This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
AIM:To investigate the underlying factors by establishing a new paradigm for assessing control ability under stereopsis testing conditions.METHODS:This was a prospective observational study.We evaluated the control ab...AIM:To investigate the underlying factors by establishing a new paradigm for assessing control ability under stereopsis testing conditions.METHODS:This was a prospective observational study.We evaluated the control ability of intermittent exotropia(IXT)patients in three conditions:natural 2D optotype viewing,2D optotype viewing with polarized glasses,and 3D optotype viewing with polarized glasses.Recording with a smartphone,we captured videos to analyze the accurate time of spontaneous exodeviation and subsequent realignment before and after breaking fusion.Additionally,the correlation of stereopsis were also analyzed.RESULTS:A total of 48 patients(age range:4-33y;54.17%male)participated in the study.When viewing 3D optotypes with polarized glasses,their median control scores were 1(interquartile range,0-4)at distance and 0(0-1)at near.These scores were significantly better than those observed under natural viewing conditions,which were 2.5(1-5)at a distance and 1(0-3)at near(Friedman test,P=0.049).Furthermore,those subjects who exhibited exophoria(realignment within 2 seconds)while viewing 3D optotypes with polarized glasses were more likely to have measurable stereo vision(Kendall’sτb=-0.344,P=0.018).CONCLUSION:IXT patients exhibit enhanced control ability when using polarized glasses to view 3D optotypes,notably improving realignment capabilities.This expands our understanding of current tests and offers a potentially sensitive method for assessing IXT severity.展开更多
This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-trigger...This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results.展开更多
This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregu...This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.展开更多
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
This paper discusses the design of resilient and event-triggered control for linear aperiodic sampled-data systems.The stability and stabilization problem of the aperiodic sampled-data systems under a dynamic event-tr...This paper discusses the design of resilient and event-triggered control for linear aperiodic sampled-data systems.The stability and stabilization problem of the aperiodic sampled-data systems under a dynamic event-triggered scheme and against a stochastic deception attack is addressed in a novel looped-functional framework.A quadratic event-triggered scheme with a discrete-time dynamic variable is proposed in which the system states are only evaluated at aperiodic sampling instants so that the Zeno phenomenon can be avoided consequently.The system is assumed to be intruded by a deception attack signal which is determined by a Bernoulli random variable.Our objective in this paper is to derive the stability conditions firstly and then provide the resilient and event-triggered controller design for the aperiodic sampled-data system.With a certain H∞attack and the control updates can be obviously reduced by the proposed dynamic event-triggered scheme,which means the system performance,the limited communication resources,and the system security can be well balanced in our design.Finally,the validity and effectiveness of the proposed method is demonstrated by the simulations.展开更多
This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynami...This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.展开更多
In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number...In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.展开更多
This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found th...This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found that the average velocity and influence range of the synthetic jet actuator increase with the increasing of driving frequency and driving amplitude.LSB occurs at Re=1.0×10^(5),and ruptures atα=6°.But with intermittent disturbance control,the stall angle of attack(AoA)increases while significantly reducing drag.Research shows that although certain disturbance cannot fully recover from LSB stall,decreasing driving amplitude partially restores wing aerodynamic performance,more effectively than increasing driving amplitude.展开更多
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
This paper investigates the adaptive neural network(NN)event-triggered secure formation control problem for nonholonomic mobile robots(NMRs)subject to deception attacks.The NNs are employed to approximate unknown nonl...This paper investigates the adaptive neural network(NN)event-triggered secure formation control problem for nonholonomic mobile robots(NMRs)subject to deception attacks.The NNs are employed to approximate unknown nonlinear functions in robotic dynamics.Since the transmission channel from sensor-to-controller is vulnerable to deception attacks,a NN estimation technique is introduced to estimate the unknown deception attacks.In order to alleviate the amount of communication between controller-and-actuator,an event-triggered mechanism with relative threshold strategy is established.Then,an adaptive NN event-triggered secure formation control method is proposed.It is proved that all closed-loop signals of controlled systems are bounded and the formation tracking errors converge a neighborhood of the origin in the presence of deception attacks.The comparative simulations illustrate the effectiveness of the proposed secure formation control scheme.展开更多
