期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
1
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification lightweight convolutional Neural Network Depthwise Dilated Separable convolution Hierarchical Multi-Scale Feature Fusion
在线阅读 下载PDF
Face Age Estimation Based on CSLBP and Lightweight Convolutional Neural Network 被引量:1
2
作者 Yang Wang Ying Tian Ou Tian 《Computers, Materials & Continua》 SCIE EI 2021年第11期2203-2216,共14页
As the use of facial attributes continues to expand,research into facial age estimation is also developing.Because face images are easily affected by factors including illumination and occlusion,the age estimation of ... As the use of facial attributes continues to expand,research into facial age estimation is also developing.Because face images are easily affected by factors including illumination and occlusion,the age estimation of faces is a challenging process.This paper proposes a face age estimation algorithm based on lightweight convolutional neural network in view of the complexity of the environment and the limitations of device computing ability.Improving face age estimation based on Soft Stagewise Regression Network(SSR-Net)and facial images,this paper employs the Center Symmetric Local Binary Pattern(CSLBP)method to obtain the feature image and then combines the face image and the feature image as network input data.Adding feature images to the convolutional neural network can improve the accuracy as well as increase the network model robustness.The experimental results on IMDB-WIKI and MORPH 2 datasets show that the lightweight convolutional neural network method proposed in this paper reduces model complexity and increases the accuracy of face age estimations. 展开更多
关键词 Face age estimation lightweight convolutional neural network CSLBP SSR-Net
在线阅读 下载PDF
Method for detecting 2D grapevine winter pruning location based on thinning algorithm and Lightweight Convolutional Neural Network 被引量:2
3
作者 Qinghua Yang Yuhao Yuan +1 位作者 Yiqin Chen Yi Xun 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第3期177-183,共7页
In viticulture,there is an increasing demand for automatic winter grapevine pruning devices,for which detection of pruning location in vineyard images is a necessary task,susceptible to being automated through the use... In viticulture,there is an increasing demand for automatic winter grapevine pruning devices,for which detection of pruning location in vineyard images is a necessary task,susceptible to being automated through the use of computer vision methods.In this study,a novel 2D grapevine winter pruning location detection method was proposed for automatic winter pruning with a Y-shaped cultivation system.The method can be divided into the following four steps.First,the vineyard image was segmented by the threshold two times Red minus Green minus Blue(2R−G−B)channel and S channel;Second,extract the grapevine skeleton by Improved Enhanced Parallel Thinning Algorithm(IEPTA);Third,find the structure of each grapevine by judging the angle and distance relationship between branches;Fourth,obtain the bounding boxes from these grapevines,then pre-trained MobileNetV3_small×0.75 was utilized to classify each bounding box and finally find the pruning location.According to the detection experiment result,the method of this study achieved a precision of 98.8%and a recall of 92.3%for bud detection,an accuracy of 83.4%for pruning location detection,and a total time of 0.423 s.Therefore,the results indicated that the proposed 2D pruning location detection method had decent robustness as well as high precision that could guide automatic devices to winter prune efficiently. 展开更多
关键词 grapevine winter pruning lightweight convolutional Neural Network thinning algorithm detection method
原文传递
Automated garden-insect recognition using improved lightweight convolution network 被引量:1
4
作者 Zhankui Yang Xinting Yang +1 位作者 Ming Li Wenyong Li 《Information Processing in Agriculture》 EI CSCD 2023年第2期256-266,共11页
Automated recognition of insect category,which currently is performed mainly by agriculture experts,is a challenging problem that has received increasing attention in recent years.The goal of the present research is t... Automated recognition of insect category,which currently is performed mainly by agriculture experts,is a challenging problem that has received increasing attention in recent years.The goal of the present research is to develop an intelligent mobile-terminal recognition system based on deep neural networks to recognize garden insects in a device that can be conveniently deployed in mobile terminals.State-of-the-art lightweight convolutional neural networks(such as SqueezeNet and ShuffleNet)have the same accuracy as classical convolutional neural networks such as AlexNet but fewer parameters,thereby not only requiring communication across servers during distributed training but also being more feasible to