期刊文献+
共找到864篇文章
< 1 2 44 >
每页显示 20 50 100
Data-driven intelligent monitoring system for key variables in wastewater treatment process 被引量:6
1
作者 Honggui Han Shuguang Zhu +1 位作者 Junfei Qiao Min Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第10期2093-2101,共9页
In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the r... In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the real-time values of some key variables in the process. In order to handle this issue, a data-driven intelligent monitoring system, using the soft sensor technique and data distribution service, is developed to monitor the concentrations of effluent total phosphorous(TP) and ammonia nitrogen(NH_4-N). In this intelligent monitoring system, a fuzzy neural network(FNN) is applied for designing the soft sensor model, and a principal component analysis(PCA) method is used to select the input variables of the soft sensor model. Moreover, data transfer software is exploited to insert the soft sensor technique to the supervisory control and data acquisition(SCADA) system. Finally, this proposed intelligent monitoring system is tested in several real plants to demonstrate the reliability and effectiveness of the monitoring performance. 展开更多
关键词 data-DRIVEN Soft sensor intelligent monitoring system data distribution service Wastewater treatment process
在线阅读 下载PDF
An intelligent prediction model of epidemic characters based on multi-feature
2
作者 Xiaoying Wang Chunmei Li +6 位作者 Yilei Wang Lin Yin Qilin Zhou Rui Zheng Qingwu Wu Yuqi Zhou Min Dai 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期595-607,共13页
The epidemic characters of Omicron(e.g.large-scale transmission)are significantly different from the initial variants of COVID-19.The data generated by large-scale transmission is important to predict the trend of epi... The epidemic characters of Omicron(e.g.large-scale transmission)are significantly different from the initial variants of COVID-19.The data generated by large-scale transmission is important to predict the trend of epidemic characters.However,the re-sults of current prediction models are inaccurate since they are not closely combined with the actual situation of Omicron transmission.In consequence,these inaccurate results have negative impacts on the process of the manufacturing and the service industry,for example,the production of masks and the recovery of the tourism industry.The authors have studied the epidemic characters in two ways,that is,investigation and prediction.First,a large amount of data is collected by utilising the Baidu index and conduct questionnaire survey concerning epidemic characters.Second,theβ-SEIDR model is established,where the population is classified as Susceptible,Exposed,Infected,Dead andβ-Recovered persons,to intelligently predict the epidemic characters of COVID-19.Note thatβ-Recovered persons denote that the Recovered persons may become Sus-ceptible persons with probabilityβ.The simulation results show that the model can accurately predict the epidemic characters. 展开更多
关键词 artificial intelligence big data data analysis evaluation feature extraction intelligent information processing medical applications
在线阅读 下载PDF
An Intelligent Graph Edit Distance-Based Approach for Finding Business Process Similarities 被引量:1
3
作者 Abid Sohail Ammar Haseeb +2 位作者 Mobashar Rehman Dhanapal Durai Dominic Muhammad Arif Butt 《Computers, Materials & Continua》 SCIE EI 2021年第12期3603-3618,共16页