This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is pr...This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency.展开更多
The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variabl...The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variable is utilized to improve the utilization of communication resources.First,a novel estimator with a noise bias is put forward to estimate the existed fault and then a consensus controller with fault compensation(FC)is adopted to realize the demand of reliability and safety of addressed MASs.Subsequently,a novel consensus control framework with fault-estimation-in-the-loop is developed to achieve the predetermined consensus performance with the l_(2)-l_(∞)constraint by employing the variance analysis and the Lyapunov stability approaches.Furthermore,the desired estimator and controller gains are obtained in light of the solution to an algebraic matrix equation and a linear matrix inequality in a recursive way,respectively.Finally,a simulation result is employed to verify the usefulness of the proposed design framework.展开更多
This article presents a distributed periodic eventtriggered(PET)optimal control scheme to achieve generation cost minimization and average bus voltage regulation in DC microgrids.In order to accommodate the generation...This article presents a distributed periodic eventtriggered(PET)optimal control scheme to achieve generation cost minimization and average bus voltage regulation in DC microgrids.In order to accommodate the generation constraints of the distributed generators(DGs),a virtual incremental cost is firstly designed,based on which an optimality condition is derived to facilitate the control design.To meet the discrete-time(DT)nature of modern control systems,the optimal controller is directly developed in the DT domain.Afterward,to reduce the communication requirement among the controllers,a distributed event-triggered mechanism is introduced for the DT optimal controller.The event-triggered condition is detected periodically and therefore naturally avoids the Zeno phenomenon.The closed-loop system stability is proved by the Lyapunov synthesis for switched systems.The generation cost minimization and average bus voltage regulation are obtained at the equilibrium point.Finally,switch-level microgrid simulations validate the performance of the proposed optimal controller.展开更多
We further study the projective synchronization of a new hyperchaotic system. Different from the most existing methods, intermittent control is applied to chaotic synchronization in the present paper. We formulate the...We further study the projective synchronization of a new hyperchaotic system. Different from the most existing methods, intermittent control is applied to chaotic synchronization in the present paper. We formulate the intermittent control system that governs the dynamics of the projective synchronization error, then derive the sufficient conditions for the exponential stability of intermittent control system by using the Lyapunov stability theory, and finally establish the periodically intermittent controller according to the stability criterion by which the projective synchronization is expected to be achieved. The analytical results are also demonstrated by several numerical simulations.展开更多
The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-trigge...The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-triggering transmission strategy based on periodic sampling,under which a model-based stability criterion for the closed-loop network system is derived,by leveraging a discrete-time looped-functional approach.Marrying the model-based criterion with a data-driven system representation recently developed in the literature,a purely data-driven stability criterion expressed in the form of linear matrix inequalities(LMIs)is established.Meanwhile,the data-driven stability criterion suggests a means for co-designing the event-triggering coefficient matrix and the feedback control gain matrix using only some offline collected state-input data.Finally,numerical results corroborate the efficacy of the proposed distributed data-driven event-triggered network system(ETS)in cutting off data transmissions and the co-design procedure.展开更多
The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow t...The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow the trajectories of a virtual leader despite communication faults considered as smooth time-varying delays dependent on the distance between the agents.Linear matrix inequalities(LMIs)-based conditions are obtained to synthesize a controller gain that guarantees stability of the synchronization error.Based on the closed-loop system,an event-triggered mechanism is designed to reduce the control law update and information exchange in order to reduce energy consumption.The proposed approach is implemented in a real platform of a fleet of unmanned aerial vehicles(UAVs)under communication faults.A comparison between a state-of-the-art technique and the proposed technique has been provided,demonstrating the performance improvement brought by the proposed approach.展开更多