deploy on mobile terminals and other hardware with limited memory.In this research,we connect with the rich details of the low-level network features and the rich semantic information of the high-level network features to construct more rich semantic information feature maps which can effectively improve SqueezeNet model with a small computational cost.In addition,we developed an off-line insect recognition software that can be deployed on the mobile terminal to solve no network and the timedelay problems in the field.Experiments demonstrate that the proposed method is promising for recognition while remaining within a limited computational budget and delivers a much higher recognition accuracy of 91.64%with less training time relative to other classical convolutional neural networks.We have also verified the results that the improved SqueezeNet model has a 2.3%higher than of the original model in the open insect data IP102. 展开更多
关键词 Insect classification Mobile-terminal recognition SqueezeNet model Deep lightweight convolution NETWORK
原文传递
Lightweight Multi-scale Convolutional Neural Network for Rice Leaf Disease Recognition 被引量:1
5
作者 Chang Zhang Ruiwen Ni +2 位作者 Ye Mu Yu Sun Thobela Louis Tyasi 《Computers, Materials & Continua》 SCIE EI 2023年第1期983-994,共12页
In the field of agricultural information,the identification and prediction of rice leaf disease have always been the focus of research,and deep learning(DL)technology is currently a hot research topic in the field of ... In the field of agricultural information,the identification and prediction of rice leaf disease have always been the focus of research,and deep learning(DL)technology is currently a hot research topic in the field of pattern recognition.The research and development of high-efficiency,highquality and low-cost automatic identification methods for rice diseases that can replace humans is an important means of dealing with the current situation from a technical perspective.This paper mainly focuses on the problem of huge parameters of the Convolutional Neural Network(CNN)model and proposes a recognitionmodel that combines amulti-scale convolution module with a neural network model based on Visual Geometry Group(VGG).The accuracy and loss of the training set and the test set are used to evaluate the performance of the model.The test accuracy of this model is 97.1%that has increased 5.87%over VGG.Furthermore,the memory requirement is 26.1M,only 1.6%of the VGG.Experiment results show that this model performs better in terms of accuracy,recognition speed and memory size. 展开更多
关键词 Rice leaf diseases deep learning lightweight convolution neural networks VGG
在线阅读 下载PDF
A New Malicious Code Classification Method for the Security of Financial Software
6
作者 Xiaonan Li Qiang Wang +2 位作者 Conglai Fan Wei Zhan Mingliang Zhang 《Computer Systems Science & Engineering》 2024年第3期773-792,共20页
The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financia... The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financial system and individual clients.Nevertheless,present detection models encounter limitations in their ability to identify malevolent code and its variations,all while encompassing a multitude of parameters.To overcome these obsta-cles,we introduce a lean model for classifying families of malevolent code,formulated on Ghost-DenseNet-SE.This model integrates the Ghost module,DenseNet,and the squeeze-and-excitation(SE)channel domain attention mechanism.It substitutes the standard convolutional layer in DenseNet with the Ghost module,thereby diminishing the model’s size and augmenting recognition speed.Additionally,the channel domain attention mechanism assigns distinctive weights to feature channels,facilitating the extraction of pivotal characteristics of malevolent code and bolstering detection precision.Experimental outcomes on the Malimg dataset indicate that the model attained an accuracy of 99.14%in discerning families of malevolent code,surpassing AlexNet(97.8%)and The visual geometry group network(VGGNet)(96.16%).The proposed model exhibits reduced parameters,leading to decreased model complexity alongside enhanced classification accuracy,rendering it a valuable asset for categorizing malevolent code. 展开更多
关键词 Malicious code lightweight convolution densely connected network channel domain attention mechanism
在线阅读 下载PDF
Triple-Branch Asymmetric Network for Real-time Semantic Segmentation of Road Scenes
7
作者 Yazhi Zhang Xuguang Zhang Hui Yu 《Instrumentation》 2024年第2期72-82,共11页
