Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significan...Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significance for the high-quality illumination of phosphor-converted WLEDs.Here,a novel red-emitting phosphor K_(2)Zn(PO_(3))_(4)∶Mn^(2+)is synthesized by standard high temperature solid state reaction in ambient atmosphere,which is a new member of self-reduction system.An effective synthesis strategy is proposed to optimize its photoluminescent performances.Combined with X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy,oxygen vacancy defects introduced by Mn doping are proved to play an important role in the transition of Mn^(4+)→Mn^(2+).Thermoluminescence analysis reveals that the distribution of trap levels,especially the deep ones,is effectively regulated by the controllable crystallization and significantly affect the thermal stability of phosphors.Then a defect-assisted model is proposed to address the inner mechanism of the phenomenon.The carriers trapped by deep trap levels can be released under the high-temperature stimulus,which return back to the luminescent centers and participate in the radiative recombination to improve thermal stability.This study provides a new crystallographic idea and theoretical support for obtaining luminescent materials with high thermal stability.展开更多
In order to increase the stability of the Mongolia power system, a single-phase automatic reclosing device (SPAR) was introduced on double-circuit power lines built with a size of 330 kV, operating on a voltage of 220...In order to increase the stability of the Mongolia power system, a single-phase automatic reclosing device (SPAR) was introduced on double-circuit power lines built with a size of 330 kV, operating on a voltage of 220 kV and a length of 250 km. These overhead power lines (L-213, L-214) connect the 220/110/35 kV “Songino” substation with the “Mandal” substation and form system networks. This paper presents the challenges encountered when implementing single-phase automatic reclosing (SPAR) devices and compares the changes in power system parameters before and after SPAR deployment for a long 220 kV line. Simulations and analyses were carried out using DIgSILENT PowerFactory software, focusing on rotor angle stability, and the overall impact on the power system during short-circuit faults. The evaluation also utilized measurement data from the Wide Area Monitoring System (WAMS) to compare system behavior pre- and post-implementation of SPAR. The findings reveal that SPAR significantly enhances system reliability and stability, effectively mitigating the risk of oscillations and stability loss triggered by short circuits. This improvement contributes to a more resilient power system, reducing the potential for disturbances caused by faults.展开更多
Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are a...Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are accurate but computationally expensive and unsuitable for high-throughput screening. This study introduces a machine learning (ML) framework trained on high-dimensional data from the Open Quantum Materials Database (OQMD) to predict formation energy, a key stability metric. Among the evaluated models, deep learning outperformed Gradient Boosting Machines and Random Forest, achieving up to 0.88 R2 prediction accuracy. Feature importance analysis identified thermodynamic, electronic, and structural properties as the primary drivers of stability, offering interpretable insights into material behavior. Compared to DFT, the proposed ML framework significantly reduces computational costs, enabling the rapid screening of thousands of compounds. These results highlight ML’s transformative potential in materials discovery, with direct applications in energy storage, semiconductors, and catalysis.展开更多
This study presents a novel method to evaluate the safety of open-pit slopes by means of three-dimensional numerical modeling with the finite difference method. The method presented here uses a block model as a vehicl...This study presents a novel method to evaluate the safety of open-pit slopes by means of three-dimensional numerical modeling with the finite difference method. The method presented here uses a block model as a vehicle to carry relevant information from the rock mass and automatically construct the numerical model. The results suggest that the method is promising because of its capacity to accurately incorporate a large amount of high-complexity rock data by considering spatial location and material behavior. It is expected that the innovations in this method will make the design, construction, and operation of open-pit iron mines safer and more economical.展开更多
BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of cor...BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.展开更多
Plant diversity plays a crucial role in maintaining the stability of ecological function.Based on field investigations and experimental analyses,artificial grassland plots with varying sowing times,adjacent natural gr...Plant diversity plays a crucial role in maintaining the stability of ecological function.Based on field investigations and experimental analyses,artificial grassland plots with varying sowing times,adjacent natural grassland(CK),and open-pit coal mine dumps in the Muli mining area of Qinghai Province were selected as research subjects for this study.The characteristics of plant diversity and community stability were measured and analyzed,and the relationships between these factors and their influencing variables were evaluated.The results indicated significant differences in the vegetation community characteristics and plant diversity among the various grasslands.Coverage,aboveground biomass,belowground biomass,soil total nitrogen,and soil total carbon were the highest when the growth period was three years.Plant diversity and community stability in the natural grassland were significantly greater than that in the artificial grassland and open-pit coal mine dumps.A significant positive correlation was observed between plant diversity and community stability,suggesting that plant diversity can serve as an index of community stability.The order of stability,from highest to lowest,was CK>11a>10a>8a>9a>6a>7a>3a>2a>1a>0a.Years were identified as the primary factors affecting plant diversity and community stability by altering the soil pH.These results elucidate the relationships and driving mechanisms between plant diversity and community stability in grasslands,providing a scientific basis for maintaining community stability in artificial grassland ecosystems in alpine mining areas.展开更多
