期刊文献+
共找到184篇文章
< 1 2 10 >
每页显示 20 50 100
Photo-assisted Non-aqueous Lithium-oxygen Batteries:Preparation and Prospect of Photocathode Materials
1
作者 薛志超 蒋四海 +3 位作者 茹颖懿 李洁 李强 孙红 《发光学报》 北大核心 2025年第3期508-518,共11页
Photo-assisted Li-O2 batteries(LOBs)have remained a prominent and growing field over the past several years.However,the presence of slow oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),large charging ... Photo-assisted Li-O2 batteries(LOBs)have remained a prominent and growing field over the past several years.However,the presence of slow oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),large charging and discharging overpotentials,and unstable cycle life lead to low energy efficiency,thus limiting their commercial application.The rational design and synthesis of photocathode materials are effective ways to solve the above existing problems of photo-assisted LOB systems.Herein,the recent advances in the design and preparation of photocathode materials for photo-assisted LOBs were summarized in this review.First,we summarize the basic principles and comprehension of the reaction mechanism for photo-assisted LOBs.The second part introduces the latest research progress on photocathode materials.The third section describes the relationship between the structureproperties and electrochemistry of different photocathodes.In addition,attempts to construct efficient photocathode materials for photo-assisted LOBs through vacancy engineering,localized surface plasmon resonance(LSPR),and heterojunction engineering are mainly discussed.Finally,a discussion of attempts to construct efficient photocathode materials using other approaches is also presented.This work will motivate the preparation of stable and efficient photocathode materials for photo-assisted LOBs and aims to promote the commercial application of rechargeable photo-assisted LOBs energy storage. 展开更多
关键词 photo-assisted lithium-oxygen battery PHOTOCATALYSIS electrode design
在线阅读 下载PDF
Recent Advances on Ruthenium-based Electrocatalysts for Lithium-oxygen Batteries
2
作者 Yu-Zhe Wang Zhuo-Liang Jiang +2 位作者 Bo Wen Yao-Hui Huang Fu-Jun Li 《电化学(中英文)》 CAS 北大核心 2024年第8期1-16,共16页
Rechargeable lithium-oxygen(Li-O_(2))batteries have attracted wide attention due to their high energy density.However,the sluggish cathode kinetics results in high overvoltage and poor cycling performance.Ruthenium(Ru... Rechargeable lithium-oxygen(Li-O_(2))batteries have attracted wide attention due to their high energy density.However,the sluggish cathode kinetics results in high overvoltage and poor cycling performance.Ruthenium(Ru)-based electrocatalysts have been demonstrated to be promising cathode catalysts to promote oxygen evolution reaction(OER).It facilitates decomposition of lithium peroxide(Li_(2)O_(2))by adjusting Li_(2)O_(2) morphologies,which is due to the strong interaction between Ru-based catalyst and superoxide anion(O_(2))intermediate.In this review,the design strategies of Ru-based electrocatalysts are introduced to enhance their OER catalytic kinetics in Li-O_(2) batteries.Different configurations of Ru-based catalysts,including metal particles(Ru metal and alloys),single-atom catalysts,and Ru-loaded compounds with various substrates(carbon materials,metal oxides/sulfides),have been summarized to regulate the electronic structure and the matrix architecture of the Ru-based electrocatalysts.The structure-property relationship of Ru-based catalysts is discussed for a better understanding of the Li_(2)O_(2) decomposition mechanism at the cathode interface.Finally,the challenges of Ru-based electrocatalysts are proposed for the future development of Li-O_(2) batteries. 展开更多
关键词 lithium-oxygen battery Ruthenium-based electrocatalyst Reaction mechanism Reaction kinetics OVERVOLTAGE
在线阅读 下载PDF
Co3O4 modified Ag/g-C3N4 composite as a bifunctional cathode for lithium-oxygen battery 被引量:5
3
作者 Qi Guo Chenwei Zhang +5 位作者 Chaofeng Zhang Sen Xin Pengchao Zhang Qiufan Shi Dawei Zhang Ya You 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期185-193,共9页
