In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the r...In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the real-time values of some key variables in the process. In order to handle this issue, a data-driven intelligent monitoring system, using the soft sensor technique and data distribution service, is developed to monitor the concentrations of effluent total phosphorous(TP) and ammonia nitrogen(NH_4-N). In this intelligent monitoring system, a fuzzy neural network(FNN) is applied for designing the soft sensor model, and a principal component analysis(PCA) method is used to select the input variables of the soft sensor model. Moreover, data transfer software is exploited to insert the soft sensor technique to the supervisory control and data acquisition(SCADA) system. Finally, this proposed intelligent monitoring system is tested in several real plants to demonstrate the reliability and effectiveness of the monitoring performance.展开更多
The epidemic characters of Omicron(e.g.large-scale transmission)are significantly different from the initial variants of COVID-19.The data generated by large-scale transmission is important to predict the trend of epi...The epidemic characters of Omicron(e.g.large-scale transmission)are significantly different from the initial variants of COVID-19.The data generated by large-scale transmission is important to predict the trend of epidemic characters.However,the re-sults of current prediction models are inaccurate since they are not closely combined with the actual situation of Omicron transmission.In consequence,these inaccurate results have negative impacts on the process of the manufacturing and the service industry,for example,the production of masks and the recovery of the tourism industry.The authors have studied the epidemic characters in two ways,that is,investigation and prediction.First,a large amount of data is collected by utilising the Baidu index and conduct questionnaire survey concerning epidemic characters.Second,theβ-SEIDR model is established,where the population is classified as Susceptible,Exposed,Infected,Dead andβ-Recovered persons,to intelligently predict the epidemic characters of COVID-19.Note thatβ-Recovered persons denote that the Recovered persons may become Sus-ceptible persons with probabilityβ.The simulation results show that the model can accurately predict the epidemic characters.展开更多
There are numerous application areas of computing similarity between process models.It includes finding similar models from a repository,controlling redundancy of process models,and finding corresponding activities be...There are numerous application areas of computing similarity between process models.It includes finding similar models from a repository,controlling redundancy of process models,and finding corresponding activities between a pair of process models.The similarity between two process models is computed based on their similarity between labels,structures,and execution behaviors.Several attempts have been made to develop similarity techniques between activity labels,as well as their execution behavior.However,a notable problem with the process model similarity is that two process models can also be similar if there is a structural variation between them.However,neither a benchmark dataset exists for the structural similarity between process models nor there exist an effective technique to compute structural similarity.To that end,we have developed a large collection of process models in which structural changes are handcrafted while preserving the semantics of the models.Furthermore,we have used a machine learning-based approach to compute the similarity between a pair of process models having structural and label differences.Finally,we have evaluated the proposed approach using our generated collection of process models.展开更多
The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control,rather than using simplified physical ...The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control,rather than using simplified physical models and human expertise.In the era of data-driven manufacturing,the explosion of data amount revolutionized how data is collected and analyzed.This paper overviews the advance of technologies developed for in-process manufacturing data collection and analysis.It can be concluded that groundbreaking sensoring technology to facilitate direct measurement is one important leading trend for advanced data collection,due to the complexity and uncertainty during indirect measurement.On the other hand,physical model-based data analysis contains inevitable simplifications and sometimes ill-posed solutions due to the limited capacity of describing complex manufacturing process.Machine learning,especially deep learning approach has great potential for making better decisions to automate the process when fed with abundant data,while trending data-driven manufacturing approaches succeeded by using limited data to achieve similar or even better decisions.And these trends can demonstrated be by analyzing some typical applications of manufacturing process.展开更多
In order to rapidly and effectively meet the informative demand from commanding decision-making, it is important to build, maintain and mine the intelligence database. The type, structure and maintenance of military i...In order to rapidly and effectively meet the informative demand from commanding decision-making, it is important to build, maintain and mine the intelligence database. The type, structure and maintenance of military intelligence database are discussed. On this condition, a new data-mining arithmetic based on relation intelligence database is presented according to the preference information and the requirement of time limit given by the commander. Furthermore, a simple calculative example is presented to prove the arithmetic with better maneuverability. Lastly, the problem of how to process the intelligence data mined from the intelligence database is discussed.展开更多