In this paper, an event-triggered sliding mode control approach for trajectory tracking problem of nonlinear input affine system with disturbance has been proposed. A second order robotic manipulator system has been m...In this paper, an event-triggered sliding mode control approach for trajectory tracking problem of nonlinear input affine system with disturbance has been proposed. A second order robotic manipulator system has been modeled into a general nonlinear input affine system. Initially, the global asymptotic stability is ensured with conventional periodic sampling approach for reference trajectory tracking. Then the proposed approach of event-triggered sliding mode control is discussed which guarantees semi-global uniform ultimate boundedness. The proposed control approach guarantees non-accumulation of control updates ensuring lower bounds on inter-event triggering instants avoiding Zeno behavior in presence of the disturbance. The system shows better performance in terms of reduced control updates, ensures system stability which further guarantees optimization of resource usage and cost. The simulation results are provided for validation of proposed methodology for tracking problem by a robotic manipulator. The number of aperiodic control updates is found to be approximately 44% and 61% in the presence of constant and time-varying disturbances respectively.展开更多
This paper investigates the event-triggered security consensus problem for nonlinear multi-agent systems(MASs)under denial-of-service(Do S)attacks over an undirected graph.A novel adaptive memory observer-based anti-d...This paper investigates the event-triggered security consensus problem for nonlinear multi-agent systems(MASs)under denial-of-service(Do S)attacks over an undirected graph.A novel adaptive memory observer-based anti-disturbance control scheme is presented to improve the observer accuracy by adding a buffer for the system output measurements.Meanwhile,this control scheme can also provide more reasonable control signals when Do S attacks occur.To save network resources,an adaptive memory event-triggered mechanism(AMETM)is also proposed and Zeno behavior is excluded.It is worth mentioning that the AMETM's updates do not require global information.Then,the observer and controller gains are obtained by using the linear matrix inequality(LMI)technique.Finally,simulation examples show the effectiveness of the proposed control scheme.展开更多
This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe in...This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.展开更多
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金Supported by the National Natural Science Foundation of China(No.82070995,No.82301256)Youth S&T Talent Support Programme of Guangdong Provincial Association for Science and Technology.
文摘AIM:To investigate the underlying factors by establishing a new paradigm for assessing control ability under stereopsis testing conditions.METHODS:This was a prospective observational study.We evaluated the control ability of intermittent exotropia(IXT)patients in three conditions:natural 2D optotype viewing,2D optotype viewing with polarized glasses,and 3D optotype viewing with polarized glasses.Recording with a smartphone,we captured videos to analyze the accurate time of spontaneous exodeviation and subsequent realignment before and after breaking fusion.Additionally,the correlation of stereopsis were also analyzed.RESULTS:A total of 48 patients(age range:4-33y;54.17%male)participated in the study.When viewing 3D optotypes with polarized glasses,their median control scores were 1(interquartile range,0-4)at distance and 0(0-1)at near.These scores were significantly better than those observed under natural viewing conditions,which were 2.5(1-5)at a distance and 1(0-3)at near(Friedman test,P=0.049).Furthermore,those subjects who exhibited exophoria(realignment within 2 seconds)while viewing 3D optotypes with polarized glasses were more likely to have measurable stereo vision(Kendall’sτb=-0.344,P=0.018).CONCLUSION:IXT patients exhibit enhanced control ability when using polarized glasses to view 3D optotypes,notably improving realignment capabilities.This expands our understanding of current tests and offers a potentially sensitive method for assessing IXT severity.
基金the Research Grants Council of Hong Kong(CityU 21208921)the Chow Sang Sang Group Research Fund Sponsored by Chow Sang Sang Holdings International Ltd.
文摘This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results.
基金supported in part by the National Key Research and Development Program of China(2023YFA1011803)the National Natural Science Foundation of China(62273064,61933012,62250710167,61860206008,62203078)the Central University Project(2021CDJCGJ002,2022CDJKYJH019,2022CDJKYJH051)。
文摘This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
基金supported in part by the China Scholarship Council(No.202206030132)the European Union-NextGenerationEU。
文摘This paper discusses the design of resilient and event-triggered control for linear aperiodic sampled-data systems.The stability and stabilization problem of the aperiodic sampled-data systems under a dynamic event-triggered scheme and against a stochastic deception attack is addressed in a novel looped-functional framework.A quadratic event-triggered scheme with a discrete-time dynamic variable is proposed in which the system states are only evaluated at aperiodic sampling instants so that the Zeno phenomenon can be avoided consequently.The system is assumed to be intruded by a deception attack signal which is determined by a Bernoulli random variable.Our objective in this paper is to derive the stability conditions firstly and then provide the resilient and event-triggered controller design for the aperiodic sampled-data system.With a certain H∞attack and the control updates can be obviously reduced by the proposed dynamic event-triggered scheme,which means the system performance,the limited communication resources,and the system security can be well balanced in our design.Finally,the validity and effectiveness of the proposed method is demonstrated by the simulations.
