In this paper, a state feedback adaptive stabilization for a class of large-scale stochastic nonlinear systems is designed with Lyapunov and Backstepping method. In the systems there are uncertain terms, whose bounds ...In this paper, a state feedback adaptive stabilization for a class of large-scale stochastic nonlinear systems is designed with Lyapunov and Backstepping method. In the systems there are uncertain terms, whose bounds are governed by a set of unknown parameters. The designed controllers would make the close-loop systems asymptotically stable and adaptive for the unknown parameters. As an application, a second order example is delivered to illustrate the approach.展开更多
Stationarity of a class of stochastically interconnecteil discrete-timesystems is analyzed by utilizins results from ergodic theory of general stateMarkov chains, incorporated with the so called large-scale system app...Stationarity of a class of stochastically interconnecteil discrete-timesystems is analyzed by utilizins results from ergodic theory of general stateMarkov chains, incorporated with the so called large-scale system approach.展开更多
Principles and performances of quantum stochastic filters are studied for nonlinear time-domain filtering of communication signals. Filtering is realized by combining neural networks with the nonlinear Schroedinger eq...Principles and performances of quantum stochastic filters are studied for nonlinear time-domain filtering of communication signals. Filtering is realized by combining neural networks with the nonlinear Schroedinger equation and the time-variant probability density function of signals is estimated by solution of the equation. It is shown that obviously different performances can be achieved by the control of weight coefficients of potential fields. Based on this characteristic, a novel filtering algorithm is proposed, and utilizing this algorithm, the nonlinear waveform distortion of output signals and the denoising capability of the filters can be compromised. This will make the application of quantum stochastic filters be greatly extended, such as in applying the filters to the processing of communication signals. The predominant performance of quantum stochastic filters is shown by simulation results.展开更多
This paper provides an overview of significant advances in nonlinear stochastic dynamics during the past two decades, including random response, stochastic stability, stochastic bifurcation, first passage problem and ...This paper provides an overview of significant advances in nonlinear stochastic dynamics during the past two decades, including random response, stochastic stability, stochastic bifurcation, first passage problem and nonlinear stochastic control. Topics for future research are also suggested.展开更多
A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed. The optimal control forces consist of two parts. The first part is determined by the conditions under whi...A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed. The optimal control forces consist of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic averaging method and stochastic dynamical programming principle to the completely observable linear control system. The response of the optimally controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation associated with the optimally controlled completely observable linear system and solving the Riccati equation for the estimated error of system states. An example is given to illustrate the procedure and effectiveness of the proposed control strategy.展开更多
A bounded optimal control strategy for strongly non-linear systems under non-white wide-band random excitation with actuator saturation is proposed. First, the stochastic averaging method is introduced for controlled ...A bounded optimal control strategy for strongly non-linear systems under non-white wide-band random excitation with actuator saturation is proposed. First, the stochastic averaging method is introduced for controlled strongly non-linear systems under wide-band random excitation using generalized harmonic functions. Then, the dynamical programming equation for the saturated control problem is formulated from the partially averaged Itō equation based on the dynamical programming principle. The optimal control consisting of the unbounded optimal control and the bounded bang-bang control is determined by solving the dynamical programming equation. Finally, the response of the optimally controlled system is predicted by solving the reduced Fokker-Planck-Kolmogorov (FPK) equation associated with the completed averaged Itō equation. An example is given to illustrate the proposed control strategy. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and the chattering is reduced significantly comparing with the bang-bang control strategy.展开更多
In this paper,we studied the approximate sampleddata observer design for a class of stochastic nonlinear systems.Euler-Maruyama approximation was investigated in this paper because it is the basis of other higher prec...In this paper,we studied the approximate sampleddata observer design for a class of stochastic nonlinear systems.Euler-Maruyama approximation was investigated in this paper because it is the basis of other higher precision numerical methods,and it preserves important structures of the nonlinear systems.Also,the form of Euler-Maruyama model is simple and easy to be calculated.The results provide a reference for sampled-data observer design method for such stochastic nonlinear systems,and may be useful to many practical control applications,such as tracking control in mechanical systems.And the effectiveness of the approach is demonstrated by a simulation example.展开更多
