期刊文献+
共找到9,493篇文章
< 1 2 250 >
每页显示 20 50 100
RPK-table based efficient algorithm for join-aggregate query on MapReduce
1
作者 Zhan Li Qi Feng +1 位作者 Wei Chen Tengjiao Wang 《CAAI Transactions on Intelligence Technology》 2016年第1期79-89,共11页
Join-aggregate is an important and widely used operation in database system. However, it is time-consuming to process join-aggregate query in big data environment, especially on MapReduce framework. The main bottlenec... Join-aggregate is an important and widely used operation in database system. However, it is time-consuming to process join-aggregate query in big data environment, especially on MapReduce framework. The main bottlenecks contain two aspects: lots of I/O caused by temporary data and heavy communication overhead between different data nodes during query processing. To overcome such disadvantages, we design a data structure called Reference Primary Key table (RPK-table) which stores the relationship of primary key and foreign key between tables. Based on this structure, we propose an improved algorithm on MapReduce framework for join-aggregate query. Experi-ments on TPC-H dataset demonstrate that our algorithm outperforms existing methods in terms of communication cost and query response time. 展开更多
关键词 join-aggregate query MAPREDUCE query optimization RPK-table Communication cost
在线阅读 下载PDF
A Database Querying Language for Formulating Relational Queries on Small Devices
2
作者 Ahmad Rohiza Abdul-Kareem Sameem 《Computer Technology and Application》 2011年第3期172-181,共10页
For small devices like the PDAs and mobile phones, formulation of relational database queries is not as simple as using conventional devices such as the personal computers and laptops. Due to the restricted size and r... For small devices like the PDAs and mobile phones, formulation of relational database queries is not as simple as using conventional devices such as the personal computers and laptops. Due to the restricted size and resources of these smaller devices, current works mostly limit the queries that can be posed by users by having them predetermined by the developers. This limits the capability of these devices in supporting robust queries. Hence, this paper proposes a universal relation based database querying language which is targeted for small devices. The language allows formulation of relational database queries that uses minimal query terms. The formulation of the language and its structure will be described and usability test results will be presented to support the effectiveness of the language. 展开更多
关键词 DATABASE query language relational queries small devices.
在线阅读 下载PDF
Exploring features for automatic identification of news queries through query logs
3
作者 Xiaojuan ZHANG Jian LI 《Chinese Journal of Library and Information Science》 2014年第4期31-45,共15页
Purpose:Existing researches of predicting queries with news intents have tried to extract the classification features from external knowledge bases,this paper tries to present how to apply features extracted from quer... Purpose:Existing researches of predicting queries with news intents have tried to extract the classification features from external knowledge bases,this paper tries to present how to apply features extracted from query logs for automatic identification of news queries without using any external resources.Design/methodology/approach:First,we manually labeled 1,220 news queries from Sogou.com.Based on the analysis of these queries,we then identified three features of news queries in terms of query content,time of query