Enterprises are continuously aiming at improving the execution of processes to achieve a competitive edge.One of the established ways of improving process performance is to assign the most appropriate resources to eac...Enterprises are continuously aiming at improving the execution of processes to achieve a competitive edge.One of the established ways of improving process performance is to assign the most appropriate resources to each task of the process.However,evaluations of business process improvement approaches have established that a method that can guide decision-makers to identify the most appropriate resources for a task of process improvement in a structured way,is missing.It is because the relationship between resources and tasks is less understood and advancement in business process intelligence is also ignored.To address this problem an integrated resource classification framework is presenting that identifies competence,suitability,and preference as the relationship of task with resources.But,only the competence relationship of human resources with a task is presented in this research as a resource competence model.Furthermore,the competency calculation method is presented as a user guider layer for business process intelligencebased resource competence evaluation.The computed capabilities serve as a basic input for choosing the most appropriate resources for each task of the process.Applicability of method is illustrated through a heathcare case study.展开更多
One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelli...One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelligence (AI) havebecome the basis for making strategic decisions in many sensitive areas, such as fraud detection, risk management,medical diagnosis, and counter-terrorism. However, there is still a need to assess how terrorist attacks are related,initiated, and detected. For this purpose, we propose a novel framework for classifying and predicting terroristattacks. The proposed framework posits that neglected text attributes included in the Global Terrorism Database(GTD) can influence the accuracy of the model’s classification of terrorist attacks, where each part of the datacan provide vital information to enrich the ability of classifier learning. Each data point in a multiclass taxonomyhas one or more tags attached to it, referred as “related tags.” We applied machine learning classifiers to classifyterrorist attack incidents obtained from the GTD. A transformer-based technique called DistilBERT extracts andlearns contextual features from text attributes to acquiremore information from text data. The extracted contextualfeatures are combined with the “key features” of the dataset and used to perform the final classification. Thestudy explored different experimental setups with various classifiers to evaluate the model’s performance. Theexperimental results show that the proposed framework outperforms the latest techniques for classifying terroristattacks with an accuracy of 98.7% using a combined feature set and extreme gradient boosting classifier.展开更多
Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineeri...Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.展开更多
Advances in technology require upgrades in the law. One such area involves data brokers, which have thus far gone unregulated. Data brokers use artificial intelligence to aggregate information into data profiles about...Advances in technology require upgrades in the law. One such area involves data brokers, which have thus far gone unregulated. Data brokers use artificial intelligence to aggregate information into data profiles about individual Americans derived from consumer use of the internet and connected devices. Data profiles are then sold for profit. Government investigators use a legal loophole to purchase this data instead of obtaining a search warrant, which the Fourth Amendment would otherwise require. Consumers have lacked a reasonable means to fight or correct the information data brokers collect. Americans may not even be aware of the risks of data aggregation, which upends the test of reasonable expectations used in a search warrant analysis. Data aggregation should be controlled and regulated, which is the direction some privacy laws take. Legislatures must step forward to safeguard against shadowy data-profiling practices, whether abroad or at home. In the meantime, courts can modify their search warrant analysis by including data privacy principles.展开更多
The invention concept of Robotic Process Automation (RPA) has emerged as a transformative technology that has revolved the local business processes by programming repetitive task and efficiency adjusting the operation...The invention concept of Robotic Process Automation (RPA) has emerged as a transformative technology that has revolved the local business processes by programming repetitive task and efficiency adjusting the operations. This research had focused on developing the RPA environment and its future features in order to elaborate on the projected policies based on its comprehensive experiences. The current and previous situations of industry are looking for IT solutions to fully scale their company Improve business flexibility, improve customer satisfaction, improve productivity, accuracy and reduce costs, quick scalability in RPA has currently appeared as an advance technology with exceptional performance. It emphasizes future trends and foresees the evolution of RPA by integrating artificial intelligence, learning of machine and cognitive automation into RPA frameworks. Moreover, it has analyzed the technical constraints, including the scalability, security issues and interoperability, while investigating regulatory and ethical considerations that are so important to the ethical utilization of RPA. By providing a comprehensive analysis of RPA with new future trends in this study, researcher’s ambitions to provide valuable insights the benefits of it on industrial performances from the gap observed so as to guide the strategic decision and future implementation of the RPA.展开更多
基金Supported by the National Natural Science Foundation of China(61622301,61533002)Beijing Natural Science Foundation(4172005)Major National Science and Technology Project(2017ZX07104)
文摘In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the real-time values of some key variables in the process. In order to handle this issue, a data-driven intelligent monitoring system, using the soft sensor technique and data distribution service, is developed to monitor the concentrations of effluent total phosphorous(TP) and ammonia nitrogen(NH_4-N). In this intelligent monitoring system, a fuzzy neural network(FNN) is applied for designing the soft sensor model, and a principal component analysis(PCA) method is used to select the input variables of the soft sensor model. Moreover, data transfer software is exploited to insert the soft sensor technique to the supervisory control and data acquisition(SCADA) system. Finally, this proposed intelligent monitoring system is tested in several real plants to demonstrate the reliability and effectiveness of the monitoring performance.