This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli...This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli distribution are employed to model the randomly occurring communication delays which could be different for different state variables. A discrete switching function that is different from those in the existing literature is first proposed. Then, expressed as the feasibility of a linear matrix inequality (LMI) with an equality constraint, sufficient conditions are derived in order to ensure the globally mean-square asymptotic stability of the system dynamics on the sliding surface. A discrete-time SMC controller is then synthesized to guarantee the discrete-time sliding mode reaching condition with the specified sliding surface. Finally, a simulation example is given to show the effectiveness of the proposed method.展开更多
In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly const...In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.展开更多
This paper investigates the fixed-time stability theorem and state-feedback controller design for stochastic nonlinear systems.We propose an improved fixed-time Lyapunov theorem with a more rigorous and reasonable pro...This paper investigates the fixed-time stability theorem and state-feedback controller design for stochastic nonlinear systems.We propose an improved fixed-time Lyapunov theorem with a more rigorous and reasonable proof procedure.In particular,an important corollary is obtained,which can give a less conservative upper-bound estimate of the settling time.Based on the backstepping technique and the addition of a power integrator method,a state-feedback controller is skillfully designed for a class of stochastic nonlinear systems.It is proved that the proposed controller can render the closed-loop system fixed-time stable in probability with the help of the proposed fixed-time stability criteria.Finally,the effectiveness of the proposed controller is demonstrated by simulation examples and comparisons.展开更多
This paper is concerned with the global boundedness problem for a class of stochastic nonlinear systems with matched conditions. The uncertainties in the systems are due to parameter variations and external stochastic...This paper is concerned with the global boundedness problem for a class of stochastic nonlinear systems with matched conditions. The uncertainties in the systems are due to parameter variations and external stochastic disturbance. Only the matched conditions and the possible bound of the uncertainties are demanded. Based on the stochastic Lyapunov stability theory, an explicit controller is constructed in the gradient direction, which renders responses of the closed-loop systems be globally bounded in probability. When the systems degrade to linear systems, the controller becomes linear. Illustrative examples are given to show the effectiveness of the proposed method.展开更多
In this work,a novel shape control approach of the probability density function(PDF)for nonlinear stochastic systems is presented.First,we provide the formula for the PDF shape controller without devising the control ...In this work,a novel shape control approach of the probability density function(PDF)for nonlinear stochastic systems is presented.First,we provide the formula for the PDF shape controller without devising the control law of the controller.Then,based on the exact analytical solution of the Fokker-PlanckKolmogorov(FPK)equation,the product function of the polynomial and the exponential polynomial is regarded as the stationary PDF of the state response.To validate the performance of the proposed control approach,we compared it with the exponential polynomial method and the multi-Gaussian closure method by implementing comparative simulation experiments.The results show that the novel PDF shape control approach is effective and feasible.Using an equal number of parameters,our method can achieve a similar or better control effect as the exponential polynomial method.By comparison with the multiGaussian closure method,our method has clear advantages in PDF shape control performance.For all cases,the integral of squared error and the errors of first four moments of our proposed method were very small,indicating superior performance and promising good overall control effects of our method.The approach presented in this study provides an alternative for PDF shape control in nonlinear stochastic systems.展开更多
This paper tackles the maximum correntropy Kalman filtering problem for discrete time-varying non-Gaussian systems subject to state saturations and stochastic nonlinearities. The stochastic nonlinearities, which take ...This paper tackles the maximum correntropy Kalman filtering problem for discrete time-varying non-Gaussian systems subject to state saturations and stochastic nonlinearities. The stochastic nonlinearities, which take the form of statemultiplicative noises, are introduced in systems to describe the phenomenon of nonlinear disturbances. To resist non-Gaussian noises, we consider a new performance index called maximum correntropy criterion(MCC) which describes the similarity between two stochastic variables. To enhance the “robustness” of the kernel parameter selection on the resultant filtering performance, the Cauchy kernel function is adopted to calculate the corresponding correntropy. The goal of this paper is to design a Kalman-type filter for the underlying systems via maximizing the correntropy between the system state and its estimate. By taking advantage of an upper bound on the one-step prediction error covariance, a modified MCC-based performance index is constructed. Subsequently, with the assistance of a fixed-point theorem, the filter gain is obtained by maximizing the proposed cost function. In addition, a sufficient condition is deduced to ensure the uniqueness of the fixed point. Finally, the validity of the filtering method is tested by simulating a numerical example.展开更多
