Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are a...Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are accurate but computationally expensive and unsuitable for high-throughput screening. This study introduces a machine learning (ML) framework trained on high-dimensional data from the Open Quantum Materials Database (OQMD) to predict formation energy, a key stability metric. Among the evaluated models, deep learning outperformed Gradient Boosting Machines and Random Forest, achieving up to 0.88 R2 prediction accuracy. Feature importance analysis identified thermodynamic, electronic, and structural properties as the primary drivers of stability, offering interpretable insights into material behavior. Compared to DFT, the proposed ML framework significantly reduces computational costs, enabling the rapid screening of thousands of compounds. These results highlight ML’s transformative potential in materials discovery, with direct applications in energy storage, semiconductors, and catalysis.展开更多
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
An N-gram Chinese language model incorporating linguistic rules is presented. By constructing elements lattice, rules information is incorporated in statistical frame. To facilitate the hybrid modeling, novel methods ...An N-gram Chinese language model incorporating linguistic rules is presented. By constructing elements lattice, rules information is incorporated in statistical frame. To facilitate the hybrid modeling, novel methods such as MI-based rule evaluating, weighted rule quantification and element-based n-gram probability approximation are presented. Dynamic Viterbi algorithm is adopted to search the best path in lattice. To strengthen the model, transformation-based error-driven rules learning is adopted. Applying proposed model to Chinese Pinyin-to-character conversion, high performance has been achieved in accuracy, flexibility and robustness simultaneously. Tests show correct rate achieves 94.81% instead of 90.53% using bi-gram Markov model alone. Many long-distance dependency and recursion in language can be processed effectively.展开更多
Recent developments in cutting-edge live microscopy and image analysis provide a unique opportunity to systematically investigate individual cell’s dynamics as well as simulation-based hypothesis testing. After a sum...Recent developments in cutting-edge live microscopy and image analysis provide a unique opportunity to systematically investigate individual cell’s dynamics as well as simulation-based hypothesis testing. After a summary of data generation and analysis in the observation and modeling efforts related to C. elegans embryogenesis, we develop a systematic approach to model the basic behaviors of individual cells. Next, we present our ideas to model cell fate, division, and movement using 3D time-lapse images within an agent-based modeling framework. Then, we summarize preliminary result and discuss efforts in cell fate, division, and movement modeling. Finally, we discuss the ongoing efforts and future directions for C. elegans embryo modeling, including an inferred developmental landscape for cell fate, a quasi-equilibrium model for cell division, and multi-agent, deep reinforcement learning for cell movement.展开更多
文摘Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are accurate but computationally expensive and unsuitable for high-throughput screening. This study introduces a machine learning (ML) framework trained on high-dimensional data from the Open Quantum Materials Database (OQMD) to predict formation energy, a key stability metric. Among the evaluated models, deep learning outperformed Gradient Boosting Machines and Random Forest, achieving up to 0.88 R2 prediction accuracy. Feature importance analysis identified thermodynamic, electronic, and structural properties as the primary drivers of stability, offering interpretable insights into material behavior. Compared to DFT, the proposed ML framework significantly reduces computational costs, enabling the rapid screening of thousands of compounds. These results highlight ML’s transformative potential in materials discovery, with direct applications in energy storage, semiconductors, and catalysis.
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.
文摘An N-gram Chinese language model incorporating linguistic rules is presented. By constructing elements lattice, rules information is incorporated in statistical frame. To facilitate the hybrid modeling, novel methods such as MI-based rule evaluating, weighted rule quantification and element-based n-gram probability approximation are presented. Dynamic Viterbi algorithm is adopted to search the best path in lattice. To strengthen the model, transformation-based error-driven rules learning is adopted. Applying proposed model to Chinese Pinyin-to-character conversion, high performance has been achieved in accuracy, flexibility and robustness simultaneously. Tests show correct rate achieves 94.81% instead of 90.53% using bi-gram Markov model alone. Many long-distance dependency and recursion in language can be processed effectively.
文摘Recent developments in cutting-edge live microscopy and image analysis provide a unique opportunity to systematically investigate individual cell’s dynamics as well as simulation-based hypothesis testing. After a summary of data generation and analysis in the observation and modeling efforts related to C. elegans embryogenesis, we develop a systematic approach to model the basic behaviors of individual cells. Next, we present our ideas to model cell fate, division, and movement using 3D time-lapse images within an agent-based modeling framework. Then, we summarize preliminary result and discuss efforts in cell fate, division, and movement modeling. Finally, we discuss the ongoing efforts and future directions for C. elegans embryo modeling, including an inferred developmental landscape for cell fate, a quasi-equilibrium model for cell division, and multi-agent, deep reinforcement learning for cell movement.