Rechargeable lithium-oxygen(Li-O2)batteries have appeal to enormous attention because they demonstrate higher energy density than the state-of-the-art Li-ion batteries.Whereas,their practical application is impeded by... Rechargeable lithium-oxygen(Li-O2)batteries have appeal to enormous attention because they demonstrate higher energy density than the state-of-the-art Li-ion batteries.Whereas,their practical application is impeded by several challenging problems,such as the low energy round trip efficiencies and the insufficient cycle life,due to the cathode passivation caused by the accumulation of discharge products.Developing efficient catalyst for oxygen reduction and evolution reactions is effective to reduce the overpotentials in Li-O2cells.In our work,we report a Co3O4modified Ag/g-C3N4nanocomposite as a bifunctional cathode catalyst for Li-O2cells.The g-C3N4substrate prevents the accumulation of Ag and Co3O4nanoparticles and the presence of Ag NPs improves the surface area of g-C3N4and electronic conductivity,significantly improving the oxygen reduction/evolution capabilities of Co3O4.Due to a synergetic effect,the Ag/g-C3N4/Co3O4nanocomposite demonstrates a higher catalytic activity than each individual constituent of Co3O4or Ag/g-C3N4for the ORR/OER on as catalysts in Li-O2cells.As a result,the Ag/gC3N4/Co3O4composite shows impressive electrochemical performance in a Li-O2battery,including high discharge capacity,small gap between charge and discharge potential,and high cycling stability. 展开更多
关键词 lithium-oxygen batteries CATHODE material ELECTROCATALYST OXYGEN reduction REACTION OXYGEN evolution REACTION
在线阅读 下载PDF
Strategies to suppress the shuttle effect of redox mediators in lithium-oxygen batteries 被引量:2
4
作者 Xinbin Wu Wei Yu +4 位作者 Kaihua Wen Huanchun Wang Xuanjun Wang Ce-Wen Nan Liangliang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期135-149,共15页
Rechargeable lithium-oxygen(Li-O_(2))batteries are the next generation energy storage devices due to their ultrahigh theoretical capacity.Redox mediators(RMs)are widely used as a homogenous electrocatalyst in non-aque... Rechargeable lithium-oxygen(Li-O_(2))batteries are the next generation energy storage devices due to their ultrahigh theoretical capacity.Redox mediators(RMs)are widely used as a homogenous electrocatalyst in non-aqueous Li-O_(2)batteries to enhance their discharge capacity and reduce charge overpotential.However,the shuttle effect of RMs in the electrolyte solution usually leads to corrosion of the Li metal anode and uneven Li deposition on the anode surface,resulting in unwanted consumption of electrocatalysts and deterioration of the cells.It is therefore necessary to take some measures to prevent the shuttle effect of RMs and fully utilize the soluble electrocatalysts.Herein,we summarize the strategies to suppress the RM shuttle effect reported in recent years,including electrolyte additives,protective separators and electrode modification.The mechanisms of these strategies are analyzed and their corresponding requirements are discussed.The electrochemical properties of Li-O_(2)batteries with different strategies are summarized and compared.The challenges and perspectives on preventing the shuttle effect of RMs are described for future study.This review provides guidance for achieving shuttle-free redox mediation and for designing Li-O_(2)cells with a long cycle life,high energy efficiency and highly reversible electrochemical reactions. 展开更多
关键词 lithium-oxygen battery Redox mediator Shuttle effect Electrolyte additive Protective separator
在线阅读 下载PDF
Long-cycling lithium-oxygen batteries enabled by tailoring Li nucleation and deposition via lithiophilic oxygen vacancy in Vo-TiO_(2)/Ti_(3)C_(2)Tx composite anodes 被引量:2
5
作者 Yu Yan Chaozhu Shu +6 位作者 Ruixin Zheng Minglu Li Zhiqun Ran Miao He Longfei Ren Dayue Du Ying Zeng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期654-665,共12页