基金Key discipline construction project for traditional Chinese Medicine in Guangdong province,Grant/Award Number:20220104The construction project of inheritance studio of national famous and old traditional Chinese Medicine experts,Grant/Award Number:140000020132。
文摘The epidemic characters of Omicron(e.g.large-scale transmission)are significantly different from the initial variants of COVID-19.The data generated by large-scale transmission is important to predict the trend of epidemic characters.However,the re-sults of current prediction models are inaccurate since they are not closely combined with the actual situation of Omicron transmission.In consequence,these inaccurate results have negative impacts on the process of the manufacturing and the service industry,for example,the production of masks and the recovery of the tourism industry.The authors have studied the epidemic characters in two ways,that is,investigation and prediction.First,a large amount of data is collected by utilising the Baidu index and conduct questionnaire survey concerning epidemic characters.Second,theβ-SEIDR model is established,where the population is classified as Susceptible,Exposed,Infected,Dead andβ-Recovered persons,to intelligently predict the epidemic characters of COVID-19.Note thatβ-Recovered persons denote that the Recovered persons may become Sus-ceptible persons with probabilityβ.The simulation results show that the model can accurately predict the epidemic characters.
文摘There are numerous application areas of computing similarity between process models.It includes finding similar models from a repository,controlling redundancy of process models,and finding corresponding activities between a pair of process models.The similarity between two process models is computed based on their similarity between labels,structures,and execution behaviors.Several attempts have been made to develop similarity techniques between activity labels,as well as their execution behavior.However,a notable problem with the process model similarity is that two process models can also be similar if there is a structural variation between them.However,neither a benchmark dataset exists for the structural similarity between process models nor there exist an effective technique to compute structural similarity.To that end,we have developed a large collection of process models in which structural changes are handcrafted while preserving the semantics of the models.Furthermore,we have used a machine learning-based approach to compute the similarity between a pair of process models having structural and label differences.Finally,we have evaluated the proposed approach using our generated collection of process models.
基金Supported by National Natural Science Foundation of China(Grant No.51805260)National Natural Science Foundation for Distinguished Young Scholars of China(Grant No.51925505)National Natural Science Foundation of China(Grant No.51775278).
文摘The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control,rather than using simplified physical models and human expertise.In the era of data-driven manufacturing,the explosion of data amount revolutionized how data is collected and analyzed.This paper overviews the advance of technologies developed for in-process manufacturing data collection and analysis.It can be concluded that groundbreaking sensoring technology to facilitate direct measurement is one important leading trend for advanced data collection,due to the complexity and uncertainty during indirect measurement.On the other hand,physical model-based data analysis contains inevitable simplifications and sometimes ill-posed solutions due to the limited capacity of describing complex manufacturing process.Machine learning,especially deep learning approach has great potential for making better decisions to automate the process when fed with abundant data,while trending data-driven manufacturing approaches succeeded by using limited data to achieve similar or even better decisions.And these trends can demonstrated be by analyzing some typical applications of manufacturing process.
