revealed that waste handlers were subjected to various occupational health risks,including back pain,needlestick injuries,psychological distress,fatigue,anxiety,and prolonged exposure to sunlight.Concerns were raised regarding the inadequate supply of personal protective equipment and other essential tools,which suggests a need for organisational commitment to ensure the continual availability of these resources to protect the health and safety of these employees.A critical issue identified was the lack of comprehensive training for waste handlers,highlighting a form of organisational negligence.The consensual views expressed by the waste handlers indicated a sense of dissatisfaction with their working environment,largely attributable to organisational and societal stigmatisation.Furthermore,the study underscored that the hospital management faced significant financial constraints and advocated for increased funding to effectively implement best practice standards.Conclusion:To effectively manage healthcare waste and reduce hazards to waste handlers,the organisational leadership should prioritise training and support.This initiative will not only benefit the waste handlers but also the patients,other healthcare workers,and the general public.Although the findings focus on the case context of a Nigerian Lassa fever treatment hospital,the wider implications of this study are linked to the role of institutional support for waste handling practice.Moreover,it extends to the potential positions of institutions as displaying a form of"benign anomie"in not ensuring the wellbeing of waste handlers through sufficient regulation and governance focused on prioritisation,processes,and procedures.The study highlights the relevance of embedding WHO guidelines in other similar contexts as part of implementation across institutions involved with waste handling.展开更多
This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mod...This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mode Control(GFISMC)is proposed based on the tip speed ratio method and sliding mode control.The algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low jitter.An offshore wind power generation system model is presented to verify the algorithm effect.An offshore off-grid wind-solar hybrid power generation systemis built in MATLAB/Simulink.Compared with other MPPT algorithms,this study has specific quantitative improvements in terms of convergence speed,tracking accuracy or computational efficiency.Finally,the improved algorithm is further analyzed and carried out by using Yuankuan Energy’s ModelingTech semi-physical simulation platform.The results verify the feasibility and effectiveness of the improved algorithm in the offshore wind-solar hybrid power generation system.展开更多
How budgetary management as a tool for planning and controlling of business operations is aligned with strategy and internal control system may not be problematic to American firms but is the most challengeable to lar...How budgetary management as a tool for planning and controlling of business operations is aligned with strategy and internal control system may not be problematic to American firms but is the most challengeable to large corporations in China. The case of Sinochem Corporation demonstrates the ways that budgetary management is linked with 3-year strategic planning at corporate level via yearly operating plans at business levels, and that budgets are integrated with internal control system into a device of task control to monitor whether business operations are on the track toward strategy. It is learned from the case that Chinese corporations have initiated different practices than American firms in solving the same issues.展开更多
In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relat...In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.展开更多
The rapid pace of economic globalization has presented both unprecedented opportunities and challenges for the construction industry.Management accounting and financial accounting,as integral components of enterprise ...The rapid pace of economic globalization has presented both unprecedented opportunities and challenges for the construction industry.Management accounting and financial accounting,as integral components of enterprise management,play indispensable roles in the development of construction companies.While both disciplines possess distinct characteristics,the evolving business landscape necessitates a more integrated approach.By combining the strengths and values of both,construction companies can gain valuable insights and make informed decisions.This paper delves into the concepts of management accounting and financial accounting,explores the feasibility of their integration within construction companies,and provides recommendations for implementation to foster sustainable development.The insights and strategies presented in this paper can serve as a valuable reference for other construction companies seeking to optimize their management and operations.展开更多
The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two ...The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.展开更多
Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization sup...Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.展开更多
As the sources of overt and covert potential safety hazards were widespread, the safety control and management of rural tourism became more complicated and difficult, which required more for technological support of r...As the sources of overt and covert potential safety hazards were widespread, the safety control and management of rural tourism became more complicated and difficult, which required more for technological support of rural tourism safety management. Based on the latitude of technological support, from the perspective of management practice of rural tourism safety, through analysis on inner symbiosis of management and technological support of rural tourism safety, the paper had studied three parts of control and management system of rural tourism safety, which were rural tourism safety identification, rural tourism safety isolation and control, and rural tourism safety treatment and solution; and the connotation of technological support during safety management had been discussed from the three aspects. It hoped to serve as reference for tourism safety management and control, so as to promote healthy, stable and sustainable development of tourism.展开更多