Uncontrollable Li dendrite growth and infinite volume fluctuation during durative plating and stripping process gravely hinder the application of metallic Li electrode in lithium-oxygen batteries.Herein,oxygen vacancy... Uncontrollable Li dendrite growth and infinite volume fluctuation during durative plating and stripping process gravely hinder the application of metallic Li electrode in lithium-oxygen batteries.Herein,oxygen vacancy-rich TiO_(2)(Vo-TiO_(2))nanoparticles(NPs)uniformly dispersing on Ti_(3)C_(2)T_(x)(Vo-TiO_(2)/Ti_(3)C_(2) T_(x))with excellent lithiophilicity feature are presented as effective composite anodes,on which a dense and uniform Li growth behavior is observed.Based on electrochemical studies,mutiphysics simulation and theoretical calculation,it is found that Vo-TiO_(2) coupling with three dimensional(3 D)conductive Ti_(3)C_(2) T_(x) MXene forms highly ordered lithiophilic sites which succeed in guiding Li ions flux and adsorption,thus modulating the uniform Li nucleation and growth.As a result,this composite electrode is capable of preserving Li with high areal capacity of~10 mAh cm^(-2) without the presence of dendrites and large volume expansion.Consequently,the as-prepared Vo-TiO_(2)/Ti_(3)C_(2) T_(x)@Li anode shows outstanding performance including low voltage hysteresis(~19 mV)and superior durability(over 750 h).When assembling with the Vo-TiO_(2)/Ti_(3)C_(2) T_(x)@Li anodes,lithium-oxygen batteries also deliver enhanced cycling stability and improved rate performance.This work demonstrates the effectiveness of oxygen vacancies in guiding Li nucleating and plating behavior at initial stage and brings a promising strategy for promoting the development of advanced Li metal-based batteries. 展开更多
关键词 lithium-oxygen batteries Electrode materials Vo-TiO_(2)/Ti_(3)C_(2)Tx composite Oxygen vacancies Adsorption energy
在线阅读 下载PDF
Unraveling reaction discrepancy and electrolyte stabilizing effects of auto-oxygenated porphyrin catalysts in lithium-oxygen and lithium-air cells
6
作者 Boran Kim Hyunyoung Park +3 位作者 Hyun-Soo Kim Jun Seo Lee Jongsoon Kim Won-Hee Ryu 《Carbon Energy》 2024年第12期90-101,共12页
Lithium-oxygen(Li-O_(2))batteries are an emerging energy storage alternative with the potential to meet the recent increase in demand for high-energy-density batteries.From a practical viewpoint,lithium-air(Li-Air)bat... Lithium-oxygen(Li-O_(2))batteries are an emerging energy storage alternative with the potential to meet the recent increase in demand for high-energy-density batteries.From a practical viewpoint,lithium-air(Li-Air)batteries using ambient air instead of pure oxygen could be the final goal.However,the slow oxygen reduction and evolution reactions interfere with reversible cell operation during cycling.Therefore,research continues to explore various catalyst materials.The present study attempts to improve the performance of Li-Air batteries by using porphyrin-based materials known to have catalytic effects in Li-O_(2) batteries.The results confirm that the iron phthalocyanine(FePc)catalyst not only exhibits a catalytic effect in an air atmosphere with a low oxygen fraction but also suppresses electrolyte decomposition by stabilizing superoxide radical ions(O_(2)^(−))at a high voltage range.Density functional theory calculations are used to gain insight into the exact FePc-mediated catalytic mechanism in Li-Air batteries,and various ex situ and in situ analyses reveal the reversible reactions and structural changes in FePc during electrochemical reaction.This study provides a practical solution to ultimately realize an air-breathing battery using nature-friendly catalyst materials. 展开更多
关键词 catalyst lithium-air battery lithium-oxygen battery phthalocyanine redox mediator
在线阅读 下载PDF
Grain-refining Co_(0.85)Se@CNT cathode catalyst with promoted Li_(2)O_(2)growth kinetics for lithium-oxygen batteries 被引量:1
7
作者 Ruonan Yang Jiajia Li +7 位作者 Dongmei Zhang Xiuqi Zhang Xia Li Han Yu Zhanhu Guo Chuanxin Hou Gang Lian Feng Dang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第12期304-310,共7页