occurrence and user click behavior.Afterwards,we used 12 effective features proposed in literature as baseline and conducted experiments based on the support vector machine(SVM)classifier.Finally,we compared the impacts of the features used in this paper on the identification of news queries.Findings:Compared with baseline features,the F-score has been improved from 0.6414 to0.8368 after the use of three newly-identified features,among which the burst point(bst)was the most effective while predicting news queries.In addition,query expression(qes)was more useful than query terms,and among the click behavior-based features,news URL was the most effective one.Research limitations:Analyses based on features extracted from query logs might lead to produce limited results.Instead of short queries,the segmentation tool used in this study has been more widely applied for long texts.Practical implications:The research will be helpful for general-purpose search engines to address search intents for news events.Originality/value:Our approach provides a new and different perspective in recognizing queries with news intent without such large news corpora as blogs or Twitter. 展开更多
关键词 query intent News query News intent query classification Automaticidentification
在线阅读 下载PDF
VKFQ:A Verifiable Keyword Frequency Query Framework with Local Differential Privacy in Blockchain
4
作者 Youlin Ji Bo Yin Ke Gu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4205-4223,共19页
With its untameable and traceable properties,blockchain technology has been widely used in the field of data sharing.How to preserve individual privacy while enabling efficient data queries is one of the primary issue... With its untameable and traceable properties,blockchain technology has been widely used in the field of data sharing.How to preserve individual privacy while enabling efficient data queries is one of the primary issues with secure data sharing.In this paper,we study verifiable keyword frequency(KF)queries with local differential privacy in blockchain.Both the numerical and the keyword attributes are present in data objects;the latter are sensitive and require privacy protection.However,prior studies in blockchain have the problem of trilemma in privacy protection and are unable to handle KF queries.We propose an efficient framework that protects data owners’privacy on keyword attributes while enabling quick and verifiable query processing for KF queries.The framework computes an estimate of a keyword’s frequency and is efficient in query time and verification object(VO)size.A utility-optimized local differential privacy technique is used for privacy protection.The data owner adds noise locally into data based on local differential privacy so that the attacker cannot infer the owner of the keywords while keeping the difference in the probability distribution of the KF within the privacy budget.We propose the VB-cm tree as the authenticated data structure(ADS).The VB-cm tree combines the Verkle tree and the Count-Min sketch(CM-sketch)to lower the VO size and query time.The VB-cm tree uses the vector commitment to verify the query results.The fixed-size CM-sketch,which summarizes the frequency of multiple keywords,is used to estimate the KF via hashing operations.We conduct an extensive evaluation of the proposed framework.The experimental results show that compared to theMerkle B+tree,the query time is reduced by 52.38%,and the VO size is reduced by more than one order of magnitude. 展开更多
关键词 SECURITY data sharing blockchain data query privacy protection