The joint probability density fimction (PDF) of different structural responses is a very important topic in the stochastic response analysis of nonlinear structures. In this paper, the probability density evolution ...The joint probability density fimction (PDF) of different structural responses is a very important topic in the stochastic response analysis of nonlinear structures. In this paper, the probability density evolution method, which is successfully developed to capture the instantaneous PDF of an arbitrary single response of interest, is extended to evaluate the joint PDF of any two responses. A two-dimensional partial differential equation in terms of the joint PDF is established. The strategy of selecting representative points via the number theoretical method and sieved by a hyper-ellipsoid is outlined. A two-dimensional difference scheme is developed. The free vibration of an SDOF system is examined to verify the proposed method, and a flame structure exhibiting hysteresis subjected to stochastic ground motion is investigated. It is pointed out that the correlation of different responses results from the fact that randomness of different responses comes from the same set of basic random parameters involved. In other words, the essence of the probabilistic correlation is a physical correlation.展开更多
This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix i...This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix inequalities that are independent of the delay size. When it is applied to linear stochastic time-delay systems, sufficient conditions for the state-feedback stabilization are presented via linear matrix inequalities. Several previous results are extended to more general systems with both state and control-dependent noise, and easy computation algorithms are also given.展开更多
Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear an...Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.展开更多
The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is...The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is extended to some extent, and accordingly, the results of global ultimate boundedness for stochastic nonlinear systems are developed. Next, a new design scheme of fuzzy adaptive control is proposed. The advantage of it is that it does not require priori knowledge of virtual control gain function sign, which is usually demanded in many designs. At the same time, the track performance of closed-loop systems is improved by adaptive modifying the estimated error upper bound. By theoretical analysis, the signals of closed-loop systems are globally ultimately bounded in probability and the track error converges to a small residual set around the origin in 4th-power expectation.展开更多
In this paper, a computational approach is proposed for solving the discrete-time nonlinear optimal control problem, which is disturbed by a sequence of random noises. Because of the exact solution of such optimal con...In this paper, a computational approach is proposed for solving the discrete-time nonlinear optimal control problem, which is disturbed by a sequence of random noises. Because of the exact solution of such optimal control problem is impossible to be obtained, estimating the state dynamics is currently required. Here, it is assumed that the output can be measured from the real plant process. In our approach, the state mean propagation is applied in order to construct a linear model-based optimal control problem, where the model output is measureable. On this basis, an output error, which takes into account the differences between the real output and the model output, is defined. Then, this output error is minimized by applying the stochastic approximation approach. During the computation procedure, the stochastic gradient is established, so as the optimal solution of the model used can be updated iteratively. Once the convergence is achieved, the iterative solution approximates to the true optimal solution of the original optimal control problem, in spite of model-reality differences. For illustration, an example on a continuous stirred-tank reactor problem is studied, and the result obtained shows the applicability of the approach proposed. Hence, the efficiency of the approach proposed is highly recommended.展开更多
This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonline...This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonlinear subsystems with interconnect terms.Based on the internal model principle,a disturbance compensator is constructed such that the ith subsystem with external persistent disturbances is transformed into an augmented subsystem without disturbances.According to the sensitivity approach,the optimal tracking control law for the ith nonlinear subsystem can be obtained.The optimal tracking control law for the nonlinear large-scale systems can be obtained.A numerical simulation shows that the method is effective.展开更多
Several algorithms were proposed relating to the development of a framework of the perturbation-based stochastic finite element method (PSFEM) for large variation nonlinear dynamic problems. For this purpose, algorith...Several algorithms were proposed relating to the development of a framework of the perturbation-based stochastic finite element method (PSFEM) for large variation nonlinear dynamic problems. For this purpose, algorithms and a framework related to SFEM based on the stochastic virtual work principle were studied. To prove the validity and practicality of the algorithms and framework, numerical examples for nonlinear dynamic problems with large variations were calculated and compared with the Monte-Carlo Simulation method. This comparison shows that the proposed approaches are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.展开更多
基金The research is supported by the National Science Foundation of Henan Educational Committee of China (No. 2003110002).