Highly active cathode catalysts for efficient formation/decomposition of Li_(2)O_(2)are essential for the performance improvement of lithium-oxygen batteries(LOBs).In this study,a grain-refining Co_(0.85)Se catalyst w... Highly active cathode catalysts for efficient formation/decomposition of Li_(2)O_(2)are essential for the performance improvement of lithium-oxygen batteries(LOBs).In this study,a grain-refining Co_(0.85)Se catalyst with a lattice spacing of 2.69 A of(101)plane closely matching with the(100)plane(2.72A)of Li_(2)O_(2)was applied for high-performance LOBs.Highly(101)plane exposed Co_(0.85)Se@CNT was synthesized by a simple one-pot hydrothermal method.The Co_(0.85)Se with the lattice matching effect not only led to the efficient conversion and polarized growth of Li_(2)O_(2),but also prevented the formation of byproducts.Density functional theory(DFT)calculations reveal that Co_(0.85)Se(101)plane has the intrinsic catalytic ability to generate/decompose Li_(2)O_(2)during ORR/OER process,due to its homogeneous electron distribution,suitable adsorption energy,and promoted Li_(2)O_(2)growth kinetics.As a consequence,the(101)plane highly exposed Co_(0.85)Se@CNT-80 electrode exhibited remarkable cycle stability over 2400 h at 100 mA/g and 290cycles at 500 mA/g,which is about 2 times longer than other electrodes. 展开更多
关键词 lithium-oxygen batteries Co_(0.85)Se@CNT Cathode catalysts Grain-refiner DFT calculation
原文传递
C_(60) as a metal-free catalyst for lithium-oxygen batteries
8
作者 Xinxin Zhang Jiaming Tian +2 位作者 Yu Wang Shaohua Guo Yafei Li 《Nano Research》 SCIE EI CSCD 2024年第5期3982-3987,共6页
Carbon materials have shown significant potential as catalysts for lithium-oxygen batteries(LOBs).However,the intrinsic carbon sites are typically inert,necessitating extensive modifications and resulting in a limited... Carbon materials have shown significant potential as catalysts for lithium-oxygen batteries(LOBs).However,the intrinsic carbon sites are typically inert,necessitating extensive modifications and resulting in a limited density of active sites.Here we present C_(60) as a metal-free cathode catalyst for LOBs,using density functional theory calculations and experimental verifications.The lithiation reactions on the pristine carbon sites of C_(60) are energetically favorable due to its curvedπ-conjugation over the pentagon-hexagon networks.The kinetic analysis specifically reveals low energy barriers for Li_(2)O_(2) decomposition and Li diffusion on C_(60).Consequently,C_(60) exhibits significantly higher catalytic activity than typical carbon materials such as graphene and carbon nanotubes.Our electrochemical measurements validate the predictions,notably demonstrating that the intrinsic activity of C_(60) is comparable to that of noble metals. 展开更多
关键词 lithium-oxygen batteries C_(60) density functional theory(DFT)calculations metal-free cathode
原文传递
Aligned Ion Conduction Pathway of Polyrotaxane‑Based Electrolyte with Dispersed Hydrophobic Chains for Solid‑State Lithium–Oxygen Batteries
9
作者 Bitgaram Kim Myeong‑Chang Sung +4 位作者 Gwang‑Hee Lee Byoungjoon Hwang Sojung Seo Ji‑Hun Seo Dong‑Wan Kim 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期169-186,共18页
A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses the... A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses these problems by proposing a modified polyrotaxane(mPR)-based solid polymer electrolyte(SPE)design that simultaneously mitigates solvent-related problems and improves conductivity.mPR-SPE exhibits high ion conductivity(2.8×10^(−3)S cm^(−1)at 25℃)through aligned ion conduction pathways and provides electrode protection ability through hydrophobic chain dispersion.Integrating this mPR-SPE into solid-state LOBs resulted in stable potentials over 300 cycles.In situ Raman spectroscopy reveals the presence of an LiO_(2)intermediate alongside Li_(2)O_(2)during oxygen reactions.Ex situ X-ray diffraction confirm the ability of the SPE to hinder the permeation of oxygen and moisture,as demonstrated by the air permeability tests.The present study suggests that maintaining a low residual solvent while achieving high ionic conductivity is crucial for restricting the sub-reactions of solid-state LOBs. 展开更多
关键词 Solid polymer electrolyte lithium-oxygen batteries Polyrotaxane ion conductivity Hydrophobic chain
在线阅读 下载PDF
New electrochemical energy storage systems based on metallic lithium anode the research status,problems and challenges of lithium-sulfur,lithium-oxygen and all solid state batteries 被引量:8