在线阅读 下载PDF
Embedding-based approximate query for knowledge graph
5
作者 Qiu Jingyi Zhang Duxi +5 位作者 Song Aibo Wang Honglin Zhang Tianbo Jin Jiahui Fang Xiaolin Li Yaqi 《Journal of Southeast University(English Edition)》 EI CAS 2024年第4期417-424,共8页
To solve the low efficiency of approximate queries caused by the large sizes of the knowledge graphs in the real world,an embedding-based approximate query method is proposed.First,the nodes in the query graph are cla... To solve the low efficiency of approximate queries caused by the large sizes of the knowledge graphs in the real world,an embedding-based approximate query method is proposed.First,the nodes in the query graph are classified according to the degrees of approximation required for different types of nodes.This classification transforms the query problem into three constraints,from which approximate information is extracted.Second,candidates are generated by calculating the similarity between embeddings.Finally,a deep neural network model is designed,incorporating a loss function based on the high-dimensional ellipsoidal diffusion distance.This model identifies the distance between nodes using their embeddings and constructs a score function.k nodes are returned as the query results.The results show that the proposed method can return both exact results and approximate matching results.On datasets DBLP(DataBase systems and Logic Programming)and FUA-S(Flight USA Airports-Sparse),this method exhibits superior performance in terms of precision and recall,returning results in 0.10 and 0.03 s,respectively.This indicates greater efficiency compared to PathSim and other comparative methods. 展开更多
关键词 approximate query knowledge graph EMBEDDING deep neural network
在线阅读 下载PDF
Learned Distributed Query Optimizer:Architecture and Challenges
6
作者 GAO Jun HAN Yinjun +2 位作者 LIN Yang MIAO Hao XU Mo 《ZTE Communications》 2024年第2期49-54,共6页
The query processing in distributed database management systems(DBMS)faces more challenges,such as more operators,and more factors in cost models and meta-data,than that in a single-node DMBS,in which query optimizati... The query processing in distributed database management systems(DBMS)faces more challenges,such as more operators,and more factors in cost models and meta-data,than that in a single-node DMBS,in which query optimization is already an NP-hard problem.Learned query optimizers(mainly in the single-node DBMS)receive attention due to its capability to capture data distributions and flexible ways to avoid hard-craft rules in refinement and adaptation to new hardware.In this paper,we focus on extensions of learned query optimizers to distributed DBMSs.Specifically,we propose one possible but general architecture of the learned query optimizer in the distributed context and highlight differences from the learned optimizer in the single-node ones.In addition,we discuss the challenges and possible solutions. 展开更多
关键词 distributed query processing query optimization learned query optimizer
在线阅读 下载PDF
A Systematic Review of Automated Classification for Simple and Complex Query SQL on NoSQL Database
7
作者 Nurhadi Rabiah Abdul Kadir +1 位作者 Ely Salwana Mat Surin Mahidur R.Sarker 《Computer Systems Science & Engineering》 2024年第6期1405-1435,共31页