基金supported in part by the National Natural Science Foundation of China(51939001,61976033,62273072)the Natural Science Foundation of Sichuan Province (2022NSFSC0903)。
文摘This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.
基金supported in part by the National Key Research and Development Program of China(2018YFA0702200)the National Natural Science Foundation of China(52377079,62203097,62373196)。
文摘In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.
文摘This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found that the average velocity and influence range of the synthetic jet actuator increase with the increasing of driving frequency and driving amplitude.LSB occurs at Re=1.0×10^(5),and ruptures atα=6°.But with intermittent disturbance control,the stall angle of attack(AoA)increases while significantly reducing drag.Research shows that although certain disturbance cannot fully recover from LSB stall,decreasing driving amplitude partially restores wing aerodynamic performance,more effectively than increasing driving amplitude.
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
基金supported by the National Natural Science Foundation of China under 62173172.
文摘This paper investigates the adaptive neural network(NN)event-triggered secure formation control problem for nonholonomic mobile robots(NMRs)subject to deception attacks.The NNs are employed to approximate unknown nonlinear functions in robotic dynamics.Since the transmission channel from sensor-to-controller is vulnerable to deception attacks,a NN estimation technique is introduced to estimate the unknown deception attacks.In order to alleviate the amount of communication between controller-and-actuator,an event-triggered mechanism with relative threshold strategy is established.Then,an adaptive NN event-triggered secure formation control method is proposed.It is proved that all closed-loop signals of controlled systems are bounded and the formation tracking errors converge a neighborhood of the origin in the presence of deception attacks.The comparative simulations illustrate the effectiveness of the proposed secure formation control scheme.
基金This work was supported in part by the Australian Research Council Discovery Early Career Researcher Award under Grant DE200101128.
文摘This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency.
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variable is utilized to improve the utilization of communication resources.First,a novel estimator with a noise bias is put forward to estimate the existed fault and then a consensus controller with fault compensation(FC)is adopted to realize the demand of reliability and safety of addressed MASs.Subsequently,a novel consensus control framework with fault-estimation-in-the-loop is developed to achieve the predetermined consensus performance with the l_(2)-l_(∞)constraint by employing the variance analysis and the Lyapunov stability approaches.Furthermore,the desired estimator and controller gains are obtained in light of the solution to an algebraic matrix equation and a linear matrix inequality in a recursive way,respectively.Finally,a simulation result is employed to verify the usefulness of the proposed design framework.
基金supported by the U.S.Office of Naval Research(N00014-21-1-2175)。
文摘This article presents a distributed periodic eventtriggered(PET)optimal control scheme to achieve generation cost minimization and average bus voltage regulation in DC microgrids.In order to accommodate the generation constraints of the distributed generators(DGs),a virtual incremental cost is firstly designed,based on which an optimality condition is derived to facilitate the control design.To meet the discrete-time(DT)nature of modern control systems,the optimal controller is directly developed in the DT domain.Afterward,to reduce the communication requirement among the controllers,a distributed event-triggered mechanism is introduced for the DT optimal controller.The event-triggered condition is detected periodically and therefore naturally avoids the Zeno phenomenon.The closed-loop system stability is proved by the Lyapunov synthesis for switched systems.The generation cost minimization and average bus voltage regulation are obtained at the equilibrium point.Finally,switch-level microgrid simulations validate the performance of the proposed optimal controller.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60974020)the Natural Science Foundation of Chongqing, China (Grant No. cstc2011jjA0980)the Foundation of Chongqing Education College, China (Grant Nos. KY201112A, KY201113B, and KY201122C )
文摘We further study the projective synchronization of a new hyperchaotic system. Different from the most existing methods, intermittent control is applied to chaotic synchronization in the present paper. We formulate the intermittent control system that governs the dynamics of the projective synchronization error, then derive the sufficient conditions for the exponential stability of intermittent control system by using the Lyapunov stability theory, and finally establish the periodically intermittent controller according to the stability criterion by which the projective synchronization is expected to be achieved. The analytical results are also demonstrated by several numerical simulations.