There are numerous application areas of computing similarity between process models.It includes finding similar models from a repository,controlling redundancy of process models,and finding corresponding activities be... There are numerous application areas of computing similarity between process models.It includes finding similar models from a repository,controlling redundancy of process models,and finding corresponding activities between a pair of process models.The similarity between two process models is computed based on their similarity between labels,structures,and execution behaviors.Several attempts have been made to develop similarity techniques between activity labels,as well as their execution behavior.However,a notable problem with the process model similarity is that two process models can also be similar if there is a structural variation between them.However,neither a benchmark dataset exists for the structural similarity between process models nor there exist an effective technique to compute structural similarity.To that end,we have developed a large collection of process models in which structural changes are handcrafted while preserving the semantics of the models.Furthermore,we have used a machine learning-based approach to compute the similarity between a pair of process models having structural and label differences.Finally,we have evaluated the proposed approach using our generated collection of process models. 展开更多
关键词 Machine learning intelligent data management similarities of process models structural metrics dataSET graph edit distance process matching artificial intelligence
在线阅读 下载PDF
Advanced Data Collection and Analysis in Data‑Driven Manufacturing Process 被引量:12
4
作者 Ke Xu Yingguang Li +4 位作者 Changqing Liu Xu Liu Xiaozhong Hao James Gao Paul G.Maropoulos 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第3期32-52,共21页
The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control,rather than using simplified physical ... The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control,rather than using simplified physical models and human expertise.In the era of data-driven manufacturing,the explosion of data amount revolutionized how data is collected and analyzed.This paper overviews the advance of technologies developed for in-process manufacturing data collection and analysis.It can be concluded that groundbreaking sensoring technology to facilitate direct measurement is one important leading trend for advanced data collection,due to the complexity and uncertainty during indirect measurement.On the other hand,physical model-based data analysis contains inevitable simplifications and sometimes ill-posed solutions due to the limited capacity of describing complex manufacturing process.Machine learning,especially deep learning approach has great potential for making better decisions to automate the process when fed with abundant data,while trending data-driven manufacturing approaches succeeded by using limited data to achieve similar or even better decisions.And these trends can demonstrated be by analyzing some typical applications of manufacturing process. 展开更多
关键词 data-driven manufacturing intelligent manufacturing process monitoring data analysis Machine learning
在线阅读 下载PDF
Research of intelligence data mining based on commanding decision-making 被引量:1
5
作者 Liu Jingxue Fei Qi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期275-280,共6页