A data lake(DL),abbreviated as DL,denotes a vast reservoir or repository of data.It accumulates substantial volumes of data and employs advanced analytics to correlate data from diverse origins containing various form... A data lake(DL),abbreviated as DL,denotes a vast reservoir or repository of data.It accumulates substantial volumes of data and employs advanced analytics to correlate data from diverse origins containing various forms of semi-structured,structured,and unstructured information.These systems use a flat architecture and run different types of data analytics.NoSQL databases are nontabular and store data in a different manner than the relational table.NoSQL databases come in various forms,including key-value pairs,documents,wide columns,and graphs,each based on its data model.They offer simpler scalability and generally outperform traditional relational databases.While NoSQL databases can store diverse data types,they lack full support for atomicity,consistency,isolation,and durability features found in relational databases.Consequently,employing machine learning approaches becomes necessary to categorize complex structured query language(SQL)queries.Results indicate that the most frequently used automatic classification technique in processing SQL queries on NoSQL databases is machine learning-based classification.Overall,this study provides an overview of the automatic classification techniques used in processing SQL queries on NoSQL databases.Understanding these techniques can aid in the development of effective and efficient NoSQL database applications. 展开更多
关键词 NoSQL database data lake machine learning ACID complex query smart city
在线阅读 下载PDF
Optimizing the Clinical Decision Support System (CDSS) by Using Recurrent Neural Network (RNN) Language Models for Real-Time Medical Query Processing
8
作者 Israa Ibraheem Al Barazanchi Wahidah Hashim +4 位作者 Reema Thabit Mashary Nawwaf Alrasheedy Abeer Aljohan Jongwoon Park Byoungchol Chang 《Computers, Materials & Continua》 SCIE EI 2024年第12期4787-4832,共46页
This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning techniques.Specifically,we target the challenges of accurate diagno... This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning techniques.Specifically,we target the challenges of accurate diagnosis in medical imaging and sequential data analysis using Recurrent Neural Networks(RNNs)with Long Short-Term Memory(LSTM)layers and echo state cells.These models are tailored to improve diagnostic precision,particularly for conditions like rotator cuff tears in osteoporosis patients and gastrointestinal diseases.Traditional diagnostic methods and existing CDSS frameworks often fall short in managing complex,sequential medical data,struggling with long-term dependencies and data imbalances,resulting in suboptimal accuracy and delayed decisions.Our goal is to develop Artificial Intelligence(AI)models that address these shortcomings,offering robust,real-time diagnostic support.We propose a hybrid RNN model that integrates SimpleRNN,LSTM layers,and echo state cells to manage long-term dependencies effectively.Additionally,we introduce CG-Net,a novel Convolutional Neural Network(CNN)framework for gastrointestinal disease classification,which outperforms traditional CNN models.We further enhance model performance through data augmentation and transfer learning,improving generalization and robustness against data scarcity and imbalance.Comprehensive validation,including 5-fold cross-validation and metrics such as accuracy,precision,recall,F1-score,and Area Under the Curve(AUC),confirms the models’reliability.Moreover,SHapley Additive exPlanations(SHAP)and Local Interpretable Model-agnostic Explanations(LIME)are employed to improve model interpretability.Our findings show that the proposed models significantly enhance diagnostic accuracy and efficiency,offering substantial advancements in WBANs and CDSS. 展开更多