10
作者 Liangyu Li Chunguang Chen Aishui Yu 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第11期1402-1412,共11页
Li-ion batteries have played a key role in the portable electronics and electrification of transport in modern society. Nevertheless,the limited highest energy density of Li-ion batteries is not sufficient for the lon... Li-ion batteries have played a key role in the portable electronics and electrification of transport in modern society. Nevertheless,the limited highest energy density of Li-ion batteries is not sufficient for the long-term needs of society. Since lithium is the lightest metal among all metallic elements and possesses the lowest redox potential of.3.04 V vs. standard hydrogen electrode, it delivers the highest theoretical specific capacity of 3860 mA h g^(-1) and a high working voltage of full batteries which causes a great interest in electrochemical energy storage systems. Lithium-sulfur, lithium-oxygen and corresponding all solid state batteries based on metal lithium anode have received widely attention owing to their high energy densities. However, the problems in the cathode,electrolyte and anode of these three systems restrict their practical application. In this review, the research status and problems of these three energy storage systems are summarized and the challenges and future perspectives are also outlined. 展开更多
关键词 all solid state batteries energy storage systems lithium-oxygen batteries lithium-sulfur batteries
原文传递
Nanostructured Ni/Ti3C2Tx MXene hybrid as cathode for lithium-oxygen battery 被引量:4
11
作者 Caiying Wen Tianjiao Zhu +3 位作者 Xingyu Li Huifeng Li Xianqiang Huang Genban Sun 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第4期1000-1003,共4页
Ti3C2 belongs to MXenes family,which is a new two-dimensional material and has been applied in many fields.With simple method of hydrothermal and high temperature calcination,nano structured Ni/Ti3C2Tx hybrid was synt... Ti3C2 belongs to MXenes family,which is a new two-dimensional material and has been applied in many fields.With simple method of hydrothermal and high temperature calcination,nano structured Ni/Ti3C2Tx hybrid was synthesized.The stable layer structure of Ti3C2 MXene providing high surface area as well as excellent electronic conductivity are beneficial for deposition and decomposition of discharge product Li2O2.Furthermore,possessing special catalytic activity,Ni nanoparticles with size of about 20 nm could accelerate Li2O2 breaking down.Taking advantage of two kinds of materials,Ni/Ti3C2Tx hybrid as cathode of Li-O2 battery can achieve a maximal specific capacity of 20,264 mAh/g in 100 mA/g and 10,699 mAh/g in 500 mA/g at the first cycle.This work confirms that the prepared Ni/Ti3C2Tx hybrid exhibiting better cycling stability points out a new guideline to improve the electrochemical performance of lithium-oxygen batteries. 展开更多
关键词 MXene NICKEL Two-dimensional material Electronic conductivity lithium-oxygen battery
原文传递
Organic ionic plastic crystal as electrolyte for lithium-oxygen batteries 被引量:2
12
作者 Shaokang Tian Bowen Shao +4 位作者 Zhiqun Wang Shangda Li Xiangyu Liu Yibo Zhao Lei Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第6期1289-1292,共4页
Organic ionic plastic crystals (OIPCs) composed of 1-ethyl-1-methyl pyrrolidinium bis(fluorosulfonyl) imide (P12FSI) and lithium bis(fluorosulfonyl)imide (LiFSI) was used as electrolyte for lithium-oxygen batteries. S... Organic ionic plastic crystals (OIPCs) composed of 1-ethyl-1-methyl pyrrolidinium bis(fluorosulfonyl) imide (P12FSI) and lithium bis(fluorosulfonyl)imide (LiFSI) was used as electrolyte for lithium-oxygen batteries. Since P12FSI-LiFSI electrolyte exhibited high ionic conductivity, good chemical stability and wide electrochemical window, the battery showed good rate capability, excellent cycling stability and can be operated stably for 320 cycles under a fixed capacity of 500 mAh/gcarbon. The use of OIPCs electrolyte could provide a new avenue for the development of high-performance Li-O2 batteries. 展开更多