In this paper,we establish a stability estimate for the isoperimetric inequality of horospherically convex domains in hyperbolic plane.This estimate involves a relationship between the Hausdorff distance to a geodesic...In this paper,we establish a stability estimate for the isoperimetric inequality of horospherically convex domains in hyperbolic plane.This estimate involves a relationship between the Hausdorff distance to a geodesic ball and the deficit in the isoperimetric inequality,where the coefficient of the deficit is a universal constant.展开更多
Backfill is often employed in mining operations for ground support,with its positive impact on ground stability acknowledged in many underground mines.However,existing studies have predominantly focused only on the st...Backfill is often employed in mining operations for ground support,with its positive impact on ground stability acknowledged in many underground mines.However,existing studies have predominantly focused only on the stress development within the backfill material,leaving the influence of stope backfilling on stress distribution in surrounding rock mass and ground stability largely unexplored.Therefore,this paper presents numerical models in FLAC3D to investigate,for the first time,the time-dependent stress redistribution around a vertical backfilled stope and its implications on ground stability,considering the creep of surrounding rock mass.Using the Soft Soil constitutive model,the compressibility of backfill under large pressure was captured.It is found that the creep deformation of rock mass exercises compression on backfill and results in a less void ratio and increased modulus for fill material.The compacted backfill conversely influenced the stress distribution and ground stability of rock mass which was a combined effect of wall creep and compressibility of backfill.With the increase of time or/and creep deformation,the minimum principal stress in the rocks surrounding the backfilled stope increased towards the pre-mining stress state,while the deviatoric stress reduces leading to an increased factor of safety and improved ground stability.This improvement effect of backfill on ground stability increased with the increase of mine depth and stope height,while it is also more pronounced for the narrow stope,the backfill with a smaller compression index,and the soft rocks with a smaller viscosity coefficient.Furthermore,the results emphasize the importance of minimizing empty time and backfilling extracted stope as soon as possible for ground control.Reduction of filling gap height enhances the local stability around the roof of stope.展开更多
As the penetration rate of distributed energy increases,the transient power angle stability problem of the virtual synchronous generator(VSG)has gradually become prominent.In view of the situation that the grid impeda...As the penetration rate of distributed energy increases,the transient power angle stability problem of the virtual synchronous generator(VSG)has gradually become prominent.In view of the situation that the grid impedance ratio(R/X)is high and affects the transient power angle stability of VSG,this paper proposes a VSG transient power angle stability control strategy based on the combination of frequency difference feedback and virtual impedance.To improve the transient power angle stability of the VSG,a virtual impedance is adopted in the voltage loop to adjust the impedance ratio R/X;and the PI control feedback of the VSG frequency difference is introduced in the reactive powervoltage link of theVSGto enhance the damping effect.Thesecond-orderVSGdynamic nonlinearmodel considering the reactive power-voltage loop is established and the influence of different proportional integral(PI)control parameters on the system balance stability is analyzed.Moreover,the impact of the impedance ratio R/X on the transient power angle stability is presented using the equal area criterion.In the simulations,during the voltage dips with the reduction of R/X from 1.6 to 0.8,Δδ_(1)is reduced from 0.194 rad to 0.072 rad,Δf_(1)is reduced from 0.170 to 0.093 Hz,which shows better transient power angle stability.Simulation results verify that compared with traditional VSG,the proposedmethod can effectively improve the transient power angle stability of the system.展开更多
Energy is an important resource that supports the development of human society,and energy security is even more relevant to the strength of a country.In order to ensure energy security,countries around the world are t...Energy is an important resource that supports the development of human society,and energy security is even more relevant to the strength of a country.In order to ensure energy security,countries around the world are taking measures to carry out energy transformation and construct new energy systems.As an important part of the new energy system,energy storage technology is highly valued by all countries.Among many large-scale energy storage technologies,salt cavern compressed air energy storage(CAES)technology stands out for its safety and economy,which is recognized and valued by scholars from various countries.For the construction of salt cavern CAES power station,it is very important to ensure the stability of salt cavern.Therefore,scholars have investigated the mechanical properties of salt rocks and the stability of salt caverns for CAES.This paper synthesizes the findings of current research on the creep and fatigue properties of salt rock,highlighting three key points:The factors influencing the creep and fatigue characteristics of salt rock include its composition,stress levels,and temperature.Notably,impurities and surrounding pressure tend to inhibit the deformation of salt rock,whereas elevated temperature and differential stress facilitate its deformation;The mechanisms governing creep and fatigue damage in salt rock are primarily associated with dislocation movement and microcracking;Most existing constitutive models for creep and fatigue are based on viscoelastic-plasticity theory,with fewer models derived from micro-mechanical perspectives.Additionally,this paper reviews studies on the stability of salt cavern CAES reservoirs utilizing numerical simulation methods and offers insights into future research directions concerning the creep and fatigue properties of salt rocks.展开更多