Flood control operation,a non-engineering measure,can efficiently manage flood disasters within a river basin.However,numerous uncertainties exit in the real-time operation of flood control systems,creating risks in d...Flood control operation,a non-engineering measure,can efficiently manage flood disasters within a river basin.However,numerous uncertainties exit in the real-time operation of flood control systems,creating risks in decision-making.As an efficient tool to mitigate these risks,risk management has garnered increasing attention in real-time flood control operation.This communication offers a series of suggestions for future research concerning risk management in real-time flood control operation,including risk assessment,risk diagnosis,and risk control methods.展开更多
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
In response to the complex composition,scattered data storage,and differences in management levels of manufacturing resources in the production site of complex products,the research and application of digital technolo...In response to the complex composition,scattered data storage,and differences in management levels of manufacturing resources in the production site of complex products,the research and application of digital technology for perception and control of manufacturing resources in the production site of complex products are of great significance for accelerating the digital transformation and upgrading of complex product manufacturing enterprises.Firstly,focusing on the problems of single element of local management,high cost of heterogeneous integration of multiple data sources,and the difficulty in cleaning up the global status of manufacturing resources in the production site of complex products,basic requirements and core requirements of enterprises for global management and control of manufacturing resources in the production site are deeply analyzed.Secondly,the indicators and data sources of different manufacturing resources that managers at different levels are concerned about are analyzed,providing guidance for refined management.Thirdly,a reference architecture of the manufacturing resource management and control platform for the production site of complex products is proposed,supporting access,integration,and global unified management of manufacturing resource information through the access strategy,data,basic component,and APP layers.Finally,the feasibility,effectiveness,and practicality of the architecture are verified through practical cases,aiming to provide a reference for the manufacturing resource management of complex product manufacturing enterprises.展开更多
Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implicatio...Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implications for ecological protection and quality development of the Yellow River Basin.Therefore,in this study,we took Yan'an City,Shaanxi Province of China,as the study area,selected four typical ecosystem services,including soil conservation service,water yield service,carbon storage service,and habitat quality service,and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions(including 1 city,2 districts,and 10 counties)of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment.The results showed that,from 2010 to 2018,soil conservation service decreased by 7.76%,while the other three ecosystem services changed relatively little,with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%,respectively.The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018,and the four ecosystem services showed synergistic relationships,among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant.The GCLC project had a negative impact on the ecosystem services of Yan'an City,and the impact on carbon storage service was more significant.This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security.展开更多
In order to alleviate the endurance anxiety and charging anxiety in the development of electric vehicles, super fast charging and heat pump technologies will be applied to the next generation of vehicle platforms, but...In order to alleviate the endurance anxiety and charging anxiety in the development of electric vehicles, super fast charging and heat pump technologies will be applied to the next generation of vehicle platforms, but they also bring new challenges to the thermal management system. The functional requirements of thermal management systems are increasing, and the complexity of the system and the types and quantities of components are increasing rapidly. Integration has become a solution to simplify the system and reduce costs. The first thing to do is to integrate the physical and functional integration of multiple coolant valves, and integrate the switching of thermal management loop into one valve. Through mechanical integration with other actuators, sensors and heat exchangers in the coolant circuit and refrigeration circuit, the space utilization rate of thermal management system is improved, which provides convenience for the modular design of main engine models. In the future, it will complement the integration of electronic and electrical architecture to achieve a higher degree of drive, control and software integration.展开更多