关键词 ORGANIC IONIC plastic crystal ELECTROLYTE lithium-oxygen BATTERIES Long life Chemical stability
原文传递
Bioinspired Fabrication of Strong Self-Standing Egg-Sugarcane Cathodes for Rechargeable Lithium-Oxygen Batteries 被引量:1
13
作者 Xiao-Xue Wang Shu-Cai Gan +2 位作者 Li-Jun Zheng Ma-Lin Li Ji-Jing Xu 《CCS Chemistry》 CAS 2021年第6期1764-1774,共11页
Lithium-oxygen(Li-O_(2))batteries have attracted considerable attention due to their high theoretical energy density.However nonrenewable and high-cost electrode materials have limited their progress.Herein,the author... Lithium-oxygen(Li-O_(2))batteries have attracted considerable attention due to their high theoretical energy density.However nonrenewable and high-cost electrode materials have limited their progress.Herein,the authors design and fabricate a three-dimensional freestanding bi-biomass egg-sugarcane(Egg-SC)electrode with excellent structure and performance as the cathode for Li-O_(2) batteries.The open,interconnected microchannels derived from the natural SC can provide sufficient pathways for O_(2) gas diffusion.The heteroatom-doped hollow carbon spheres(HD-HCS)obtained via biomass egg supply many of the triphase active sites for the formation and decomposition of the discharge products of Li2O_(2).Benefiting from the unique nature and structure of the cathode,Li-O_(2) batteries show high-rate capacity of 8.07 mAh cm^(-2) and superior cycle stability of 294 cycles at a current density of 0.1 mA cm^(-2).The excellent performance and structure of the bi-biomass cathode possess great application potential in nature-inspired materials design for the cathodes of Li-O_(2) batteries. 展开更多
关键词 renewable cathode FREESTANDING lithium-oxygen batteries bi-biomass
原文传递
2H-MoS_(2)Modified Nitrogen-Doped Hollow Mesoporous Carbon Spheres as the Efficient Catalytic Cathode Catalyst for Aprotic Lithium-Oxygen Batteries 被引量:2
14
作者 Zhaorui Zhou Lanling Zhao +9 位作者 Yao Liu Deyuan Li Qing Xia Jun Wang Zidong Zhang Xue Han Yuxin Long Yiming Zhang Yebing Li Shulei Chou 《Renewables》 2023年第1期100-111,共12页
Developing excellent cathode catalysts with superior catalytic activities is essential for the practical application of aprotic lithium-oxygen batteries(LOBs).Herein,we successfully synthesized nitrogen-doped hollow m... Developing excellent cathode catalysts with superior catalytic activities is essential for the practical application of aprotic lithium-oxygen batteries(LOBs).Herein,we successfully synthesized nitrogen-doped hollow mesoporous carbon spheres encapsulated with molybdenum disulfide(MoS_(2))nanosheets as the cathode catalyst for rechargeable LOBs,and the relationship between the battery performance and structural characteristics was intensively researched.We found that the synergistic effect of the nitrogen-doped mesoporous carbon and MoS_(2)nanosheets endows superior electrocatalytic activities to the composite catalyst.On the one hand,the nitrogen-doped mesoporous carbon could enable fast charge transfer and effectively accommodate more discharging products in the composite skeleton.On the other hand,the thin MoS_(2)nanosheets could promote mass transportation to facilitate the revisable formation and decomposition of the Li2O2 during oxygen reduction reaction and oxygen evolution reaction,and the side reactions were also prevented,apparently due to their full coverage on the composite surfaces.As a result,the catalytic cathode loaded with 2H-MoS_(2)-modified nitrogen-doped hollow mesoporous carbon spheres exhibited excellent electrochemical performance in terms of large discharge-/charge-specific capacities with low overpotentials and extended cycling life,and they hold great promise for acting as the cathode catalyst for high-performance LOBs. 展开更多
关键词 2H-MoS_(2)nanosheets nitrogen-doped hollow mesoporous carbon spheres cathode catalyst electrocatalysis lithium-oxygen batteries
原文传递
全固态锂空气电池的调控策略
15
作者 刁坤兰 杜婧羽 +1 位作者 占晓 张道海 《精细化工》 北大核心 2025年第2期244-255,共12页
锂空气电池具有高能量密度和低还原电位,是一种绿色储能电池,其应用范围广泛。由于传统的有机电解液存在可燃、易分解、易形成锂枝晶以及易形成阻碍O_(2)扩散的钝化层等问题,所以需开发固态电解质来提高锂空气电池的各项性能。该文介绍... 锂空气电池具有高能量密度和低还原电位,是一种绿色储能电池,其应用范围广泛。由于传统的有机电解液存在可燃、易分解、易形成锂枝晶以及易形成阻碍O_(2)扩散的钝化层等问题,所以需开发固态电解质来提高锂空气电池的各项性能。该文介绍了锂空气电池的构建及工作机制,综述了经典全固态锂空气电池的调控策略,包括正极调控策略和电解质调控策略,同时对正极/电解质一体化设计策略进行了概述,最后对锂空气电池的固体电解质、界面修饰(即电解质与电极界面阻力的改善)和空气正极设计的优化等发展方向进行了展望。 展开更多