关键词 Computer science clinical decision support system(CDSS) medical queries healthcare deep learning recurrent neural network(RNN) long short-term memory(LSTM)
在线阅读 下载PDF
Large Language Model Based Semantic Parsing for Intelligent Database Query Engine
9
作者 Zhizhong Wu 《Journal of Computer and Communications》 2024年第10期1-13,共13页
With the rapid development of artificial intelligence, large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. These models have great potential to enha... With the rapid development of artificial intelligence, large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. These models have great potential to enhance database query systems, enabling more intuitive and semantic query mechanisms. Our model leverages LLM’s deep learning architecture to interpret and process natural language queries and translate them into accurate database queries. The system integrates an LLM-powered semantic parser that translates user input into structured queries that can be understood by the database management system. First, the user query is pre-processed, the text is normalized, and the ambiguity is removed. This is followed by semantic parsing, where the LLM interprets the pre-processed text and identifies key entities and relationships. This is followed by query generation, which converts the parsed information into a structured query format and tailors it to the target database schema. Finally, there is query execution and feedback, where the resulting query is executed on the database and the results are returned to the user. The system also provides feedback mechanisms to improve and optimize future query interpretations. By using advanced LLMs for model implementation and fine-tuning on diverse datasets, the experimental results show that the proposed method significantly improves the accuracy and usability of database queries, making data retrieval easy for users without specialized knowledge. 展开更多
关键词 Semantic query Large Language Models Intelligent Database Natural Language Processing
在线阅读 下载PDF
道路网中针对多目标决策的兴趣点高效查询算法
10
作者 李松 杨晓龙 +1 位作者 靳海鹏 张丽平 《西安交通大学学报》 北大核心 2025年第4期148-157,共10页
为了解决道路网中利用多目标决策技术进行兴趣点推荐和高效位置查询的问题,针对由于数据规模增加产生大量近似数据,导致传统多目标决策技术在道路网环境下查询效率和可用性方面较低的问题,提出了一种道路网广义近似Skyline查询算法。首... 为了解决道路网中利用多目标决策技术进行兴趣点推荐和高效位置查询的问题,针对由于数据规模增加产生大量近似数据,导致传统多目标决策技术在道路网环境下查询效率和可用性方面较低的问题,提出了一种道路网广义近似Skyline查询算法。首先基于兴趣点的维度相似性和道路网近似性构建近似集和独立点,并根据兴趣点特性设计相应的剪枝策略;随后,通过近似集和独立点重构数据集,根据剪枝策略过滤掉当查询位置移动时对查询结果无影响的兴趣点,并构建AA-R*-Tree索引以提升查询效率;最后,根据兴趣点的近似性提出一种广义近似聚集支配算法,通过选取代表点代替近似集进行Skyline计算,减少冗余运算并优化查询结果,最终得到满足兴趣点近似整合有序的Skyline结果集。实验结果表明:所提近似查询算法在大规模数据集和大量相似数据条件下表现出较好的效率与可行性;与Higher-Gsky、MG-EGsky和GSSK-A算法相比,所提算法在数据规模、查询范围及路段数增加时的平均效率提升约14%,能够为道路网用户提供更快速有效的决策支持。 展开更多
关键词 道路网 SKYLINE查询 多目标决策 近似查询 兴趣点推荐
在线阅读 下载PDF
基于时空约束和成本感知的集合空间关键字查询
11
作者 李松 曹文琪 +2 位作者 郝晓红 张丽平 郝忠孝 《计算机研究与发展》 北大核心 2025年第3期808-819,共12页
集合空间关键字查询在空间数据库、位置服务、智能推荐和群智感知等领域具有重要的作用.现有的集合空间关键字查询方法没有考虑要求同时带有时空约束和成本感知的问题,不能满足大部分用户在时空约束条件下的查询需求问题,已有研究成果... 集合空间关键字查询在空间数据库、位置服务、智能推荐和群智感知等领域具有重要的作用.现有的集合空间关键字查询方法没有考虑要求同时带有时空约束和成本感知的问题,不能满足大部分用户在时空约束条件下的查询需求问题,已有研究成果具有较大的局限性.为了弥补已有方法的不足,提出一种基于时空约束和成本感知的集合空间关键字查询TDCCA-Co SKQ.为了解决现有索引中无法同时包含关键字信息和时间信息的问题,提出了一种TDCIR-Tree索引,该索引融合了倒排文件和时间属性标签文件,可以减小查询计算的开销;为了有效地筛选出符合查询条件的集合,提出了一种TDCCA_PP算法,其中包括第1层剪枝算法、组间有序排列和第2层剪枝算法,可以提高关键字的查询效率;进一步提出了一种基于TDC成本函数的排序算法,TDC成本函数是由距离成本和时间成本组成的,其中包含代表用户偏好度的自变量系数α和β,可以增加用户的选择自由度,有效解决了现有的成本函数无法满足时空约束和成本感知的集合空间关键字查询的问题.理论研究与实验表明,所提出的方法具有较好的效率与准确性. 展开更多
关键词 集合空间关键字查询 时空约束 成本感知 倒排文件 时间属性标签文件
在线阅读 下载PDF