The tiered geosynthetic-reinforced soil (GRS) walls have been increasingly applied in the high and steep retaining soil structures. However, very little is known about the design method for the tiered GRS wall in prac...The tiered geosynthetic-reinforced soil (GRS) walls have been increasingly applied in the high and steep retaining soil structures. However, very little is known about the design method for the tiered GRS wall in practice. This study is aimed at proposing an upper-bound stability analysis method of a tiered GRS wall. The proposed method was firstly validated by the existing results from the centrifuge test and the numerical method, and then a parametric study was performed to investigate the effects of the cohesionless backfill friction angle φ1 and the wall geometric parameters including the offset distance, the total wall height, the batter angle δ, the number of tiers n, and wall height ratio of adjacent tiers on the dimensionless equivalent earth pressure coefficient KT. The analysis results demonstrated that as the φ1 increases, the shear strength of backfill is enhanced and thus the KT or the total reinforcement tensile force decreases, and the KT decreases with the increase of the offset distance at the initial stage and then becomes stable when it reaches a certain critical value. For a fixed offset distance, the KT or the total reinforcement tensile force decreases with the increase of the δ. For the two-tiered GRS walls having the offset distance less than the critical value, the wall with the smaller wall height ratio has a larger KT. Further, the variation of the location of the critical failure surfaces of tiered GRS walls was presented in this study with the variation of the φ1 and the wall geometry.展开更多
In view of the volume instability of steel slag aggregate leading to the quality problem of expansion damage in asphalt road construction,the 4.75-9.5 mm steel slag particles were treated by autoclaved carbonation tec...In view of the volume instability of steel slag aggregate leading to the quality problem of expansion damage in asphalt road construction,the 4.75-9.5 mm steel slag particles were treated by autoclaved carbonation technology,and the effects of the carbonation system(temperature and time)on the autoclaved pulverization rate,f-CaO content,and the relationship between them for the carbonated steel slag were investigated.In addition,the microstructure of the carbonated steel slag was analyzed by X-ray diffractometer(XRD),scanning electron microscope and energy dispersive spectrometer(SEM-EDS),metallographic microscope and X-ray fluorescence imaging spectrometer(XRF).The experimental results indicate that,under the initial CO_(2)pressure of 1.0 MPa,increasing the carbonation temperature leads to the increase in the crystal plane spacing of Ca(OH)_(2)that was generated by the hydration of minerals in steel slag,and promotes the transformation of carbonated CaCO_(3)from the orthorhombic system to the hexagonal system,resulting in the increase of the crystal planes spacing of them,meantime,accelerates the decomposition of RO phases and also the outward migration of Ca^(2+),Fe^(2+),and Mn^(2+)ions to cover and coat on the Si^(4+),Al^(3+)ions,and impels the formation of hydroxides such as Fe(OH)_(3)and the formation of carbonates such as Ca(Mg)CO_(3),FeCO_(3)and MnCO_(3).Carbonation at the temperature of 90℃for 3 h can reach the center of 4.75-9.5 mm steel slag particles.Meanwhile,the increase of temperature can promote the mineral reaction in steel slag,resulting in the fuzzy interface between mineral phases,increase of burrs,dispersion,crossover,reduction of grain size,and rearrangement of mineral particles.展开更多
High-entropy materials have become high-activity electrocatalysis owing to their high-entropy effect and multiple active sites.Herein,we synthesize a series of carbon-supported nano high-entropy oxides(HEOs/C),specifi...High-entropy materials have become high-activity electrocatalysis owing to their high-entropy effect and multiple active sites.Herein,we synthesize a series of carbon-supported nano high-entropy oxides(HEOs/C),specifically (PtFeCoNiCu)O/C,using a carbothermal shock (CTS) method for application as a cathode catalyst in direct borohydride fuel cells (DBFCs).The microstructure of the prepared catalysts was characterized by X-ray photoelectron spectroscopy,X-ray absorption fine structure,and transmission electron microscopy.The prepared (PtFeCoNiCu)O/C,with particle sizes ranging from 2 to 4 nm,demonstrates 3.94 transferred electrons towards the oxygen reduction reaction in an alkaline environment,resulting in a minimal H_(2)O_(2)yield of 2.6%.Additionally,it exhibits a Tafel slope of 61 mV dec-1,surpassing that of commercial Pt/C (82 mV dec-1).Furthermore,after 40,000 cycles of cyclic voltammetry(CV) testing,the half-wave potential of (PtFeCoNiCu)O/C shows a positive shift of 3 mV,with no notable decline in the limiting current density.When (PtFeCoNiCu)O/C is used as a cathode catalyst in DBFCs,the DBFC achieves a maximum power density of 441 mW cm^(-2)at 60°C and sustains a cell voltage of approximately 0.73 V after 52 h at 30°C.These findings confirm that HEO/C is a promising cathode catalyst for DBFCs.展开更多
Iron-chromium flow batteries(ICRFBs)have emerged as an ideal large-scale energy storage device with broad application prospects in recent years.Enhancement of the Cr^(3+)/Cr^(2+)redox reaction activity and inhibition ...Iron-chromium flow batteries(ICRFBs)have emerged as an ideal large-scale energy storage device with broad application prospects in recent years.Enhancement of the Cr^(3+)/Cr^(2+)redox reaction activity and inhibition of the hydrogen evolution side reaction(HER)are essential for the development of ICRFBs and require a novel catalyst design.However,elucidating the underlying mechanisms for modulating catalyst behaviors remains an unresolved challenge.Here,we show a novel precisely controlled preparation of a novel thermal-treated carbon cloth electrode with a uniform deposit of low-cost indium catalyst particles.The density functional theory analysis reveals the In catalyst has a significant adsorption effect on the reactants and improves the redox reaction activity of Cr^(3+)/Cr^(2+).Moreover,H+is more easily absorbed on the surface of the catalyst with a high migration energy barrier,thereby inhibiting the occurrence of HER.The assembled ICRFBs have an average energy efficiency of 83.91%at 140 mA cm^(-2),and this method minimizes the electrodeposition process and cleans the last obstacle for industry long cycle operation requirements.The ICRFBs exhibit exceptional long-term stability with an energy efficiency decay rate of 0.011%per cycle at 1000 cycles,the lowest ICRFBs reported so far.Therefore,this study provides a promising strategy for developing ICRFBs with low costs and long cycle life.展开更多