关键词 锂空气电池 锂氧气电池 正极调控 固态电解质 界面调控
在线阅读 下载PDF
A molecular sieve-containing protective separator to suppress the shuttle effect of redox mediators in lithium-oxygen batteries
16
作者 Xinbin Wu Huiping Wu +6 位作者 Shundong Guan Ying Liang Kaihua Wen Huanchun Wang Xuanjun Wang Ce-Wen Nan Liangliang Li 《Nano Research》 SCIE EI CSCD 2023年第7期9453-9460,共8页
Lithium-oxygen(Li-O_(2))batteries have a great potential in energy storage and conversion due to their ultra-high theoretical specific energy,but their applications are hindered by sluggish redox reaction kinetics in ... Lithium-oxygen(Li-O_(2))batteries have a great potential in energy storage and conversion due to their ultra-high theoretical specific energy,but their applications are hindered by sluggish redox reaction kinetics in the charge/discharge processes.Redox mediators(RMs),as soluble catalysts,are widely used to facilitate the electrochemical processes in the Li-O_(2)batteries.A drawback of RMs is the shuttle effect due to their solubility and mobility,which leads to the corrosion of a Li metal anode and the degradation of the electrochemical performance of the batteries.Herein,we synthesize a polymer-based composite protective separator containing molecular sieves.The nanopores with a diameter of 4Åin the zeolite powder(4A zeolite)are able to physically block the migration of 2,2,6,6-tetramethylpiperidinyloxy(TEMPO)molecules with a larger size;therefore,the shuttle effect of TEMPO is restrained.With the assistance of the zeolite molecular sieves,the cycle life of the Li-O_(2)batteries is significantly extended from~20 to 170 cycles at a current density of 250 mA·g^(-1)and a limited capacity of 500 mAh·g^(-1).Our work provides a highly effective approach to suppress the shuttle effects of RMs and boost the electrochemical performance of Li-O_(2)batteries. 展开更多
关键词 lithium-oxygen batteries redox mediators shuttle effects protective separators zeolite molecular sieves
原文传递
Dual-function redox mediator enhanced lithium-oxygen battery based on polymer electrolyte
17
作者 Muhammad Mushtaq Xianwei Guo +4 位作者 Zihe Zhang Zhiyuan Lin Xiaolong Li Zhangquan Peng Haijun Yu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第18期199-206,共8页
The polymer electrolyte based lithium-oxygen battery has showed higher safety than that of organic liquid electrolyte.However,the energy efficiency and cycling stability are still the challenges for the practical appl... The polymer electrolyte based lithium-oxygen battery has showed higher safety than that of organic liquid electrolyte.However,the energy efficiency and cycling stability are still the challenges for the practical application of lithium-oxygen battery.Herein,the 1,4 para benzoquinone has been demonstrated as dual-function redox mediator for promoting both oxygen reduction and oxygen evolution reactions of lithium-oxygen battery with polymer electrolyte,which have been confirmed by the Cyclic Voltammetry and discharge/charge test of battery under O_(2) gas,as well as the theoretical calculations.Furthermore,the composite cathode that in-situ constructed by polymerizing electrolyte precursors with redox me-diator can be beneficial for the electrochemical reactions.Combing composite cathode and lithium ions source,the polymer electrolyte based lithium-oxygen batteries can operate for long lifetime with low charge potentials and good rate performances.Thus,this work has highlighted the promising implementation of lithium-oxygen battery based on polymer electrolyte,in which the dual-function redox mediator are employed for both discharge and recharge processes. 展开更多
关键词 Polymer electrolyte lithium-oxygen battery Dual-function redox mediator Composite cathode Interfacial stability
原文传递
Free-standing nitrogen doped graphene/Co(OH)_(2) composite films with superior catalytic activity for aprotic lithium-oxygen batteries
18
作者 Zifang Zhao Yue Liu +5 位作者 Fang Wan Shuai Wang Nannan Zhang Lili Liu Anyuan Cao Zhiqiang Niu 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第2期594-597,共4页