The highway engineering process is complex,coupled with a relatively long construction period,hence requires increased coordination between participating units to prevent economic disputes and efficiency losses.The ma...The highway engineering process is complex,coupled with a relatively long construction period,hence requires increased coordination between participating units to prevent economic disputes and efficiency losses.The main body of the construction project needs to strengthen the management and control of funds.In this regard,this paper analyzes the importance of cost management in highway projects by clarifying and analyzing the current cost management status quo problems and causes.The highway engineering cost control strategy and implementation methods are summarized to provide references for improving the quality of highway engineering.展开更多
With the rapid development of the photovoltaic(PV)industry and policy support,photovoltaic engineering has attracted much attention as a clean energy project.However,the complexity and huge investment scale of photovo...With the rapid development of the photovoltaic(PV)industry and policy support,photovoltaic engineering has attracted much attention as a clean energy project.However,the complexity and huge investment scale of photovoltaic projects make cost management and cost control the key to project success.The purpose of this paper is to discuss the cost management and cost control strategies of photovoltaic projects,analyze their importance and challenges in the process of project implementation,and discuss the common cost control methods and techniques in photovoltaic projects,to improve cost management and cost control in photovoltaic projects,and to provide a reference for the sustainable development of the industry.展开更多
This article examines the analysis,prevention,and control of risks in electric power enterprise operation management.It provides an in-depth exploration of risk factors,including market,policy,societal,personnel,techn...This article examines the analysis,prevention,and control of risks in electric power enterprise operation management.It provides an in-depth exploration of risk factors,including market,policy,societal,personnel,technological,business,and other influences.Recognizing the potential threats these risks pose to the operation of electric power enterprises,the study conducts a preliminary investigation from four perspectives:major risks,large risks,general risks,and other risks.展开更多
文摘BACKGROUND Inadequate glycemic control in patients with type 2 diabetes(T2DM)is a major public health problem and a significant risk factor for the progression of diabetic complications.AIM To evaluate the effects of intensive and supportive glycemic management strategies over a 12-month period in individuals with T2DM with glycated hemoglobin(HbA1c)≥10%and varying backgrounds of glycemic control.METHODS This prospective observational study investigated glycemic control in patients with poorly controlled T2DM over 12 months.Participants were categorized into four groups based on prior glycemic history:Newly diagnosed,previously well controlled with recent worsening,previously off-target but now worsening,and HbA1c consistently above 10%.HbA1c levels were monitored quarterly,and patients received medical,educational,and dietary support as needed.The analysis focused on the success rates of good glycemic control and the associated factors within each group.RESULTS The study showed significant improvements in HbA1c levels in all participants.The most significant improvement was observed in individuals newly diagnosed with diabetes:65%achieved an HbA1c target of≤7%.The results varied between participants with different glycemic control histories,followed by decreasing success rates:39%in participants with previously good glycemic control,21%in participants whose glycemic control had deteriorated compared to before,and only 10%in participants with persistently poor control,with mean HbA1c levels of 6.3%,7.7%,8.2%,and 9.7%,respectively.After one year,65.2%of the“newly diagnosed patients”,39.3%in the“previously controlled group”,21.9%in the“previously off-target but now worsened'”group and 10%in the“poorly controlled from the start”group had achieved HbA1c levels of 7 and below.CONCLUSION In poorly controlled diabetes,the rate at which treatment goals are achieved is associated with the glycemic background characteristics,emphasizing the need for tailored strategies.Therefore,different and comprehensive treatment approaches are needed for patients with persistent uncontrolled diabetes.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.62173107 and 12202058)the Young Elite Scientists Sponsorship Program by Beijing Association for Science and Technology(Grant No.BYESS2023344).
文摘The increasing accumulation of space debris threatens the integrity and functionality of satellites and complicates orbital operations.This paper constructs an advanced rigid-flexible coupling dynamic model for tethered satellite systems,tailored to enhance space debris management.Utilizing the nodal position finite element method,the model significantly improves the precision of simulating tether dynamics and captures the complex interactions involving satellite and debris attitude dynamics.This advancement allows for detailed examination of potential tether entanglements and provides crucial data for optimizing deorbiting processes.To overcome the limitations of conventional control techniques,a robust adaptive sliding mode control strategy is developed.This approach is specifically designed to manage the unpredictable conditions of the low-Earth orbit and ensure precise satellite attitude control,critical for successful debris removal.Validated through extensive numerical simulations,our model and control strategy demonstrate substantial improvements in operational reliability and safety,significantly enhancing the success rate of deorbiting missions.