The 110-mining method,a rising and revolutionary non-pillar longwall mining method,can obviously expand coal extraction ratio and minimize roadway incidents.However,in case of composite hard roof,problems such as diff...The 110-mining method,a rising and revolutionary non-pillar longwall mining method,can obviously expand coal extraction ratio and minimize roadway incidents.However,in case of composite hard roof,problems such as difficulty in commanding the entry steadiness and insufficient fragmentation and bulking of the goaf gangue are prevalent.In this study,a 110-mining method for roadway surrounding rock stability control technology based on a compensation mechanism was proposed.First,the composite hard roof cutting short cantilever beam(SCB)model was built and the compensation mechanism including stress and space dual compensation was studied.Subsequently,the controllable elements influencing the roadway steadiness were confirmed to consequently put forward a control technology based on stress compensation for entry support and space compensation for the fragmentation and bulking of goaf gangue.The control technology was finally verified through onsite engineering experiments in terms of composite hard roof.The adoption of the 110-mining method with compensation control technology indicated good support effect on the roadway.The initial and residual expansion coefficients of the goaf gangue increased by 0.6 and 0.6,respectively,and the maximum and average working resistances of the working face support decreased by 10.9%and 13.8%,respectively.Consequently,the deformations of reserved entry decreased,and entry steadiness was enhanced.The presented technique and effects got probably have practical values for non-pillar mining functions in comparable field.展开更多
This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e...This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.展开更多
The development of superhydrophobic materials has demonstrated significant potential in the realm ofcorrosion protection for aluminum alloy(Al alloy)surfaces.However,the limited mechanical stability ofsuperhydrophobic...The development of superhydrophobic materials has demonstrated significant potential in the realm ofcorrosion protection for aluminum alloy(Al alloy)surfaces.However,the limited mechanical stability ofsuperhydrophobic surfaces has impeded the rapid advancement in this field.In this research,we synthesized analuminum phosphate(AP)inorganic binder and combined it with hydrophobic fumed SiO_(2)(HF-SiO_(2))nanoparticles andpolydimethylsiloxane(PDMS)to develop a HF-SiO_(2)@PDMS@AP superhydrophobic composite coating with improvedmechanical stability on Al alloy substrates using a simple spray-coating technique.The findings indicate that the additionof the AP inorganic binder significantly enhanced the coating’s resistance to abrasion,maintaining its superhydrophobicproperties and micro-nano hierarchical structure even after being subjected to a sandpaper abrasion distance of 2000 cm.Electrochemical impedance spectroscopy(EIS)testing showed that the low-frequency modulus(|Z|0.01Hz)of theHF-SiO_(2)@PDMS@AP superhydrophobic coating increased by four orders of magnitude compared to the initial Al alloysubstrate,resulting in a substantial improvement in corrosion protection capacity.The impressive corrosion resistanceand mechanical stability exhibited by this coating have the potential to greatly expand the practical applications of suchmaterials for surface functional protection in marine and industrial environments.展开更多
The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder...The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation.Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs(ASSLBs),while it introduces new concerns about thermal stability.In this study,we propose the incorporation of a multi-functional flame-retardant triphenyl phos-phate additive into poly(ethylene oxide),acting as a thin buffer layer between LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and garnet electro-lyte.Through electrochemical stability tests,cycling performance evaluations,interfacial thermal stability analysis and flammability tests,improved thermal stability(capacity retention of 98.5%after 100 cycles at 60℃,and 89.6%after 50 cycles at 80℃)and safety characteristics(safe and stable cycling up to 100℃)are demonstrated.Based on various materials characterizations,the mechanism for the improved thermal stability of the interface is proposed.The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature.Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern.展开更多
The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology o...The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology of organic sulfur,including the activity,stability,and atmosphere effects of hydrolysis catalysts.The emphasis is on strategies for enhancing hydrolysis activity and anti-oxygen poisoning property of catalysts.Surface modification,metal doping and nitrogen doping have been found to improve the activity of catalysts.Alkaline components modification is the most commonly used method,the formation of oxygen vacancies through metal doping and creation of nitrogen basic sites through nitrogen doping also contribute to the hydrolysis of organic sulfur.The strategies for anti-oxygen poisoning are discussed in a systematic manner.The structural regulation of catalysts is beneficial for the desorption and diffusion of hydrogen sulfide(H_(2)S),thereby effectively inhibiting its oxidation.Nitrogen doping and the addition of electronic promoters such as transition metals can protect active sites and decrease the number of active oxygen species.These methods have been proven to enhance the anti-poisoning performance of catalysts.Additionally,this article summarizes how different atmospheres affect the activity of hydrolysis catalysts.The objective of this review is to pave the way for the development of efficient,stable and widely used catalysts for organic sulfur hydrolysis.展开更多
Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rat...Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.展开更多
文摘Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significance for the high-quality illumination of phosphor-converted WLEDs.Here,a novel red-emitting phosphor K_(2)Zn(PO_(3))_(4)∶Mn^(2+)is synthesized by standard high temperature solid state reaction in ambient atmosphere,which is a new member of self-reduction system.An effective synthesis strategy is proposed to optimize its photoluminescent performances.Combined with X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy,oxygen vacancy defects introduced by Mn doping are proved to play an important role in the transition of Mn^(4+)→Mn^(2+).Thermoluminescence analysis reveals that the distribution of trap levels,especially the deep ones,is effectively regulated by the controllable crystallization and significantly affect the thermal stability of phosphors.Then a defect-assisted model is proposed to address the inner mechanism of the phenomenon.The carriers trapped by deep trap levels can be released under the high-temperature stimulus,which return back to the luminescent centers and participate in the radiative recombination to improve thermal stability.This study provides a new crystallographic idea and theoretical support for obtaining luminescent materials with high thermal stability.