文摘In this paper, a state feedback adaptive stabilization for a class of large-scale stochastic nonlinear systems is designed with Lyapunov and Backstepping method. In the systems there are uncertain terms, whose bounds are governed by a set of unknown parameters. The designed controllers would make the close-loop systems asymptotically stable and adaptive for the unknown parameters. As an application, a second order example is delivered to illustrate the approach.
文摘Stationarity of a class of stochastically interconnecteil discrete-timesystems is analyzed by utilizins results from ergodic theory of general stateMarkov chains, incorporated with the so called large-scale system approach.
基金The National Natural Science Foundation of China(No60472054)the High Technology Research Program of JiangsuProvince(NoBG2004035)the Foundation of Excellent Doctoral Dis-sertation of Southeast University (No0602)
文摘Principles and performances of quantum stochastic filters are studied for nonlinear time-domain filtering of communication signals. Filtering is realized by combining neural networks with the nonlinear Schroedinger equation and the time-variant probability density function of signals is estimated by solution of the equation. It is shown that obviously different performances can be achieved by the control of weight coefficients of potential fields. Based on this characteristic, a novel filtering algorithm is proposed, and utilizing this algorithm, the nonlinear waveform distortion of output signals and the denoising capability of the filters can be compromised. This will make the application of quantum stochastic filters be greatly extended, such as in applying the filters to the processing of communication signals. The predominant performance of quantum stochastic filters is shown by simulation results.
基金The project supported by the National Natural Science Foundation of China (19972059)
文摘This paper provides an overview of significant advances in nonlinear stochastic dynamics during the past two decades, including random response, stochastic stability, stochastic bifurcation, first passage problem and nonlinear stochastic control. Topics for future research are also suggested.
基金Project supported by the National Natural Science Foundation ofChina (No. 10332030), the Special Fund for Doctor Programs inInstitutions of Higher Learning of China (No. 20020335092), andthe Zhejiang Provincial Natural Science Foundation (No. 101046),China
文摘A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed. The optimal control forces consist of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic averaging method and stochastic dynamical programming principle to the completely observable linear control system. The response of the optimally controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation associated with the optimally controlled completely observable linear system and solving the Riccati equation for the estimated error of system states. An example is given to illustrate the procedure and effectiveness of the proposed control strategy.
基金the National Natural Science Foundation of China(Nos.10332030 and 10772159)Research Fund for Doctoral Program of Higher Education of China(No.20060335125).
文摘A bounded optimal control strategy for strongly non-linear systems under non-white wide-band random excitation with actuator saturation is proposed. First, the stochastic averaging method is introduced for controlled strongly non-linear systems under wide-band random excitation using generalized harmonic functions. Then, the dynamical programming equation for the saturated control problem is formulated from the partially averaged Itō equation based on the dynamical programming principle. The optimal control consisting of the unbounded optimal control and the bounded bang-bang control is determined by solving the dynamical programming equation. Finally, the response of the optimally controlled system is predicted by solving the reduced Fokker-Planck-Kolmogorov (FPK) equation associated with the completed averaged Itō equation. An example is given to illustrate the proposed control strategy. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and the chattering is reduced significantly comparing with the bang-bang control strategy.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2014AA06A503)the National Natural Science Foundation of China(61422307,61673361)+3 种基金the Scientific Research Starting Foundation for the Returned Overseas Chinese Scholars and Ministry of Education of Chinasupports from the Youth Top-notch Talent Support Programthe 1000-talent Youth Programthe Youth Yangtze River Scholarship
文摘In this paper,we studied the approximate sampleddata observer design for a class of stochastic nonlinear systems.Euler-Maruyama approximation was investigated in this paper because it is the basis of other higher precision numerical methods,and it preserves important structures of the nonlinear systems.Also,the form of Euler-Maruyama model is simple and easy to be calculated.The results provide a reference for sampled-data observer design method for such stochastic nonlinear systems,and may be useful to many practical control applications,such as tracking control in mechanical systems.And the effectiveness of the approach is demonstrated by a simulation example.
