期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
密度峰值聚类k匿名分布式网络数据隐私保护方法研究
1
作者 郭艳红 《数字通信世界》 2025年第3期41-42,120,共3页
由于分布式网络数据分散在多个节点上,导致数据隐私泄露的概率较大,为此,本文进行了密度峰值聚类k匿名的分布式网络数据隐私保护方法研究。其充分考虑了分布式网络环境自身的特点,引入了分布式k-NN查询算法,以找到其k个最近邻点,同时保... 由于分布式网络数据分散在多个节点上,导致数据隐私泄露的概率较大,为此,本文进行了密度峰值聚类k匿名的分布式网络数据隐私保护方法研究。其充分考虑了分布式网络环境自身的特点,引入了分布式k-NN查询算法,以找到其k个最近邻点,同时保证查询过程以不泄露数据隐私为目标,构建了针对分布式网络数据的k近邻匿名模型;利用密度峰值聚类算法识别具有高局部密度并且与更高密度点的距离较大的数据点作为聚类中心,对k近邻匿名模型中的节点进行聚类,实现数据保护。在测试结果中,设计方法在不同场景中的保护效果最好,对应的数据泄露概率始终稳定在0.2以下。 展开更多
关键词 密度峰值聚类 k匿名 分布式网络 数据隐私保护 分布式k-NN查询算法 k近邻匿名模型 局部密度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部