In order to rapidly and effectively meet the informative demand from commanding decision-making, it is important to build, maintain and mine the intelligence database. The type, structure and maintenance of military i... In order to rapidly and effectively meet the informative demand from commanding decision-making, it is important to build, maintain and mine the intelligence database. The type, structure and maintenance of military intelligence database are discussed. On this condition, a new data-mining arithmetic based on relation intelligence database is presented according to the preference information and the requirement of time limit given by the commander. Furthermore, a simple calculative example is presented to prove the arithmetic with better maneuverability. Lastly, the problem of how to process the intelligence data mined from the intelligence database is discussed. 展开更多
关键词 intelligence requirement intelligence database database maintenance data mining arithmetic intelligence processing.
在线阅读 下载PDF
Competency Driven Resource Evaluation Method for Business Process Intelligence
6
作者 Abid Sohail Dhanapal Durai Dominic +1 位作者 Mohammad Hijji Muhammad Arif Butt 《Computers, Materials & Continua》 SCIE EI 2021年第10期1141-1157,共17页
Enterprises are continuously aiming at improving the execution of processes to achieve a competitive edge.One of the established ways of improving process performance is to assign the most appropriate resources to eac... Enterprises are continuously aiming at improving the execution of processes to achieve a competitive edge.One of the established ways of improving process performance is to assign the most appropriate resources to each task of the process.However,evaluations of business process improvement approaches have established that a method that can guide decision-makers to identify the most appropriate resources for a task of process improvement in a structured way,is missing.It is because the relationship between resources and tasks is less understood and advancement in business process intelligence is also ignored.To address this problem an integrated resource classification framework is presenting that identifies competence,suitability,and preference as the relationship of task with resources.But,only the competence relationship of human resources with a task is presented in this research as a resource competence model.Furthermore,the competency calculation method is presented as a user guider layer for business process intelligencebased resource competence evaluation.The computed capabilities serve as a basic input for choosing the most appropriate resources for each task of the process.Applicability of method is illustrated through a heathcare case study. 展开更多
关键词 data sciences artificial intelligence business process management business process improvement process warehouse data warehouse resource competency resource competency modeling health care
在线阅读 下载PDF
Terrorism Attack Classification Using Machine Learning: The Effectiveness of Using Textual Features Extracted from GTD Dataset
7
作者 Mohammed Abdalsalam Chunlin Li +1 位作者 Abdelghani Dahou Natalia Kryvinska 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1427-1467,共41页
One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelli... One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelligence (AI) havebecome the basis for making strategic decisions in many sensitive areas, such as fraud detection, risk management,medical diagnosis, and counter-terrorism. However, there is still a need to assess how terrorist attacks are related,initiated, and detected. For this purpose, we propose a novel framework for classifying and predicting terroristattacks. The proposed framework posits that neglected text attributes included in the Global Terrorism Database(GTD) can