基金supported by the Engineering and Physical Sciences Research Council(EPSRC)of the UK(No.GR/S27658/01)the Royal Society of the UK and the Alexander von Humboldt Foundation of Germany
文摘This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli distribution are employed to model the randomly occurring communication delays which could be different for different state variables. A discrete switching function that is different from those in the existing literature is first proposed. Then, expressed as the feasibility of a linear matrix inequality (LMI) with an equality constraint, sufficient conditions are derived in order to ensure the globally mean-square asymptotic stability of the system dynamics on the sliding surface. A discrete-time SMC controller is then synthesized to guarantee the discrete-time sliding mode reaching condition with the specified sliding surface. Finally, a simulation example is given to show the effectiveness of the proposed method.
基金The author would like to thank the referees very much for their careful reading of the manuscript and many valuable suggestions.
文摘In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.
基金supported in part by the National Natural Science Foundation of China(62073166,61673215)the Key Laboratory of Jiangsu Province。
文摘This paper investigates the fixed-time stability theorem and state-feedback controller design for stochastic nonlinear systems.We propose an improved fixed-time Lyapunov theorem with a more rigorous and reasonable proof procedure.In particular,an important corollary is obtained,which can give a less conservative upper-bound estimate of the settling time.Based on the backstepping technique and the addition of a power integrator method,a state-feedback controller is skillfully designed for a class of stochastic nonlinear systems.It is proved that the proposed controller can render the closed-loop system fixed-time stable in probability with the help of the proposed fixed-time stability criteria.Finally,the effectiveness of the proposed controller is demonstrated by simulation examples and comparisons.
基金supported by the National Natural Science Foundation of China(61304020)
文摘This paper is concerned with the global boundedness problem for a class of stochastic nonlinear systems with matched conditions. The uncertainties in the systems are due to parameter variations and external stochastic disturbance. Only the matched conditions and the possible bound of the uncertainties are demanded. Based on the stochastic Lyapunov stability theory, an explicit controller is constructed in the gradient direction, which renders responses of the closed-loop systems be globally bounded in probability. When the systems degrade to linear systems, the controller becomes linear. Illustrative examples are given to show the effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China(61903298,62073259,61773016)。
文摘In this work,a novel shape control approach of the probability density function(PDF)for nonlinear stochastic systems is presented.First,we provide the formula for the PDF shape controller without devising the control law of the controller.Then,based on the exact analytical solution of the Fokker-PlanckKolmogorov(FPK)equation,the product function of the polynomial and the exponential polynomial is regarded as the stationary PDF of the state response.To validate the performance of the proposed control approach,we compared it with the exponential polynomial method and the multi-Gaussian closure method by implementing comparative simulation experiments.The results show that the novel PDF shape control approach is effective and feasible.Using an equal number of parameters,our method can achieve a similar or better control effect as the exponential polynomial method.By comparison with the multiGaussian closure method,our method has clear advantages in PDF shape control performance.For all cases,the integral of squared error and the errors of first four moments of our proposed method were very small,indicating superior performance and promising good overall control effects of our method.The approach presented in this study provides an alternative for PDF shape control in nonlinear stochastic systems.
基金supported in part by the National Natural Science Foundation of China (62273088, 62273087)the Shanghai Pujiang Program of China (22PJ1400400)the Program of Shanghai Academic/Technology Research Leader (20XD1420100)。
文摘This paper tackles the maximum correntropy Kalman filtering problem for discrete time-varying non-Gaussian systems subject to state saturations and stochastic nonlinearities. The stochastic nonlinearities, which take the form of statemultiplicative noises, are introduced in systems to describe the phenomenon of nonlinear disturbances. To resist non-Gaussian noises, we consider a new performance index called maximum correntropy criterion(MCC) which describes the similarity between two stochastic variables. To enhance the “robustness” of the kernel parameter selection on the resultant filtering performance, the Cauchy kernel function is adopted to calculate the corresponding correntropy. The goal of this paper is to design a Kalman-type filter for the underlying systems via maximizing the correntropy between the system state and its estimate. By taking advantage of an upper bound on the one-step prediction error covariance, a modified MCC-based performance index is constructed. Subsequently, with the assistance of a fixed-point theorem, the filter gain is obtained by maximizing the proposed cost function. In addition, a sufficient condition is deduced to ensure the uniqueness of the fixed point. Finally, the validity of the filtering method is tested by simulating a numerical example.