文摘In order to increase the stability of the Mongolia power system, a single-phase automatic reclosing device (SPAR) was introduced on double-circuit power lines built with a size of 330 kV, operating on a voltage of 220 kV and a length of 250 km. These overhead power lines (L-213, L-214) connect the 220/110/35 kV “Songino” substation with the “Mandal” substation and form system networks. This paper presents the challenges encountered when implementing single-phase automatic reclosing (SPAR) devices and compares the changes in power system parameters before and after SPAR deployment for a long 220 kV line. Simulations and analyses were carried out using DIgSILENT PowerFactory software, focusing on rotor angle stability, and the overall impact on the power system during short-circuit faults. The evaluation also utilized measurement data from the Wide Area Monitoring System (WAMS) to compare system behavior pre- and post-implementation of SPAR. The findings reveal that SPAR significantly enhances system reliability and stability, effectively mitigating the risk of oscillations and stability loss triggered by short circuits. This improvement contributes to a more resilient power system, reducing the potential for disturbances caused by faults.
文摘Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are accurate but computationally expensive and unsuitable for high-throughput screening. This study introduces a machine learning (ML) framework trained on high-dimensional data from the Open Quantum Materials Database (OQMD) to predict formation energy, a key stability metric. Among the evaluated models, deep learning outperformed Gradient Boosting Machines and Random Forest, achieving up to 0.88 R2 prediction accuracy. Feature importance analysis identified thermodynamic, electronic, and structural properties as the primary drivers of stability, offering interpretable insights into material behavior. Compared to DFT, the proposed ML framework significantly reduces computational costs, enabling the rapid screening of thousands of compounds. These results highlight ML’s transformative potential in materials discovery, with direct applications in energy storage, semiconductors, and catalysis.
文摘This study presents a novel method to evaluate the safety of open-pit slopes by means of three-dimensional numerical modeling with the finite difference method. The method presented here uses a block model as a vehicle to carry relevant information from the rock mass and automatically construct the numerical model. The results suggest that the method is promising because of its capacity to accurately incorporate a large amount of high-complexity rock data by considering spatial location and material behavior. It is expected that the innovations in this method will make the design, construction, and operation of open-pit iron mines safer and more economical.
文摘BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.
基金financial support provided by the Research and Application Demonstration of Native Ecological Grass Seed Breeding Technology in“Black Soil Beaches”(2024-SF-101)。
文摘Plant diversity plays a crucial role in maintaining the stability of ecological function.Based on field investigations and experimental analyses,artificial grassland plots with varying sowing times,adjacent natural grassland(CK),and open-pit coal mine dumps in the Muli mining area of Qinghai Province were selected as research subjects for this study.The characteristics of plant diversity and community stability were measured and analyzed,and the relationships between these factors and their influencing variables were evaluated.The results indicated significant differences in the vegetation community characteristics and plant diversity among the various grasslands.Coverage,aboveground biomass,belowground biomass,soil total nitrogen,and soil total carbon were the highest when the growth period was three years.Plant diversity and community stability in the natural grassland were significantly greater than that in the artificial grassland and open-pit coal mine dumps.A significant positive correlation was observed between plant diversity and community stability,suggesting that plant diversity can serve as an index of community stability.The order of stability,from highest to lowest,was CK>11a>10a>8a>9a>6a>7a>3a>2a>1a>0a.Years were identified as the primary factors affecting plant diversity and community stability by altering the soil pH.These results elucidate the relationships and driving mechanisms between plant diversity and community stability in grasslands,providing a scientific basis for maintaining community stability in artificial grassland ecosystems in alpine mining areas.
文摘In this paper,we establish a stability estimate for the isoperimetric inequality of horospherically convex domains in hyperbolic plane.This estimate involves a relationship between the Hausdorff distance to a geodesic ball and the deficit in the isoperimetric inequality,where the coefficient of the deficit is a universal constant.