基金supported in part by the National Key Research and Development Program of China(2021YFB1714800)the National Natural Science Foundation of China(62088101,61925303,62173034,U20B2073)+1 种基金the Natural Science Foundation of Chongqing(2021ZX4100027)the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germanys Excellence Strategy—EXC 2075-390740016(468094890)。
文摘The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-triggering transmission strategy based on periodic sampling,under which a model-based stability criterion for the closed-loop network system is derived,by leveraging a discrete-time looped-functional approach.Marrying the model-based criterion with a data-driven system representation recently developed in the literature,a purely data-driven stability criterion expressed in the form of linear matrix inequalities(LMIs)is established.Meanwhile,the data-driven stability criterion suggests a means for co-designing the event-triggering coefficient matrix and the feedback control gain matrix using only some offline collected state-input data.Finally,numerical results corroborate the efficacy of the proposed distributed data-driven event-triggered network system(ETS)in cutting off data transmissions and the co-design procedure.
文摘The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow the trajectories of a virtual leader despite communication faults considered as smooth time-varying delays dependent on the distance between the agents.Linear matrix inequalities(LMIs)-based conditions are obtained to synthesize a controller gain that guarantees stability of the synchronization error.Based on the closed-loop system,an event-triggered mechanism is designed to reduce the control law update and information exchange in order to reduce energy consumption.The proposed approach is implemented in a real platform of a fleet of unmanned aerial vehicles(UAVs)under communication faults.A comparison between a state-of-the-art technique and the proposed technique has been provided,demonstrating the performance improvement brought by the proposed approach.
文摘In this paper, an event-triggered sliding mode control approach for trajectory tracking problem of nonlinear input affine system with disturbance has been proposed. A second order robotic manipulator system has been modeled into a general nonlinear input affine system. Initially, the global asymptotic stability is ensured with conventional periodic sampling approach for reference trajectory tracking. Then the proposed approach of event-triggered sliding mode control is discussed which guarantees semi-global uniform ultimate boundedness. The proposed control approach guarantees non-accumulation of control updates ensuring lower bounds on inter-event triggering instants avoiding Zeno behavior in presence of the disturbance. The system shows better performance in terms of reduced control updates, ensures system stability which further guarantees optimization of resource usage and cost. The simulation results are provided for validation of proposed methodology for tracking problem by a robotic manipulator. The number of aperiodic control updates is found to be approximately 44% and 61% in the presence of constant and time-varying disturbances respectively.
基金supported by the National Natural Science Foundation of China(61773056)the Scientific and Technological Innovation Foundation of Shunde Graduate School,University of Science and Technology Beijing(USTB)(BK19AE018)+2 种基金the Fundamental Research Funds for the Central Universities of USTB(FRF-TP-20-09B,230201606500061,FRF-DF-20-35,FRF-BD-19-002A)supported by Zhejiang Natural Science Foundation(LD21F030001)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science and Information and Communications Technology)(NRF-2020R1A2C1005449)。
文摘This paper investigates the event-triggered security consensus problem for nonlinear multi-agent systems(MASs)under denial-of-service(Do S)attacks over an undirected graph.A novel adaptive memory observer-based anti-disturbance control scheme is presented to improve the observer accuracy by adding a buffer for the system output measurements.Meanwhile,this control scheme can also provide more reasonable control signals when Do S attacks occur.To save network resources,an adaptive memory event-triggered mechanism(AMETM)is also proposed and Zeno behavior is excluded.It is worth mentioning that the AMETM's updates do not require global information.Then,the observer and controller gains are obtained by using the linear matrix inequality(LMI)technique.Finally,simulation examples show the effectiveness of the proposed control scheme.
基金the National Natural Science Foundation of China(NSFC)-Excellent Young Scientists Fund(Hong Kong and Macao)under Grant 62222318.
文摘This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.