期刊文献+
共找到304篇文章
< 1 2 16 >
每页显示 20 50 100
A Hybrid Transfer Learning Framework for Enhanced Oil Production Time Series Forecasting
1
作者 Dalal A.L-Alimi Mohammed A.A.Al-qaness Robertas Damaševičius 《Computers, Materials & Continua》 2025年第2期3539-3561,共23页
Accurate forecasting of oil production is essential for optimizing resource management and minimizing operational risks in the energy sector. Traditional time-series forecasting techniques, despite their widespread ap... Accurate forecasting of oil production is essential for optimizing resource management and minimizing operational risks in the energy sector. Traditional time-series forecasting techniques, despite their widespread application, often encounter difficulties in handling the complexities of oil production data, which is characterized by non-linear patterns, skewed distributions, and the presence of outliers. To overcome these limitations, deep learning methods have emerged as more robust alternatives. However, while deep neural networks offer improved accuracy, they demand substantial amounts of data for effective training. Conversely, shallow networks with fewer layers lack the capacity to model complex data distributions adequately. To address these challenges, this study introduces a novel hybrid model called Transfer LSTM to GRU (TLTG), which combines the strengths of deep and shallow networks using transfer learning. The TLTG model integrates Long Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRU) to enhance predictive accuracy while maintaining computational efficiency. Gaussian transformation is applied to the input data to reduce outliers and skewness, creating a more normal-like distribution. The proposed approach is validated on datasets from various wells in the Tahe oil field, China. Experimental results highlight the superior performance of the TLTG model, achieving 100% accuracy and faster prediction times (200 s) compared to eight other approaches, demonstrating its effectiveness and efficiency. 展开更多
关键词 time series forecasting gaussian transformation quantile transformation long short-term memory gated recurrent units
在线阅读 下载PDF
Optimizing Stock Market Prediction Using Long Short-Term Memory Networks
2
作者 Nadia Afrin Ritu Samsun Nahar Khandakar +1 位作者 Md. Masum Bhuiyan Md. Imdadul Islam 《Journal of Computer and Communications》 2025年第2期207-222,共16页
Deep learning plays a vital role in real-life applications, for example object identification, human face recognition, speech recognition, biometrics identification, and short and long-term forecasting of data. The ma... Deep learning plays a vital role in real-life applications, for example object identification, human face recognition, speech recognition, biometrics identification, and short and long-term forecasting of data. The main objective of our work is to predict the market performance of the Dhaka Stock Exchange (DSE) on day closing price using different Deep Learning techniques. In this study, we have used the LSTM (Long Short-Term Memory) network to forecast the data of DSE for the convenience of shareholders. We have enforced LSTM networks to train data as well as forecast the future time series that has differentiated with test data. We have computed the Root Mean Square Error (RMSE) value to scrutinize the error between the forecasted value and test data that diminished the error by updating the LSTM networks. As a consequence of the renovation of the network, the LSTM network provides tremendous performance which outperformed the existing works to predict stock market prices. 展开更多
关键词 long short-term Memory (LSTM) Stock Market PREDICTION time series Analysis Deep Learning
在线阅读 下载PDF
A Time Series Intrusion Detection Method Based on SSAE,TCN and Bi-LSTM
3
作者 Zhenxiang He Xunxi Wang Chunwei Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期845-871,共27页
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat... In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems. 展开更多
关键词 network intrusion detection bidirectional long short-term memory network time series stacked sparse autoencoder temporal convolutional network time steps
在线阅读 下载PDF
Deep Learning for Financial Time Series Prediction:A State-of-the-Art Review of Standalone and HybridModels
4
作者 Weisi Chen Walayat Hussain +1 位作者 Francesco Cauteruccio Xu Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期187-224,共38页
Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep lear... Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep learning has largely contributed to the elevation of the prediction performance.Currently,the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking,making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better,what techniques and components are involved,and how themodel can be designed and implemented.This review article provides an overview of techniques,components and frameworks for financial time series prediction,with an emphasis on state-of-the-art deep learning models in the literature from2015 to 2023,including standalonemodels like convolutional neural networks(CNN)that are capable of extracting spatial dependencies within data,and long short-term memory(LSTM)that is designed for handling temporal dependencies;and hybrid models integrating CNN,LSTM,attention mechanism(AM)and other techniques.For illustration and comparison purposes,models proposed in recent studies are mapped to relevant elements of a generalized framework comprised of input,output,feature extraction,prediction,and related processes.Among the state-of-the-artmodels,hybrid models like CNNLSTMand CNN-LSTM-AM in general have been reported superior in performance to stand-alone models like the CNN-only model.Some remaining challenges have been discussed,including non-friendliness for finance domain experts,delayed prediction,domain knowledge negligence,lack of standards,and inability of real-time and highfrequency predictions.The principal contributions of this paper are to provide a one-stop guide for both academia and industry to review,compare and summarize technologies and recent advances in this area,to facilitate smooth and informed implementation,and to highlight future research directions. 展开更多