基金the funding support from the National Natural Science Foundation of China(Grant Nos.52304101 and 52004206)the China Postdoctoral Science Foundation(Grant No.2023MD734215)。
文摘Backfill is often employed in mining operations for ground support,with its positive impact on ground stability acknowledged in many underground mines.However,existing studies have predominantly focused only on the stress development within the backfill material,leaving the influence of stope backfilling on stress distribution in surrounding rock mass and ground stability largely unexplored.Therefore,this paper presents numerical models in FLAC3D to investigate,for the first time,the time-dependent stress redistribution around a vertical backfilled stope and its implications on ground stability,considering the creep of surrounding rock mass.Using the Soft Soil constitutive model,the compressibility of backfill under large pressure was captured.It is found that the creep deformation of rock mass exercises compression on backfill and results in a less void ratio and increased modulus for fill material.The compacted backfill conversely influenced the stress distribution and ground stability of rock mass which was a combined effect of wall creep and compressibility of backfill.With the increase of time or/and creep deformation,the minimum principal stress in the rocks surrounding the backfilled stope increased towards the pre-mining stress state,while the deviatoric stress reduces leading to an increased factor of safety and improved ground stability.This improvement effect of backfill on ground stability increased with the increase of mine depth and stope height,while it is also more pronounced for the narrow stope,the backfill with a smaller compression index,and the soft rocks with a smaller viscosity coefficient.Furthermore,the results emphasize the importance of minimizing empty time and backfilling extracted stope as soon as possible for ground control.Reduction of filling gap height enhances the local stability around the roof of stope.
基金supported by theMajor Science and Technology Projects of China Southern Power Grid(Grant number CGYKJXM20210328).
文摘As the penetration rate of distributed energy increases,the transient power angle stability problem of the virtual synchronous generator(VSG)has gradually become prominent.In view of the situation that the grid impedance ratio(R/X)is high and affects the transient power angle stability of VSG,this paper proposes a VSG transient power angle stability control strategy based on the combination of frequency difference feedback and virtual impedance.To improve the transient power angle stability of the VSG,a virtual impedance is adopted in the voltage loop to adjust the impedance ratio R/X;and the PI control feedback of the VSG frequency difference is introduced in the reactive powervoltage link of theVSGto enhance the damping effect.Thesecond-orderVSGdynamic nonlinearmodel considering the reactive power-voltage loop is established and the influence of different proportional integral(PI)control parameters on the system balance stability is analyzed.Moreover,the impact of the impedance ratio R/X on the transient power angle stability is presented using the equal area criterion.In the simulations,during the voltage dips with the reduction of R/X from 1.6 to 0.8,Δδ_(1)is reduced from 0.194 rad to 0.072 rad,Δf_(1)is reduced from 0.170 to 0.093 Hz,which shows better transient power angle stability.Simulation results verify that compared with traditional VSG,the proposedmethod can effectively improve the transient power angle stability of the system.
基金supported by the Natural Science Fund of China(No.51834003,52274073,52022014).
文摘Energy is an important resource that supports the development of human society,and energy security is even more relevant to the strength of a country.In order to ensure energy security,countries around the world are taking measures to carry out energy transformation and construct new energy systems.As an important part of the new energy system,energy storage technology is highly valued by all countries.Among many large-scale energy storage technologies,salt cavern compressed air energy storage(CAES)technology stands out for its safety and economy,which is recognized and valued by scholars from various countries.For the construction of salt cavern CAES power station,it is very important to ensure the stability of salt cavern.Therefore,scholars have investigated the mechanical properties of salt rocks and the stability of salt caverns for CAES.This paper synthesizes the findings of current research on the creep and fatigue properties of salt rock,highlighting three key points:The factors influencing the creep and fatigue characteristics of salt rock include its composition,stress levels,and temperature.Notably,impurities and surrounding pressure tend to inhibit the deformation of salt rock,whereas elevated temperature and differential stress facilitate its deformation;The mechanisms governing creep and fatigue damage in salt rock are primarily associated with dislocation movement and microcracking;Most existing constitutive models for creep and fatigue are based on viscoelastic-plasticity theory,with fewer models derived from micro-mechanical perspectives.Additionally,this paper reviews studies on the stability of salt cavern CAES reservoirs utilizing numerical simulation methods and offers insights into future research directions concerning the creep and fatigue properties of salt rocks.
基金financially supported by the National Natural Science Foundation of China(Grants Nos.41877255,and 52078182).
文摘The tiered geosynthetic-reinforced soil (GRS) walls have been increasingly applied in the high and steep retaining soil structures. However, very little is known about the design method for the tiered GRS wall in practice. This study is aimed at proposing an upper-bound stability analysis method of a tiered GRS wall. The proposed method was firstly validated by the existing results from the centrifuge test and the numerical method, and then a parametric study was performed to investigate the effects of the cohesionless backfill friction angle φ1 and the wall geometric parameters including the offset distance, the total wall height, the batter angle δ, the number of tiers n, and wall height ratio of adjacent tiers on the dimensionless equivalent earth pressure coefficient KT. The analysis results demonstrated that as the φ1 increases, the shear strength of backfill is enhanced and thus the KT or the total reinforcement tensile force decreases, and the KT decreases with the increase of the offset distance at the initial stage and then becomes stable when it reaches a certain critical value. For a fixed offset distance, the KT or the total reinforcement tensile force decreases with the increase of the δ. For the two-tiered GRS walls having the offset distance less than the critical value, the wall with the smaller wall height ratio has a larger KT. Further, the variation of the location of the critical failure surfaces of tiered GRS walls was presented in this study with the variation of the φ1 and the wall geometry.