基金supported in part by Natural Science Foundation of Jiangsu Province under Grant BK20230255Natural Science Foundation of Shandong Province under Grant ZR2023QE281.
文摘The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.
基金funded by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University,grant number[R-2025-1637].
文摘The integration of visual elements,such as emojis,into educational content represents a promising approach to enhancing student engagement and comprehension.However,existing efforts in emoji integration often lack systematic frameworks capable of addressing the contextual and pedagogical nuances required for effective implementation.This paper introduces a novel framework that combines Data-Driven Error-Correcting Output Codes(DECOC),Long Short-Term Memory(LSTM)networks,and Multi-Layer Deep Neural Networks(ML-DNN)to identify optimal emoji placements within computer science course materials.The originality of the proposed system lies in its ability to leverage sentiment analysis techniques and contextual embeddings to align emoji recommendations with both the emotional tone and learning objectives of course content.A meticulously annotated dataset,comprising diverse topics in computer science,was developed to train and validate the model,ensuring its applicability across a wide range of educational contexts.Comprehensive validation demonstrated the system’s superior performance,achieving an accuracy of 92.4%,precision of 90.7%,recall of 89.3%,and an F1-score of 90.0%.Comparative analysis with baselinemodels and relatedworks confirms themodel’s ability tooutperformexisting approaches inbalancing accuracy,relevance,and contextual appropriateness.Beyond its technical advancements,this framework offers practical benefits for educators by providing an Artificial Intelligence-assisted(AI-assisted)tool that facilitates personalized content adaptation based on student sentiment and engagement patterns.By automating the identification of appropriate emoji placements,teachers can enhance digital course materials with minimal effort,improving the clarity of complex concepts and fostering an emotionally supportive learning environment.This paper contributes to the emerging field of AI-enhanced education by addressing critical gaps in personalized content delivery and pedagogical support.Its findings highlight the transformative potential of integrating AI-driven emoji placement systems into educational materials,offering an innovative tool for fostering student engagement and enhancing learning outcomes.The proposed framework establishes a foundation for future advancements in the visual augmentation of educational resources,emphasizing scalability and adaptability for broader applications in e-learning.
基金Bangor University,UK supported this study through the International Science Partnerships Fund(ISPF)。
文摘Objective:Studies on the occupational health risks and experiences of healthcare waste handlers since the decline in coronavirus disease 2019(COVID-19)incidence are scarce in Nigeria.The current study aimed to examine what seemed as the"hidden"and rarely researched area of practice from the standpoint of different stakeholders in a Nigerian Lassa fever treatment hospital.The primary objective was to understand the nature of waste handlers'practices and experiences and identify areas for improvement centred on supporting the development of best practices,in accordance with the World Health Organisation(WHO)guidelines.Methods:This study employed a qualitative case study design,gathering data from healthcare waste handlers(n=34)through four focus groups.Additionally,four in-depth interviews were conducted with ward managers and the infection control team to gain insight into the organisational framing of waste handling practice,the perceived challenges faced by waste handlers from their perspectives,and the provision of training and support.The qualitative data were audio-recorded and transcribed verbatim through manual processes and subjected to a reflexive thematic analysis conducted manually.Results:The findings revealed that waste handlers were subjected to various occupational health risks,including back pain,needlestick injuries,psychological distress,fatigue,anxiety,and prolonged exposure to sunlight.Concerns were raised regarding the inadequate supply of personal protective equipment and other essential tools,which suggests a need for organisational commitment to ensure the continual availability of these resources to protect the health and safety of these employees.A critical issue identified was the lack of comprehensive training for waste handlers,highlighting a form of organisational negligence.The consensual views expressed by the waste handlers indicated a sense of dissatisfaction with their working environment,largely attributable to organisational and societal stigmatisation.Furthermore,the study underscored that the hospital management faced significant financial constraints and advocated for increased funding to effectively implement best practice standards.Conclusion:To effectively manage healthcare waste and reduce hazards to waste handlers,the organisational leadership should prioritise training and support.This initiative will not only benefit the waste handlers but also the patients,other healthcare workers,and the general public.Although the findings focus on the case context of a Nigerian Lassa fever treatment hospital,the wider implications of this study are linked to the role of institutional support for waste handling practice.Moreover,it extends to the potential positions of institutions as displaying a form of"benign anomie"in not ensuring the wellbeing of waste handlers through sufficient regulation and governance focused on prioritisation,processes,and procedures.The study highlights the relevance of embedding WHO guidelines in other similar contexts as part of implementation across institutions involved with waste handling.