influence the accuracy of the model’s classification of terrorist attacks, where each part of the datacan provide vital information to enrich the ability of classifier learning. Each data point in a multiclass taxonomyhas one or more tags attached to it, referred as “related tags.” We applied machine learning classifiers to classifyterrorist attack incidents obtained from the GTD. A transformer-based technique called DistilBERT extracts andlearns contextual features from text attributes to acquiremore information from text data. The extracted contextualfeatures are combined with the “key features” of the dataset and used to perform the final classification. Thestudy explored different experimental setups with various classifiers to evaluate the model’s performance. Theexperimental results show that the proposed framework outperforms the latest techniques for classifying terroristattacks with an accuracy of 98.7% using a combined feature set and extreme gradient boosting classifier. 展开更多
关键词 Artificial intelligence machine learning natural language processing data analytic DistilBERT feature extraction terrorism classification GTD dataset
在线阅读 下载PDF
Leveraging Robust Artificial Intelligence for Mechatronic Product Development—A Literature Review
8
作者 Alexander Nüßgen René Degen +3 位作者 Marcus Irmer Fabian Richter Cecilia Boström Margot Ruschitzka 《International Journal of Intelligence Science》 2024年第1期1-21,共21页
Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineeri... Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed. 展开更多
关键词 Artificial intelligence Mechatronic Product Development Knowledge Management data Analysis Optimization Human Experts Decision-Making processes V-CYCLE
在线阅读 下载PDF
Ending Privacy’s Gremlin: Stopping the Data-Broker Loophole to the Fourth Amendment’s Search Warrant Requirement
9
作者 Samantha B. Larkin Shakour Abuzneid 《Journal of Information Security》 2024年第4期589-611,共23页
Advances in technology require upgrades in the law. One such area involves data brokers, which have thus far gone unregulated. Data brokers use artificial intelligence to aggregate information into data profiles about... Advances in technology require upgrades in the law. One such area involves data brokers, which have thus far gone unregulated. Data brokers use artificial intelligence to aggregate information into data profiles about individual Americans derived from consumer use of the internet and connected devices. Data profiles are then sold for profit. Government investigators use a legal loophole to purchase this data instead of obtaining a search warrant, which the Fourth Amendment would otherwise require. Consumers have lacked a reasonable means to fight or correct the information data brokers collect. Americans may not even be aware of the risks of data aggregation, which upends the test of reasonable expectations used in a search warrant analysis. Data aggregation should be controlled and regulated, which is the direction some privacy laws take. Legislatures must step forward to safeguard against shadowy data-profiling practices, whether abroad or at home. In the meantime, courts can modify their search warrant analysis by including data privacy principles. 展开更多
关键词 Access Control Access Rights Artificial intelligence Consumer Behavior Consumer Protection Criminal Law data Brokers data Handling data Privacy data processing data Profiling Digital Forensics
在线阅读 下载PDF
Robotic Process Automation with New Future Trends
10
作者 Abu Tayab Yanwen Li 《Journal of Computer and Communications》 2024年第6期12-24,共13页