基金Funded by the Natural Science Foundation of Hebei Province(No.E2020209010)the Science and Technology Plan Project of Tangshan(No.19150225E)the Key R&D Projects of North China University of Science and Technology(No.ZD-ST-202301)。
文摘In view of the volume instability of steel slag aggregate leading to the quality problem of expansion damage in asphalt road construction,the 4.75-9.5 mm steel slag particles were treated by autoclaved carbonation technology,and the effects of the carbonation system(temperature and time)on the autoclaved pulverization rate,f-CaO content,and the relationship between them for the carbonated steel slag were investigated.In addition,the microstructure of the carbonated steel slag was analyzed by X-ray diffractometer(XRD),scanning electron microscope and energy dispersive spectrometer(SEM-EDS),metallographic microscope and X-ray fluorescence imaging spectrometer(XRF).The experimental results indicate that,under the initial CO_(2)pressure of 1.0 MPa,increasing the carbonation temperature leads to the increase in the crystal plane spacing of Ca(OH)_(2)that was generated by the hydration of minerals in steel slag,and promotes the transformation of carbonated CaCO_(3)from the orthorhombic system to the hexagonal system,resulting in the increase of the crystal planes spacing of them,meantime,accelerates the decomposition of RO phases and also the outward migration of Ca^(2+),Fe^(2+),and Mn^(2+)ions to cover and coat on the Si^(4+),Al^(3+)ions,and impels the formation of hydroxides such as Fe(OH)_(3)and the formation of carbonates such as Ca(Mg)CO_(3),FeCO_(3)and MnCO_(3).Carbonation at the temperature of 90℃for 3 h can reach the center of 4.75-9.5 mm steel slag particles.Meanwhile,the increase of temperature can promote the mineral reaction in steel slag,resulting in the fuzzy interface between mineral phases,increase of burrs,dispersion,crossover,reduction of grain size,and rearrangement of mineral particles.
基金Zhejiang Provincial Natural Science Foundation of China (LZ22B060001,LY22E010003)“Pioneer” R&D Program of Zhejiang Province(2023C01080)National Natural Science Foundation of China (52301235)。
文摘High-entropy materials have become high-activity electrocatalysis owing to their high-entropy effect and multiple active sites.Herein,we synthesize a series of carbon-supported nano high-entropy oxides(HEOs/C),specifically (PtFeCoNiCu)O/C,using a carbothermal shock (CTS) method for application as a cathode catalyst in direct borohydride fuel cells (DBFCs).The microstructure of the prepared catalysts was characterized by X-ray photoelectron spectroscopy,X-ray absorption fine structure,and transmission electron microscopy.The prepared (PtFeCoNiCu)O/C,with particle sizes ranging from 2 to 4 nm,demonstrates 3.94 transferred electrons towards the oxygen reduction reaction in an alkaline environment,resulting in a minimal H_(2)O_(2)yield of 2.6%.Additionally,it exhibits a Tafel slope of 61 mV dec-1,surpassing that of commercial Pt/C (82 mV dec-1).Furthermore,after 40,000 cycles of cyclic voltammetry(CV) testing,the half-wave potential of (PtFeCoNiCu)O/C shows a positive shift of 3 mV,with no notable decline in the limiting current density.When (PtFeCoNiCu)O/C is used as a cathode catalyst in DBFCs,the DBFC achieves a maximum power density of 441 mW cm^(-2)at 60°C and sustains a cell voltage of approximately 0.73 V after 52 h at 30°C.These findings confirm that HEO/C is a promising cathode catalyst for DBFCs.
基金support from the National Natural Science Foundation of China(No.22308378,22308380,22393963)the Science Foundation of China University of Petroleum,Beijing(No.2462023XKBH005,ZX20230078).
文摘Iron-chromium flow batteries(ICRFBs)have emerged as an ideal large-scale energy storage device with broad application prospects in recent years.Enhancement of the Cr^(3+)/Cr^(2+)redox reaction activity and inhibition of the hydrogen evolution side reaction(HER)are essential for the development of ICRFBs and require a novel catalyst design.However,elucidating the underlying mechanisms for modulating catalyst behaviors remains an unresolved challenge.Here,we show a novel precisely controlled preparation of a novel thermal-treated carbon cloth electrode with a uniform deposit of low-cost indium catalyst particles.The density functional theory analysis reveals the In catalyst has a significant adsorption effect on the reactants and improves the redox reaction activity of Cr^(3+)/Cr^(2+).Moreover,H+is more easily absorbed on the surface of the catalyst with a high migration energy barrier,thereby inhibiting the occurrence of HER.The assembled ICRFBs have an average energy efficiency of 83.91%at 140 mA cm^(-2),and this method minimizes the electrodeposition process and cleans the last obstacle for industry long cycle operation requirements.The ICRFBs exhibit exceptional long-term stability with an energy efficiency decay rate of 0.011%per cycle at 1000 cycles,the lowest ICRFBs reported so far.Therefore,this study provides a promising strategy for developing ICRFBs with low costs and long cycle life.
基金This work described herein was supported by the Program of China Scholarship Council(202206430008)the National Natural Science Foundation of China(NSFC)(52074300 and 52304111)+1 种基金the Yueqi Young Scholars Project of China University of Mining and Technology Beijing(2602021RC84)the Guizhou province science and technology planning project([2020]3007 and[2020]2Y019).