基于大模型检索增强生成的气象数据库问答模型实现
12
作者 江双五 张嘉玮 +1 位作者 华连生 杨菁林 《计算机工程与应用》 北大核心 2025年第5期113-121,共9页
随着信息检索和知识获取需求的增加,智能问答系统在多个垂直领域得到广泛应用。然而,在气象领域仍缺乏专门的智能问答系统研究,严重限制了气象信息的高效利用和气象系统的服务效率。针对这一需求,提出了一种面向气象数据库的大模型检索... 随着信息检索和知识获取需求的增加,智能问答系统在多个垂直领域得到广泛应用。然而,在气象领域仍缺乏专门的智能问答系统研究,严重限制了气象信息的高效利用和气象系统的服务效率。针对这一需求,提出了一种面向气象数据库的大模型检索智能问答技术实现方案。该方案设计了一种基于关系型数据库(SQL)与文档型数据(NoSQL)的多通道查询路由(multi-channel retrieval router,McRR)方法,为了适配数据库进行大模型查询以及增强大模型对查询表的理解,分别提出指令查询转换方法与数据库表摘要方法DNSUM,提升大模型对数据库的语义理解能力,通过结合问题理解、重排序器和响应生成等关键模块,构建了一个端到端的智能问答模型,可实现多数据源的相关知识检索及答案生成。实验结果显示,该模型可以有效理解用户问题并生成准确的答案,具有良好的检索和响应能力。不仅为气象领域提供了一种智能问答的解决方案,也为气象智能问答技术提供了新的应用实施参考。 展开更多
关键词 数据库查询 数据库问答 大语言模型 检索增强生成 气象问答
在线阅读 下载PDF
基于Mamba的轻量级三维点云实例分割算法
13
作者 崔丽群 郝思雅 栾五洋 《计算机工程与应用》 北大核心 2025年第8期194-203,共10页
针对三维点云实例分割中的特征提取能力的不足、实例边缘的模糊性,以及在复杂场景中的实例识别困难的问题,提出了一种基于Mamba的轻量级三维点云实例分割算法。利用稀疏3D U-Net高效地对点云数据进行特征提取。为了增强模型对复杂场景... 针对三维点云实例分割中的特征提取能力的不足、实例边缘的模糊性,以及在复杂场景中的实例识别困难的问题,提出了一种基于Mamba的轻量级三维点云实例分割算法。利用稀疏3D U-Net高效地对点云数据进行特征提取。为了增强模型对复杂场景的学习能力,进一步采用最远距离采样和球形查询聚类特征在节省计算量同时对信息进行二次提炼,这些处理后的特征利用混合专家模型最有效分配给不同专家网络,最后送入高效SSM模块,实现实例的精确查询。在ScanNetV2数据集上,取得了52.8%的mAP,并且在S3DIS等点云室内场景数据集上表现出优势,运行速率达到210 ms,实现了轻量级的优化。 展开更多
关键词 点云实例分割 最远距离采样 球查询
在线阅读 下载PDF
基于大语言模型的查询扩展方法研究
14
作者 王海涛 师杨坤 《计算机技术与发展》 2025年第3期148-155,共8页
检索增强生成(Retrieval Augmented Generation,RAG)技术能够很好地缓解传统大语言模型的幻觉问题以及在处理实时动态知识问题上的时效性问题,但已有的方法在检索的准确率和召回率方面仍有待提升。为了解决这一问题,提出了一种基于查询... 检索增强生成(Retrieval Augmented Generation,RAG)技术能够很好地缓解传统大语言模型的幻觉问题以及在处理实时动态知识问题上的时效性问题,但已有的方法在检索的准确率和召回率方面仍有待提升。为了解决这一问题,提出了一种基于查询重写的方法Query2Query,旨在对查询语句进行更深层次的特征挖掘,从而提高用户输入文本与知识库文本的语义对齐度。该方法将大语言模型视为生成器,利用其生成能力将用户输入的原始查询根据预定义的提示词(prompt)进行改写,设计了一种TAO(Task-Action-Objective)提示词框架,从任务、行为及目标三个方面规范提示词的输出,并使用“What”“How”“Why”三个疑问词对用户原始查询进行结构化重写,扩展原始查询语义丰富度,使得重写后的查询可以覆盖更多潜在的相关信息,从而提升检索的准确率,最终将模型输出视为相关性文档,联合原始查询送入生成模型得到最终结果。在TERC DL’19和TERC DL’20数据集上对该框架进行评估,实验结果表明,该方法在检索任务中的准确率和召回率均有所提升。 展开更多
关键词 检索增强生成 大语言模型 查询扩展 特征提取 提示词
在线阅读 下载PDF
基于XQuery的GML查询语言研究 被引量:12
15
作者 兰小机 闾国年 +1 位作者 刘德儿 张书亮 《测绘科学》 CAS CSCD 北大核心 2005年第6期99-102,共4页
随着GML规范的不断完善及GIS软件厂商的广泛支持,越来越多的空间数据以GML格式存储,GML空间数据的查询已成为GIS研究的热点问题。传统的关系数据库查询语言SQL是针对平面的二维关系数据而设计的,并不适合XML/GML半结构化数据的查询;商品... 随着GML规范的不断完善及GIS软件厂商的广泛支持,越来越多的空间数据以GML格式存储,GML空间数据的查询已成为GIS研究的热点问题。传统的关系数据库查询语言SQL是针对平面的二维关系数据而设计的,并不适合XML/GML半结构化数据的查询;商品化GIS软件的查询系统只能查询自身的空间数据而无法查询其它GIS系统的空间数据;XML查询的研究为GML查询奠定了一定的基础。首先针对GML查询存在的问题,提出了扩展XQuery是GML查询语言实现的最佳选择;结合XML查询语言和空间数据查询语言,提出了GML查询语言的特征和GML查询语言系统框架;并根据GML空间数据的特点,以XML标准查询语言XQuery为基础,提出了XQuery空间扩展的内容;开发了GML空间数据查询语言GMLXQL,实现了GML空间数据的本原查询。 展开更多
关键词 GML查询 Xquery 空间查询语言 GML
在线阅读 下载PDF
用Java来设计组件重用的Query方法 被引量:3
16
作者 葛瀛龙 徐翀 +1 位作者 郑宁 胡昔祥 《计算机工程与应用》 CSCD 北大核心 2002年第20期103-106,共4页
文章所探讨的组件重用的Query方法是利用Java反射技术和Java数据库连接技术来完成叶数据库的查询操作。它将查询数据库的公共操作封装于一个组件中,使编程工作者在具体编程工作中能方便地重复使用它们,以求简化编程工作。
关键词 JAVA语言 设计 组件重用 query方法 EJB组件
在线阅读 下载PDF
Semantic-based query processing for relational data integration 被引量:1
17
作者 苗壮 张亚非 +2 位作者 王进鹏 陆建江 周波 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期22-25,共4页
To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,al... To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,all relative tables are found and decomposed into minimal connectable units.Minimal connectable units are joined according to semantic queries to produce the semantically correct query plans.Algorithms for query rewriting and transforming are presented.Computational complexity of the algorithms is discussed.Under the worst case,the query decomposing algorithm can be finished in O(n2) time and the query rewriting algorithm requires O(nm) time.And the performance of the algorithms is verified by experiments,and experimental results show that when the length of query is less than 8,the query processing algorithms can provide satisfactory performance. 展开更多