The invention concept of Robotic Process Automation (RPA) has emerged as a transformative technology that has revolved the local business processes by programming repetitive task and efficiency adjusting the operation... The invention concept of Robotic Process Automation (RPA) has emerged as a transformative technology that has revolved the local business processes by programming repetitive task and efficiency adjusting the operations. This research had focused on developing the RPA environment and its future features in order to elaborate on the projected policies based on its comprehensive experiences. The current and previous situations of industry are looking for IT solutions to fully scale their company Improve business flexibility, improve customer satisfaction, improve productivity, accuracy and reduce costs, quick scalability in RPA has currently appeared as an advance technology with exceptional performance. It emphasizes future trends and foresees the evolution of RPA by integrating artificial intelligence, learning of machine and cognitive automation into RPA frameworks. Moreover, it has analyzed the technical constraints, including the scalability, security issues and interoperability, while investigating regulatory and ethical considerations that are so important to the ethical utilization of RPA. By providing a comprehensive analysis of RPA with new future trends in this study, researcher’s ambitions to provide valuable insights the benefits of it on industrial performances from the gap observed so as to guide the strategic decision and future implementation of the RPA. 展开更多
关键词 Robotic process Automation Artificial intelligence Machine Learning Cognitive Computing INTEROPERABILITY data Security
在线阅读 下载PDF
智能传感技术在水肥一体系统中的应用研究 被引量:1
11
作者 祝鹏 郭艳光 《农机化研究》 北大核心 2025年第2期176-180,共5页
以进一步提升水肥一体机系统的作业效率为目标,选取智能传感的监测技术,针对整机的监测控制与信号处理展开应用设计研究。考虑水肥一体机过程作业肥液融合的均匀性及系统各模块之间的协同性功能实现,结合微分补偿的传感数据算法处理方法... 以进一步提升水肥一体机系统的作业效率为目标,选取智能传感的监测技术,针对整机的监测控制与信号处理展开应用设计研究。考虑水肥一体机过程作业肥液融合的均匀性及系统各模块之间的协同性功能实现,结合微分补偿的传感数据算法处理方法,进行智能传感的水肥一体机架构布局,并匹配可执行的软件控制程序及硬件实施结构,进行实地传感应用监测与灌施控制作业试验。结果表明:水肥一体机系统的数据监测准确率可达95.25%,系统故障率相对降低3.79%,监测数据准确及时,能够确保系统各环节指令得到有效的调整与反馈,进而保证灌施土壤的含水稳定率相对提升7.87%,对于作物的稳定生长与产量提升有重要的参考价值。 展开更多
关键词 水肥一体机 智能传感 信号处理 微分补偿 数据监测准确率
在线阅读 下载PDF
粮油加工过程品质控制的近红外智能检测装备现状与趋势
12
作者 徐斌 高天慧 +3 位作者 王宏平 林颢 程力 陈中伟 《中国食品学报》 北大核心 2025年第2期15-26,共12页
粮油加工作为食品工业的核心领域,其智能化转型亟需高效、精准的品质检测技术支撑。可见/近红外光谱技术凭借快速、无损、多指标同步检测的优势,已成为粮油加工过程品质监控的核心手段。本文系统梳理近红外光谱检测技术原理、智能装备... 粮油加工作为食品工业的核心领域,其智能化转型亟需高效、精准的品质检测技术支撑。可见/近红外光谱技术凭借快速、无损、多指标同步检测的优势,已成为粮油加工过程品质监控的核心手段。本文系统梳理近红外光谱检测技术原理、智能装备研发及光谱数据处理方法的创新进展,即:硬件层面,便携式与在线监测装备突破小型化与抗干扰技术瓶颈,实现从实验室到工业场景的跨越;算法层面,光谱预处理、变量筛选与智能建模技术的融合,显著提升了检测精度与鲁棒性;应用层面,该技术已渗透至谷物加工链水分调控、油脂精炼氧化监测等关键环节,推动质控模式向数据驱动转型。然而,模型泛化能力不足、复杂工况适应性弱及标准化体系缺失仍是当前主要的技术瓶颈。未来需通过深度迁移学习、多源信息融合与边缘计算等技术优化“算法-设备-标准”协同创新体系,以实现粮油加工全链条实时质量调控与智能化升级。 展开更多
关键词 近红外光谱 粮油加工 智能检测装备 数据处理 品质监控 智能化转型
在线阅读 下载PDF
一种混匀矿智能化换堆的解决方案
13
作者 喻波 李保俊 +2 位作者 闫龙飞 陈晓霞 杜胜 《烧结球团》 北大核心 2025年第1期103-109,148,共8页
混匀矿作为烧结工序的核心原料,其前后两堆之间质量差异的有效识别和换堆管理对烧结矿的质量稳定性有着直接影响。本研究针对传统混匀矿换堆操作中存在的质量波动和操作效率低的问题,提出了一种智能化换堆解决方案。该方案通过整合原料... 混匀矿作为烧结工序的核心原料,其前后两堆之间质量差异的有效识别和换堆管理对烧结矿的质量稳定性有着直接影响。本研究针对传统混匀矿换堆操作中存在的质量波动和操作效率低的问题,提出了一种智能化换堆解决方案。该方案通过整合原料场和烧结工序的数据通信,建立混匀矿造堆配比和质量化验数据的线上传输处理系统,并在此基础上建立换堆计划编制、换堆操作、换堆质量调整与日常质量调整并行控制等智能控制模型,大幅降低了换堆操作的难度,提高了换堆控制的准确性。实施该方案后,换堆计划的编制时间从3 h以上缩短至0.5 h以内,操作员仅需通过简单的一键操作即可自动完成整个换堆过程;换堆当天的碱度稳定率平均提升了11.3%,FeO稳定率平均上升了4.4%。 展开更多
关键词 混匀矿 一键换堆 智能烧结 数据处理模型 混匀矿换堆
在线阅读 下载PDF
面向6G核心网的AI-Native NWDAF网元开发架构
14
作者 何世文 戴诗棋 +3 位作者 董浩磊 彭石林 张晓宇 钱育蓉 《移动通信》 2025年第1期81-90,共10页