基金supported by the 2022 Sanya Science and Technology Innovation Project,China(No.2022KJCX03)the Sanya Science and Education Innovation Park,Wuhan University of Technology,China(Grant No.2022KF0028)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City,China(Grant No.2021JJLH0036).
文摘This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mode Control(GFISMC)is proposed based on the tip speed ratio method and sliding mode control.The algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low jitter.An offshore wind power generation system model is presented to verify the algorithm effect.An offshore off-grid wind-solar hybrid power generation systemis built in MATLAB/Simulink.Compared with other MPPT algorithms,this study has specific quantitative improvements in terms of convergence speed,tracking accuracy or computational efficiency.Finally,the improved algorithm is further analyzed and carried out by using Yuankuan Energy’s ModelingTech semi-physical simulation platform.The results verify the feasibility and effectiveness of the improved algorithm in the offshore wind-solar hybrid power generation system.
文摘How budgetary management as a tool for planning and controlling of business operations is aligned with strategy and internal control system may not be problematic to American firms but is the most challengeable to large corporations in China. The case of Sinochem Corporation demonstrates the ways that budgetary management is linked with 3-year strategic planning at corporate level via yearly operating plans at business levels, and that budgets are integrated with internal control system into a device of task control to monitor whether business operations are on the track toward strategy. It is learned from the case that Chinese corporations have initiated different practices than American firms in solving the same issues.
文摘In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.
文摘The rapid pace of economic globalization has presented both unprecedented opportunities and challenges for the construction industry.Management accounting and financial accounting,as integral components of enterprise management,play indispensable roles in the development of construction companies.While both disciplines possess distinct characteristics,the evolving business landscape necessitates a more integrated approach.By combining the strengths and values of both,construction companies can gain valuable insights and make informed decisions.This paper delves into the concepts of management accounting and financial accounting,explores the feasibility of their integration within construction companies,and provides recommendations for implementation to foster sustainable development.The insights and strategies presented in this paper can serve as a valuable reference for other construction companies seeking to optimize their management and operations.
基金support of the National Key R&D Program of China(2023YFD2301500)the China Agriculture System of MOF and MARA(CARS-02)the Shandong Central Guiding the Local Science and Technology Development,China(YDZX20203700002548)。
文摘The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.
文摘Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.
基金Supported by Foundation Item of Natural Science of Fujian Province(2010J05149)Project of Minjiang College(YSY09001B)~~
文摘As the sources of overt and covert potential safety hazards were widespread, the safety control and management of rural tourism became more complicated and difficult, which required more for technological support of rural tourism safety management. Based on the latitude of technological support, from the perspective of management practice of rural tourism safety, through analysis on inner symbiosis of management and technological support of rural tourism safety, the paper had studied three parts of control and management system of rural tourism safety, which were rural tourism safety identification, rural tourism safety isolation and control, and rural tourism safety treatment and solution; and the connotation of technological support during safety management had been discussed from the three aspects. It hoped to serve as reference for tourism safety management and control, so as to promote healthy, stable and sustainable development of tourism.
基金supported by the National Natural Science Foundation of China(Grant No.51909062)the National Key R&D Program(Grant No.2022YFC3202801).
文摘Flood control operation,a non-engineering measure,can efficiently manage flood disasters within a river basin.However,numerous uncertainties exit in the real-time operation of flood control systems,creating risks in decision-making.As an efficient tool to mitigate these risks,risk management has garnered increasing attention in real-time flood control operation.This communication offers a series of suggestions for future research concerning risk management in real-time flood control operation,including risk assessment,risk diagnosis,and risk control methods.