文摘The 110-mining method,a rising and revolutionary non-pillar longwall mining method,can obviously expand coal extraction ratio and minimize roadway incidents.However,in case of composite hard roof,problems such as difficulty in commanding the entry steadiness and insufficient fragmentation and bulking of the goaf gangue are prevalent.In this study,a 110-mining method for roadway surrounding rock stability control technology based on a compensation mechanism was proposed.First,the composite hard roof cutting short cantilever beam(SCB)model was built and the compensation mechanism including stress and space dual compensation was studied.Subsequently,the controllable elements influencing the roadway steadiness were confirmed to consequently put forward a control technology based on stress compensation for entry support and space compensation for the fragmentation and bulking of goaf gangue.The control technology was finally verified through onsite engineering experiments in terms of composite hard roof.The adoption of the 110-mining method with compensation control technology indicated good support effect on the roadway.The initial and residual expansion coefficients of the goaf gangue increased by 0.6 and 0.6,respectively,and the maximum and average working resistances of the working face support decreased by 10.9%and 13.8%,respectively.Consequently,the deformations of reserved entry decreased,and entry steadiness was enhanced.The presented technique and effects got probably have practical values for non-pillar mining functions in comparable field.
基金supported by the National Natural Science Foundation of China(Grant Nos.51890912,51979025 and 52011530189).
文摘This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.
基金Projects(ZR2022YQ35,ZR2021LFG004)supported by the Shandong Provincial Natural Science Foundation,ChinaProject(2021207)supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences。
文摘The development of superhydrophobic materials has demonstrated significant potential in the realm ofcorrosion protection for aluminum alloy(Al alloy)surfaces.However,the limited mechanical stability ofsuperhydrophobic surfaces has impeded the rapid advancement in this field.In this research,we synthesized analuminum phosphate(AP)inorganic binder and combined it with hydrophobic fumed SiO_(2)(HF-SiO_(2))nanoparticles andpolydimethylsiloxane(PDMS)to develop a HF-SiO_(2)@PDMS@AP superhydrophobic composite coating with improvedmechanical stability on Al alloy substrates using a simple spray-coating technique.The findings indicate that the additionof the AP inorganic binder significantly enhanced the coating’s resistance to abrasion,maintaining its superhydrophobicproperties and micro-nano hierarchical structure even after being subjected to a sandpaper abrasion distance of 2000 cm.Electrochemical impedance spectroscopy(EIS)testing showed that the low-frequency modulus(|Z|0.01Hz)of theHF-SiO_(2)@PDMS@AP superhydrophobic coating increased by four orders of magnitude compared to the initial Al alloysubstrate,resulting in a substantial improvement in corrosion protection capacity.The impressive corrosion resistanceand mechanical stability exhibited by this coating have the potential to greatly expand the practical applications of suchmaterials for surface functional protection in marine and industrial environments.
基金This work was supported by the Australian Research Council via Discovery Projects(Nos.DP200103315,DP200103332 and DP230100685)Linkage Projects(No.LP220200920).The authors acknowledge the Microscopy and Microanalysis Facility—John de Laeter Centre,Curtin University for the scientific and technical assistance of material characterizations.L.Zhao and C.Cao would like to acknowledge the PhD scholarship supported by BLACKSTONE Minerals Ltd.
文摘The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation.Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs(ASSLBs),while it introduces new concerns about thermal stability.In this study,we propose the incorporation of a multi-functional flame-retardant triphenyl phos-phate additive into poly(ethylene oxide),acting as a thin buffer layer between LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and garnet electro-lyte.Through electrochemical stability tests,cycling performance evaluations,interfacial thermal stability analysis and flammability tests,improved thermal stability(capacity retention of 98.5%after 100 cycles at 60℃,and 89.6%after 50 cycles at 80℃)and safety characteristics(safe and stable cycling up to 100℃)are demonstrated.Based on various materials characterizations,the mechanism for the improved thermal stability of the interface is proposed.The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature.Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern.
基金supported by Fundamental Research Program of Shanxi Province,China(202203021212245)the Science and Technology Achievement Transformation Guidance Special Program of Shanxi Province,China(202104021301052)the Patent Transformation Program of Shanxi Province,China(202306013).
文摘The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology of organic sulfur,including the activity,stability,and atmosphere effects of hydrolysis catalysts.The emphasis is on strategies for enhancing hydrolysis activity and anti-oxygen poisoning property of catalysts.Surface modification,metal doping and nitrogen doping have been found to improve the activity of catalysts.Alkaline components modification is the most commonly used method,the formation of oxygen vacancies through metal doping and creation of nitrogen basic sites through nitrogen doping also contribute to the hydrolysis of organic sulfur.The strategies for anti-oxygen poisoning are discussed in a systematic manner.The structural regulation of catalysts is beneficial for the desorption and diffusion of hydrogen sulfide(H_(2)S),thereby effectively inhibiting its oxidation.Nitrogen doping and the addition of electronic promoters such as transition metals can protect active sites and decrease the number of active oxygen species.These methods have been proven to enhance the anti-poisoning performance of catalysts.Additionally,this article summarizes how different atmospheres affect the activity of hydrolysis catalysts.The objective of this review is to pave the way for the development of efficient,stable and widely used catalysts for organic sulfur hydrolysis.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2022QB166,ZR2020KE032)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010600)+3 种基金the Youth Innovation Promotion Association of CAS(2021210)the Foundation of Qingdao Postdoctoral Application Program(Y63302190F)the Natural Science Foundation of Qingdao Institute ofBioenergy and Bioprocess Technology(QIBEBT SZ202101)support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials
文摘Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.