文摘In order to rapidly and effectively meet the informative demand from commanding decision-making, it is important to build, maintain and mine the intelligence database. The type, structure and maintenance of military intelligence database are discussed. On this condition, a new data-mining arithmetic based on relation intelligence database is presented according to the preference information and the requirement of time limit given by the commander. Furthermore, a simple calculative example is presented to prove the arithmetic with better maneuverability. Lastly, the problem of how to process the intelligence data mined from the intelligence database is discussed.
文摘Enterprises are continuously aiming at improving the execution of processes to achieve a competitive edge.One of the established ways of improving process performance is to assign the most appropriate resources to each task of the process.However,evaluations of business process improvement approaches have established that a method that can guide decision-makers to identify the most appropriate resources for a task of process improvement in a structured way,is missing.It is because the relationship between resources and tasks is less understood and advancement in business process intelligence is also ignored.To address this problem an integrated resource classification framework is presenting that identifies competence,suitability,and preference as the relationship of task with resources.But,only the competence relationship of human resources with a task is presented in this research as a resource competence model.Furthermore,the competency calculation method is presented as a user guider layer for business process intelligencebased resource competence evaluation.The computed capabilities serve as a basic input for choosing the most appropriate resources for each task of the process.Applicability of method is illustrated through a heathcare case study.
文摘One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelligence (AI) havebecome the basis for making strategic decisions in many sensitive areas, such as fraud detection, risk management,medical diagnosis, and counter-terrorism. However, there is still a need to assess how terrorist attacks are related,initiated, and detected. For this purpose, we propose a novel framework for classifying and predicting terroristattacks. The proposed framework posits that neglected text attributes included in the Global Terrorism Database(GTD) can influence the accuracy of the model’s classification of terrorist attacks, where each part of the datacan provide vital information to enrich the ability of classifier learning. Each data point in a multiclass taxonomyhas one or more tags attached to it, referred as “related tags.” We applied machine learning classifiers to classifyterrorist attack incidents obtained from the GTD. A transformer-based technique called DistilBERT extracts andlearns contextual features from text attributes to acquiremore information from text data. The extracted contextualfeatures are combined with the “key features” of the dataset and used to perform the final classification. Thestudy explored different experimental setups with various classifiers to evaluate the model’s performance. Theexperimental results show that the proposed framework outperforms the latest techniques for classifying terroristattacks with an accuracy of 98.7% using a combined feature set and extreme gradient boosting classifier.
文摘Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.
文摘Advances in technology require upgrades in the law. One such area involves data brokers, which have thus far gone unregulated. Data brokers use artificial intelligence to aggregate information into data profiles about individual Americans derived from consumer use of the internet and connected devices. Data profiles are then sold for profit. Government investigators use a legal loophole to purchase this data instead of obtaining a search warrant, which the Fourth Amendment would otherwise require. Consumers have lacked a reasonable means to fight or correct the information data brokers collect. Americans may not even be aware of the risks of data aggregation, which upends the test of reasonable expectations used in a search warrant analysis. Data aggregation should be controlled and regulated, which is the direction some privacy laws take. Legislatures must step forward to safeguard against shadowy data-profiling practices, whether abroad or at home. In the meantime, courts can modify their search warrant analysis by including data privacy principles.
文摘The invention concept of Robotic Process Automation (RPA) has emerged as a transformative technology that has revolved the local business processes by programming repetitive task and efficiency adjusting the operations. This research had focused on developing the RPA environment and its future features in order to elaborate on the projected policies based on its comprehensive experiences. The current and previous situations of industry are looking for IT solutions to fully scale their company Improve business flexibility, improve customer satisfaction, improve productivity, accuracy and reduce costs, quick scalability in RPA has currently appeared as an advance technology with exceptional performance. It emphasizes future trends and foresees the evolution of RPA by integrating artificial intelligence, learning of machine and cognitive automation into RPA frameworks. Moreover, it has analyzed the technical constraints, including the scalability, security issues and interoperability, while investigating regulatory and ethical considerations that are so important to the ethical utilization of RPA. By providing a comprehensive analysis of RPA with new future trends in this study, researcher’s ambitions to provide valuable insights the benefits of it on industrial performances from the gap observed so as to guide the strategic decision and future implementation of the RPA.