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
文摘In response to the complex composition,scattered data storage,and differences in management levels of manufacturing resources in the production site of complex products,the research and application of digital technology for perception and control of manufacturing resources in the production site of complex products are of great significance for accelerating the digital transformation and upgrading of complex product manufacturing enterprises.Firstly,focusing on the problems of single element of local management,high cost of heterogeneous integration of multiple data sources,and the difficulty in cleaning up the global status of manufacturing resources in the production site of complex products,basic requirements and core requirements of enterprises for global management and control of manufacturing resources in the production site are deeply analyzed.Secondly,the indicators and data sources of different manufacturing resources that managers at different levels are concerned about are analyzed,providing guidance for refined management.Thirdly,a reference architecture of the manufacturing resource management and control platform for the production site of complex products is proposed,supporting access,integration,and global unified management of manufacturing resource information through the access strategy,data,basic component,and APP layers.Finally,the feasibility,effectiveness,and practicality of the architecture are verified through practical cases,aiming to provide a reference for the manufacturing resource management of complex product manufacturing enterprises.
基金supported by the Innovation Capability Support Program of Shaanxi Province,China(2023-CX-RKX-102)the Key Research and Development Program of Shaanxi Province,China(2022FP-34)+1 种基金the Open Foundation of the Key Laboratory of Natural Resource Coupling Process and Effects(2023KFKTB008)the Open Fund of Shaanxi Key Laboratory of Land Consolidation,China(300102352502).
文摘Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implications for ecological protection and quality development of the Yellow River Basin.Therefore,in this study,we took Yan'an City,Shaanxi Province of China,as the study area,selected four typical ecosystem services,including soil conservation service,water yield service,carbon storage service,and habitat quality service,and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions(including 1 city,2 districts,and 10 counties)of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment.The results showed that,from 2010 to 2018,soil conservation service decreased by 7.76%,while the other three ecosystem services changed relatively little,with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%,respectively.The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018,and the four ecosystem services showed synergistic relationships,among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant.The GCLC project had a negative impact on the ecosystem services of Yan'an City,and the impact on carbon storage service was more significant.This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security.
文摘In order to alleviate the endurance anxiety and charging anxiety in the development of electric vehicles, super fast charging and heat pump technologies will be applied to the next generation of vehicle platforms, but they also bring new challenges to the thermal management system. The functional requirements of thermal management systems are increasing, and the complexity of the system and the types and quantities of components are increasing rapidly. Integration has become a solution to simplify the system and reduce costs. The first thing to do is to integrate the physical and functional integration of multiple coolant valves, and integrate the switching of thermal management loop into one valve. Through mechanical integration with other actuators, sensors and heat exchangers in the coolant circuit and refrigeration circuit, the space utilization rate of thermal management system is improved, which provides convenience for the modular design of main engine models. In the future, it will complement the integration of electronic and electrical architecture to achieve a higher degree of drive, control and software integration.
文摘The highway engineering process is complex,coupled with a relatively long construction period,hence requires increased coordination between participating units to prevent economic disputes and efficiency losses.The main body of the construction project needs to strengthen the management and control of funds.In this regard,this paper analyzes the importance of cost management in highway projects by clarifying and analyzing the current cost management status quo problems and causes.The highway engineering cost control strategy and implementation methods are summarized to provide references for improving the quality of highway engineering.
文摘With the rapid development of the photovoltaic(PV)industry and policy support,photovoltaic engineering has attracted much attention as a clean energy project.However,the complexity and huge investment scale of photovoltaic projects make cost management and cost control the key to project success.The purpose of this paper is to discuss the cost management and cost control strategies of photovoltaic projects,analyze their importance and challenges in the process of project implementation,and discuss the common cost control methods and techniques in photovoltaic projects,to improve cost management and cost control in photovoltaic projects,and to provide a reference for the sustainable development of the industry.
文摘This article examines the analysis,prevention,and control of risks in electric power enterprise operation management.It provides an in-depth exploration of risk factors,including market,policy,societal,personnel,technological,business,and other influences.Recognizing the potential threats these risks pose to the operation of electric power enterprises,the study conducts a preliminary investigation from four perspectives:major risks,large risks,general risks,and other risks.