基金the National Natural Science Foundation of Chinafor Innovative Research Groups Under Grant No.50621062the National Natural Science Foundation of China forYoung Scholars Under Grant No.10402030
文摘The joint probability density fimction (PDF) of different structural responses is a very important topic in the stochastic response analysis of nonlinear structures. In this paper, the probability density evolution method, which is successfully developed to capture the instantaneous PDF of an arbitrary single response of interest, is extended to evaluate the joint PDF of any two responses. A two-dimensional partial differential equation in terms of the joint PDF is established. The strategy of selecting representative points via the number theoretical method and sieved by a hyper-ellipsoid is outlined. A two-dimensional difference scheme is developed. The free vibration of an SDOF system is examined to verify the proposed method, and a flame structure exhibiting hysteresis subjected to stochastic ground motion is investigated. It is pointed out that the correlation of different responses results from the fact that randomness of different responses comes from the same set of basic random parameters involved. In other words, the essence of the probabilistic correlation is a physical correlation.
基金This work was supported by the National Natural Science Foundation of China(No.60474013)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050424002)the Doctoral Foundation of Shandong Province (No. 2004BS01010)
文摘This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix inequalities that are independent of the delay size. When it is applied to linear stochastic time-delay systems, sufficient conditions for the state-feedback stabilization are presented via linear matrix inequalities. Several previous results are extended to more general systems with both state and control-dependent noise, and easy computation algorithms are also given.
基金Project(2011CB013601) supported by the National Basic Research Program of ChinaProject(51378258) supported by the National Natural Science Foundation of China
文摘Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.
基金Supported by National Natural Science Foundation of P. R. China (60572070, 60325311, 60534010) Natural Science Foundation of Liaoning Province (20022030)
文摘The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is extended to some extent, and accordingly, the results of global ultimate boundedness for stochastic nonlinear systems are developed. Next, a new design scheme of fuzzy adaptive control is proposed. The advantage of it is that it does not require priori knowledge of virtual control gain function sign, which is usually demanded in many designs. At the same time, the track performance of closed-loop systems is improved by adaptive modifying the estimated error upper bound. By theoretical analysis, the signals of closed-loop systems are globally ultimately bounded in probability and the track error converges to a small residual set around the origin in 4th-power expectation.
文摘In this paper, a computational approach is proposed for solving the discrete-time nonlinear optimal control problem, which is disturbed by a sequence of random noises. Because of the exact solution of such optimal control problem is impossible to be obtained, estimating the state dynamics is currently required. Here, it is assumed that the output can be measured from the real plant process. In our approach, the state mean propagation is applied in order to construct a linear model-based optimal control problem, where the model output is measureable. On this basis, an output error, which takes into account the differences between the real output and the model output, is defined. Then, this output error is minimized by applying the stochastic approximation approach. During the computation procedure, the stochastic gradient is established, so as the optimal solution of the model used can be updated iteratively. Once the convergence is achieved, the iterative solution approximates to the true optimal solution of the original optimal control problem, in spite of model-reality differences. For illustration, an example on a continuous stirred-tank reactor problem is studied, and the result obtained shows the applicability of the approach proposed. Hence, the efficiency of the approach proposed is highly recommended.
基金supported by the National Natural Science Foundation of China(No.60574023)the Natural Science Foundation of Shandong Province(No.Z2005G01)
文摘This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonlinear subsystems with interconnect terms.Based on the internal model principle,a disturbance compensator is constructed such that the ith subsystem with external persistent disturbances is transformed into an augmented subsystem without disturbances.According to the sensitivity approach,the optimal tracking control law for the ith nonlinear subsystem can be obtained.The optimal tracking control law for the nonlinear large-scale systems can be obtained.A numerical simulation shows that the method is effective.
文摘Several algorithms were proposed relating to the development of a framework of the perturbation-based stochastic finite element method (PSFEM) for large variation nonlinear dynamic problems. For this purpose, algorithms and a framework related to SFEM based on the stochastic virtual work principle were studied. To prove the validity and practicality of the algorithms and framework, numerical examples for nonlinear dynamic problems with large variations were calculated and compared with the Monte-Carlo Simulation method. This comparison shows that the proposed approaches are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.