关键词 data integration relational database simple protocol and RDF query language(SPARQL) minimal connectable unit query processing
在线阅读 下载PDF
Optimization of RDF link traversal based query execution 被引量:2
18
作者 朱艳琴 花岭 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期27-32,共6页
Aiming at the problem that only some types of SPARQL ( simple protocal and resource description framework query language) queries can be answered by using the current resource description framework link traversal ba... Aiming at the problem that only some types of SPARQL ( simple protocal and resource description framework query language) queries can be answered by using the current resource description framework link traversal based query execution (RDF-LTE) approach, this paper discusses how the execution order of the triple pattern affects the query results and cost based on concrete SPARQL queries, and analyzes two properties of the web of linked data, missing backward links and missing contingency solution. Then three heuristic principles for logic query plan optimization, namely, the filtered basic graph pattern (FBGP) principle, the triple pattern chain principle and the seed URIs principle, are proposed. The three principles contribute to decrease the intermediate solutions and increase the types of queries that can be answered. The effectiveness and feasibility of the proposed approach is evaluated. The experimental results show that more query results can be returned with less cost, thus enabling users to develop the full potential of the web of linked data. 展开更多
关键词 web of linked data resource description framework link traversal based query execution (RDF-LTE) SPARQL query query optimization
在线阅读 下载PDF
Query Expansion for Chinese Information Retrieval by Using a Decaying Co-occurrence Model 被引量:3
19
作者 贺宏朝 何丕廉 +1 位作者 高剑峰 黄昌宁 《Transactions of Tianjin University》 EI CAS 2002年第3期183-186,共4页
Query expansion with thesaurus is one of the useful techniques in modern information retrieval (IR). In this paper, a method of query expansion for Chinese IR by using a decaying co-occurrence model is proposed and re... Query expansion with thesaurus is one of the useful techniques in modern information retrieval (IR). In this paper, a method of query expansion for Chinese IR by using a decaying co-occurrence model is proposed and realized. The model is an extension of the traditional co-occurrence model by adding a decaying factor that decreases the mutual information when the distance between the terms increases. Experimental results on TREC-9 collections show this query expansion method results in significant improvements over the IR without query expansion. 展开更多
关键词 query expansion Chinese language information retrieval
在线阅读 下载PDF
基于自适应Token池化与集合预测增强的目标检测
20
作者 刘耀 陈东方 王晓峰 《计算机系统应用》 2025年第2期74-83,共10页
基于Transformer的目标检测算法往往存在着精度不足,收敛速度慢的问题.许多研究针对这些问题进行改进,取得了一定的成果.但是这些研究大都忽视了Transformer结构应用于目标检测领域时存在的两个不足之处.首先,自注意力运算结果缺乏多样... 基于Transformer的目标检测算法往往存在着精度不足,收敛速度慢的问题.许多研究针对这些问题进行改进,取得了一定的成果.但是这些研究大都忽视了Transformer结构应用于目标检测领域时存在的两个不足之处.首先,自注意力运算结果缺乏多样性.其次,因集合预测难度大,使得模型在匹配目标的过程中表现不稳定.为了弥补上述缺陷,首先设计了自适应token池化模块,增加自注意力权重的多样性.其次,设计了一种基于粗预测的锚框定位模块,并利用该模块为查询提供位置先验信息,从而提高二分图匹配过程的稳定性.最后,设计了基于组的去噪任务,通过训练模型对位于目标附近的正负查询进行区分,从而提高模型进行集合预测的能力.实验结果表明,本文提出的改进算法在COCO数据集上取得了较好的训练结果.与基线模型相比,改进算法在检测精度与收敛速度上有较大提升. 展开更多
关键词 目标检测 query初始化方式 自注意力 训练策略
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部