As the field of autonomous driving evolves, real-time semantic segmentation has become a crucial part of computer vision tasks. However, most existing methods use lightweight convolution to reduce the computational ef... As the field of autonomous driving evolves, real-time semantic segmentation has become a crucial part of computer vision tasks. However, most existing methods use lightweight convolution to reduce the computational effort, resulting in lower accuracy. To address this problem, we construct TBANet, a network with an encoder-decoder structure for efficient feature extraction. In the encoder part, the TBA module is designed to extract details and the ETBA module is used to learn semantic representations in a high-dimensional space. In the decoder part, we design a combination of multiple upsampling methods to aggregate features with less computational overhead. We validate the efficiency of TBANet on the Cityscapes dataset. It achieves 75.1% mean Intersection over Union(mIoU) with only 2.07 million parameters and can reach 90.3 Frames Per Second(FPS). 展开更多
关键词 encoder-decoder architecture lightweight convolution real-time semantic segmentation
在线阅读 下载PDF
Rolling Bearing Fault Diagnosis Based on MTF Encoding and CBAM-LCNN Mechanism
8
作者 Wei Liu Sen Liu +2 位作者 Yinchao He Jiaojiao Wang Yu Gu 《Computers, Materials & Continua》 2025年第3期4863-4880,共18页
To address the issues of slow diagnostic speed,low accuracy,and poor generalization performance in traditional rolling bearing fault diagnosis methods,we propose a rolling bearing fault diagnosis method based on Marko... To address the issues of slow diagnostic speed,low accuracy,and poor generalization performance in traditional rolling bearing fault diagnosis methods,we propose a rolling bearing fault diagnosis method based on Markov Transition Field(MTF)image encoding combined with a lightweight convolutional neural network that integrates a Convolutional Block Attention Module(CBAM-LCNN).Specifically,we first use the Markov Transition Field to convert the original one-dimensional vibration signals of rolling bearings into two-dimensional images.Then,we construct a lightweight convolutional neural network incorporating the convolutional attention module(CBAM-LCNN).Finally,the two-dimensional images obtained from MTF mapping are fed into the CBAM-LCNN network for image feature extraction and fault diagnosis.We validate the effectiveness of the proposed method on the bearing fault datasets from Guangdong University of Petrochemical Technology’s multi-stage centrifugal fan and Case Western Reserve University.Experimental results show that,compared to other advanced baseline methods,the proposed rolling bearing fault diagnosis method offers faster diagnostic speed and higher diagnostic accuracy.In addition,we conducted experiments on the Xi’an Jiaotong University rolling bearing dataset,achieving excellent results in bearing fault diagnosis.These results validate the strong generalization performance of the proposed method.The method presented in this paper not only effectively diagnoses faults in rolling bearings but also serves as a reference for fault diagnosis in other equipment. 展开更多
关键词 Rolling bearing fault diagnosis markov transition field lightweight convolutional neural network convolutional block attention module
在线阅读 下载PDF
Shot classification and replay detection for sports video summarization 被引量:1
9
作者 Ali JAVED Amen ALI KHAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第5期790-800,共11页
Automated analysis of sports video summarization is challenging due to variations in cameras,replay speed,illumination conditions,editing effects,game structure,genre,etc.To address these challenges,we propose an effe... Automated analysis of sports video summarization is challenging due to variations in cameras,replay speed,illumination conditions,editing effects,game structure,genre,etc.To address these challenges,we propose an effective video summarization framework based on shot classification and replay detection for field sports videos.Accurate shot classification is mandatory to better structure the input video for further processing,i.e.,key events or replay detection.Therefore,we present a lightweight convolutional neural network based method for shot classification.Then we analyze each shot for replay detection and specifically detect the successive batch of logo transition frames that identify the replay segments from the sports videos.For this purpose,we propose local octa-pattern features to represent video frames and train the extreme learning machine for classification as replay or non-replay frames.The proposed framework is robust to variations in cameras,replay speed,shot speed,illumination conditions,game structure,sports genre,broadcasters,logo designs and placement,frame transitions,and editing effects.The performance of our framework is evaluated on a dataset containing diverse YouTube sports videos of soccer,baseball,and cricket.Experimental results demonstrate that the proposed framework can reliably be used for shot classification and replay detection to summarize field sports videos. 展开更多
关键词 Extreme learning machine lightweight convolutional neural network Local octa-patterns Shot classification Replay detection Video summarization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部