内生智能的通信网络被认为是第六代移动通信网络发展的关键技术之一。在深入分析开发内生智能网络数据分析功能网元所面临的数据采集、隐私保护、模型管理以及灵活可扩展等挑战的基础上,提出一种具备并行化数据采集与处理能力、高效化... 内生智能的通信网络被认为是第六代移动通信网络发展的关键技术之一。在深入分析开发内生智能网络数据分析功能网元所面临的数据采集、隐私保护、模型管理以及灵活可扩展等挑战的基础上,提出一种具备并行化数据采集与处理能力、高效化模型训练与管理机制以及强容错性和可扩展性的内生智能网络数据分析功能网元开发架构。该架构旨在实现数据采集、数据分析、数据存储、模型决策一体化的目标,从而能有效应对第六代移动通信网络环境中的复杂需求。结合Kubernetes、流式化处理、微服务化等前沿技术,开发了实验室环境中的验证系统平台,进而验证了所提出架构的有效性并分析了系统性能。 展开更多
关键词 内生智能 流式处理 网络数据分析功能网元
在线阅读 下载PDF
基于数智化的供电台区应用分析
15
作者 谭社平 《广西水利水电》 2025年第1期130-135,共6页
阐述了数智化供电台区的定义、技术框架、关键要素及其发展现状与面临的主要挑战。重点对数据采集处理、智能监控管理以及系统集成创新等技术进行了研究,构建了针对数智化供电台区的应用分析模型,并详细梳理了数据源与处理流程。通过实... 阐述了数智化供电台区的定义、技术框架、关键要素及其发展现状与面临的主要挑战。重点对数据采集处理、智能监控管理以及系统集成创新等技术进行了研究,构建了针对数智化供电台区的应用分析模型,并详细梳理了数据源与处理流程。通过实证研究方法,选择具体案例进行分析,评估其应用效果,并探讨了该技术在供电台区的推广应用潜力。本研究不仅有助于理解数智化供电台区的核心技术与应用价值,而且为该领域的进一步研究与实践提供了理论支撑和实证参考。 展开更多
关键词 数智化供电台区 数据采集处理 智能监控管理 系统集成创新 应用分析模型 实证研究
在线阅读 下载PDF
数据处理单元赋能的智算中心网络拥塞控制机制
16
作者 陈锦前 郭少勇 +2 位作者 刘畅 亓峰 邱雪松 《通信学报》 北大核心 2025年第2期1-17,共17页
针对智算中心集群间交互频繁造成网络拥塞频发导致智能业务实时性难以保障的问题,以数据处理单元(DPU)为核心载体构建了深度强化学习算法驱动的拥塞控制模型,利用剪枝与量化融合的方式对模型进行压缩,并通过知识蒸馏方法生成高效梯度增... 针对智算中心集群间交互频繁造成网络拥塞频发导致智能业务实时性难以保障的问题,以数据处理单元(DPU)为核心载体构建了深度强化学习算法驱动的拥塞控制模型,利用剪枝与量化融合的方式对模型进行压缩,并通过知识蒸馏方法生成高效梯度增强决策树,实现调速动作与网络实时状态的精准匹配。仿真结果表明,所提机制在泛化能力和控制效果方面均优于现有方法,在多个压力测试场景中提升网络有效吞吐率与公平性指标JAIN10.8%和8.9%以上,降低P99端到端时延与丢包率17.31%和11.47%以上,降低并行计算场景下数据流传输任务完成时间11.23%以上,且具备应对网络状态突变的快速响应能力。 展开更多
关键词 拥塞控制 多智能体深度强化学习 智算中心网络 远程直接内存访问网络 数据处理单元
在线阅读 下载PDF
“北京三号”C卫星智能处理开放软件平台设计与应用
17
作者 赵丽 李超 +4 位作者 张昆 王冰 王大维 田帅虎 邓会龙 《先进小卫星技术(中英文)》 2025年第2期17-23,共7页
为提升卫星在轨任务执行与管理的效率,提出了一种智能处理开放软件平台.该平台融合了多层次智能处理技术与先进功能,包括操作系统、中间件及在轨应用3部分.操作系统基于实时架构,通过优化多核和内存管理,适应多种处理器和外设,满足任务... 为提升卫星在轨任务执行与管理的效率,提出了一种智能处理开放软件平台.该平台融合了多层次智能处理技术与先进功能,包括操作系统、中间件及在轨应用3部分.操作系统基于实时架构,通过优化多核和内存管理,适应多种处理器和外设,满足任务实时性要求.中间件整合开源框架,以增强图像处理和深度学习能力.在轨应用模块采用全生命周期管理框架,支持多种应用软件的高效部署与通信,满足实时数据处理需求.“北京三号”C卫星在轨应用表明:该平台能够为卫星复杂环境下的智能处理任务提供可靠支持,有效提升用户获取目标图像的时效性,并为后续天基智能计算奠定了基础. 展开更多
关键词 智能处理平台 卫星 开放软件中间件 实时图像数据处理 多APP管理
在线阅读 下载PDF
基于OBE理念的农业信息数智化处理研究
18
作者 何柳 《农机化研究》 北大核心 2025年第4期197-202,共6页
基于OBE理念,设计了农业信息系统。首先,基于ZigBee技术设计传感器网络,传感器检测数据通过ZigBee网络和运营商基站上传到农田信息服务器,对同类传感器数据进行融合后,得到同类传感器数据表征值;然后,对6类传感器的表征值进行融合,得到... 基于OBE理念,设计了农业信息系统。首先,基于ZigBee技术设计传感器网络,传感器检测数据通过ZigBee网络和运营商基站上传到农田信息服务器,对同类传感器数据进行融合后,得到同类传感器数据表征值;然后,对6类传感器的表征值进行融合,得到农田环境综合评估结果。设计微信小程序,显示农田中6类传感器的表征值,进而显示农田环境综合评估结果。对传感器上传数据可靠性进行测试,与实地测试对比,误差区间为[0,0.3℃];对微信小程序显示效果进行验证,小程序可以清晰地将农田环境综合评估结果展示给用户。 展开更多
关键词 农业信息 数智化处理 OBE理念 数据融合 反向设计
在线阅读 下载PDF
谷物加工设备智能化发展与实践
19
作者 张恒达 李生龙 +3 位作者 张成林 朱晓月 崔晨昊 范仲亚 《中国食品学报》 北大核心 2025年第1期1-11,共11页
本文综述谷物加工设备智能化的发展历程及其具体应用实践。谷物加工的智能化发展历经数据连通、生产监控、数据反馈调节和自我优化调节4个重要阶段。每个阶段都标志着技术的重大进步和对应用的深远影响。数据连通阶段,实现工厂内设备自... 本文综述谷物加工设备智能化的发展历程及其具体应用实践。谷物加工的智能化发展历经数据连通、生产监控、数据反馈调节和自我优化调节4个重要阶段。每个阶段都标志着技术的重大进步和对应用的深远影响。数据连通阶段,实现工厂内设备自动化和生产数据的采集,初步提升了生产效率和管理透明化。生产监控阶段,通过对生产过程采集的数据进行深度分析,形成数据驱动的优化和改进建议,更好地提升生产效率及产品质量。数据反馈调节阶段,基于数据分析决策,指导设备自动调节,实现重要功能的闭环控制,降低人工干预,显著提高生产效率,保证产品品质。自我优化调节阶段,集成人工智能和机器学习算法,实现设备的自主决策和优化控制,真正达到智能化水平。当前,谷物加工智能化在前3个阶段均有良好实践,如数据连通阶段的自动化连续卸船机和智能研磨系统;生产监控阶段的故障停机分析和温度及振动管理等;数据反馈调节阶段的面粉粉色闭环控制和麸皮含粉闭环控制等,均在行业内带来较大影响。未来,随着谷物加工设备技术的不断创新,人工智能、大数据、物联网等技术将会持续发展和实践,谷物加工智能化将迎来更加广阔的发展前景。 展开更多
关键词 智能化 谷物加工 传感器 数据驱动 反馈调节 生产效率 资源优化
在线阅读 下载PDF
人工智能在矿山测绘数据处理中的应用研究
20
作者 杨翠花 《科技资讯》 2025年第3期51-53,共3页
采矿业为我国制造业的发展提供了原料准备,矿产行业产能与生产安全性的提升与工业水平的提升息息相关。在矿山测绘中,测得的数据一般要先经过预处理,再经过特征提取和统计分析,才能揭示矿山的相关信息。在人工智能技术的支持下,可以进... 采矿业为我国制造业的发展提供了原料准备,矿产行业产能与生产安全性的提升与工业水平的提升息息相关。在矿山测绘中,测得的数据一般要先经过预处理,再经过特征提取和统计分析,才能揭示矿山的相关信息。在人工智能技术的支持下,可以进一步实现数据预处理流程的自动化。从矿山测绘内容与测绘价值出发,介绍常见的矿山测绘数据处理方法,进而对人工智能在江西省赣南山区矿山测绘数据处理中的应用进行探讨。 展开更多
关键词 矿山测绘 数据处理 人工智能 数据提取
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部