The recent boom in large-scale energy storage system promotes the development of lithium-oxygen batteries because of their high theo retical energy density.However,their applications are still limited by the sluggish ... The recent boom in large-scale energy storage system promotes the development of lithium-oxygen batteries because of their high theo retical energy density.However,their applications are still limited by the sluggish kinetic,insoluble discharge product deposition and the undesired parasitic reaction.Herein,the free-standing nitrogen doped reduced graphene oxide/Co(OH)_(2)(NRGO/Co(OH)_(2)) composite films were prepared by a facile hydrothermal method,The NRGO/Co(OH)_(2) composite films display interconnected three-dimensional conductive network,which can not only promote the diffusion of O2 and the transport of electrolyte ions,but also provide abundant storage space for discharge products.Moreover,the introduction of nitrogen-containing functional groups results in improved conductivity and electron adsorption ability,which can facilitate electron transport and enhance the surface catalytic activity.Combining with excellent catalytic performance,the lithium-oxygen batteries with NRGO/Co(OH)_(2) composite film cathodes deliver low charge overpotential and excellent cycling performance. 展开更多
关键词 Free-standing films Nitrogen doping GRAPHENE Co(OH)_(2) lithium-oxygen batteries
原文传递
Toward high-performance lithium-oxygen batteries with cobalt-based transition metal oxide catalysts:Advanced strategies and mechanical insights
19
作者 Zhenjie Liu Zhiwei Zhao +5 位作者 Wang Zhang Yang Huang Ying Liu Dianlun Wu Lei Wang Shulei Chou 《InfoMat》 SCIE CAS 2022年第4期29-47,共19页
Aprotic lithium-oxygen(Li-O_(2))batteries represent a promising next-generation energy storage system due to their extremely high theoretical specific capacity compared with all known batteries.Their practical realiza... Aprotic lithium-oxygen(Li-O_(2))batteries represent a promising next-generation energy storage system due to their extremely high theoretical specific capacity compared with all known batteries.Their practical realization is impeded,however,by the sluggish kinetics for the most part,resulting in high overpotential and poor cycling performance.Due to the high catalytic activity and favorable stability of Co-based transition metal oxides,they are regarded as the most likely candidate catalysts,facilitating researchers to solve the sluggish kinetics issue.Herein,this review first presents recent advanced design strategies for Co-based transition metal oxides in Li-O_(2)batteries.Then,the fundamental insights related to the catalytic processes of Co-based transition metal oxides in traditional and novel Li-O_(2)electrochemistry systems are summarized.Finally,we conclude with the current limitations and future development directions of Co-based transition metal oxides,which will contribute to the rational design of catalysts and the practical applications of Li-O_(2)batteries. 展开更多
关键词 catalytic mechanism cobalt-based transition metal oxide lithium-oxygen battery sluggish kinetics
原文传递
功能性La@CeO_(2)纳米填料引入PEO聚合物电解质构建高性能全固态锂金属电池
20
作者 李健辉 张子良 《功能材料》 北大核心 2025年第2期2151-2160,共10页
用六水合硝酸镧(La(NO_(3))_(3)·6H_(2)O)和六水合硝酸铈(Ce(NO_(3))_(3)·6H_(2)O)通过水热合成法反应合成了富含氧空位的La掺杂CeO_(2)(La@CeO_(2))纳米填料,将所得到的纳米填料引入聚环氧乙烷(PEO)基质中,采用溶液铸法制备... 用六水合硝酸镧(La(NO_(3))_(3)·6H_(2)O)和六水合硝酸铈(Ce(NO_(3))_(3)·6H_(2)O)通过水热合成法反应合成了富含氧空位的La掺杂CeO_(2)(La@CeO_(2))纳米填料,将所得到的纳米填料引入聚环氧乙烷(PEO)基质中,采用溶液铸法制备了PEO/LiTFSI/x(0.2La@CeO_(2))(x=0%,5%,10%,15%)复合固态电解质(CSEs)。采用XRD、SEM、EDS、EPR对La@CeO_(2)纳米填料进行了表征,对CSEs的物理性能进行了DSC、TGA和力学性能测试,并测试了其电化学性能。结果表明,水热合成的La@CeO_(2)纳米填料表面含有丰富的氧空位,含有10%(质量分数)0.2La@CeO_(2)纳米颗粒填料的复合固态电解质表现出了高的锂离子传输性能、良好的循环性能和倍率性能。与PEO/LiTFSI无填料的电解质相比,在60℃时离子电导率为2.5×10^(-4)S/cm,锂离子迁移数为0.55,电化学稳定性为4.9 V,抗拉强度显著提升,复合固态电解质与锂金属具有良好的界面相容性,在0.1 mA/cm^(2)的电流密度下,组装的锂对称电池能够稳定运行1200 h。同时,组装的LiFePO_(4)|PEO/LiTFSI/10%(0.2La@CeO_(2))|Li电池在0.5 C下循环280次后放电容量仍保持在145.4 mAh/g,容量保持率为91.9%,库仑效率仍保持在97.6%的高水平。为构建下一代固态电池高效柔性PEO基固体聚合物电解质提供了可行策略。 展开更多
关键词 复合固态电解质 La@CeO_(2) 氧空位 锂离子传输
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部