关键词 Financial time series prediction convolutional neural network long short-term memory deep learning attention mechanism FINANCE
在线阅读 下载PDF
Time Series Forecasting Fusion Network Model Based on Prophet and Improved LSTM 被引量:1
5
作者 Weifeng Liu Xin Yu +3 位作者 Qinyang Zhao Guang Cheng Xiaobing Hou Shengqi He 《Computers, Materials & Continua》 SCIE EI 2023年第2期3199-3219,共21页
Time series forecasting and analysis are widely used in many fields and application scenarios.Time series historical data reflects the change pattern and trend,which can serve the application and decision in each appl... Time series forecasting and analysis are widely used in many fields and application scenarios.Time series historical data reflects the change pattern and trend,which can serve the application and decision in each application scenario to a certain extent.In this paper,we select the time series prediction problem in the atmospheric environment scenario to start the application research.In terms of data support,we obtain the data of nearly 3500 vehicles in some cities in China fromRunwoda Research Institute,focusing on the major pollutant emission data of non-road mobile machinery and high emission vehicles in Beijing and Bozhou,Anhui Province to build the dataset and conduct the time series prediction analysis experiments on them.This paper proposes a P-gLSTNet model,and uses Autoregressive Integrated Moving Average model(ARIMA),long and short-term memory(LSTM),and Prophet to predict and compare the emissions in the future period.The experiments are validated on four public data sets and one self-collected data set,and the mean absolute error(MAE),root mean square error(RMSE),and mean absolute percentage error(MAPE)are selected as the evaluationmetrics.The experimental results show that the proposed P-gLSTNet fusion model predicts less error,outperforms the backbone method,and is more suitable for the prediction of time-series data in this scenario. 展开更多
关键词 time series data prediction regression analysis long short-term memory network PROPHET
在线阅读 下载PDF
Time Series Forecasting with Multiple Deep Learners: Selection from a Bayesian Network
6
作者 Shusuke Kobayashi Susumu Shirayama 《Journal of Data Analysis and Information Processing》 2017年第3期115-130,共16页
Considering the recent developments in deep learning, it has become increasingly important to verify what methods are valid for the prediction of multivariate time-series data. In this study, we propose a novel method... Considering the recent developments in deep learning, it has become increasingly important to verify what methods are valid for the prediction of multivariate time-series data. In this study, we propose a novel method of time-series prediction employing multiple deep learners combined with a Bayesian network where training data is divided into clusters using K-means clustering. We decided how many clusters are the best for K-means with the Bayesian information criteria. Depending on each cluster, the multiple deep learners are trained. We used three types of deep learners: deep neural network (DNN), recurrent neural network (RNN), and long short-term memory (LSTM). A naive Bayes classifier is used to determine which deep learner is in charge of predicting a particular time-series. Our proposed method will be applied to a set of financial time-series data, the Nikkei Average Stock price, to assess the accuracy of the predictions made. Compared with the conventional method of employing a single deep learner to acquire all the data, it is demonstrated by our proposed method that F-value and accuracy are improved. 展开更多
关键词 time-series Data DEEP LEARNING Bayesian network RECURRENT Neural network long short-term Memory Ensemble LEARNING K-Means
在线阅读 下载PDF
基于注意力机制的LSTNet日前电价预测
7
作者 李璐 阚小瑞 +3 位作者 毕贵红 范玉瑞 朱泽良 周旭龙 《电力科学与工程》 2025年第4期1-10,共10页
为了提高日前电价预测精度,提出了一种基于注意力机制的长期和短期时间序列网络日前电价预测模型。首先,通过相关性分析筛选出对日前电价预测影响较大的因素;然后,利用卷积神经网络初步提取电价数据和各个因素之间的局部依赖关系;进一步... 为了提高日前电价预测精度,提出了一种基于注意力机制的长期和短期时间序列网络日前电价预测模型。首先,通过相关性分析筛选出对日前电价预测影响较大的因素;然后,利用卷积神经网络初步提取电价数据和各个因素之间的局部依赖关系;进一步,运用循环神经网络和循环跳跃神经网络挖掘出当前数据与前后时刻数据之间的联系,再通过注意力机制进行权重自适应分配后,仿真非线性部分的预测值。采用自回归模型对线性部分的电价数据进行提取。最后,将线性和非线性部分的预测值进行融合,得到最终预测结果。经仿真验证,所提模型有效提高了日前电价预测的精度。 展开更多
关键词 注意力机制 电价预测 卷积神经网络 长期和短期时间序列网络 自回归模型
在线阅读 下载PDF
Classification of Short Time Series in Early Parkinson’s Disease With Deep Learning of Fuzzy Recurrence Plots 被引量:10
8
作者 Tuan D.Pham Karin Wardell +1 位作者 Anders Eklund Goran Salerud 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第6期1306-1317,共12页
There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for... There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects. 展开更多
关键词 Deep learning early Parkinson’s disease(PD) fuzzy recurrence plots long short-term memory(LSTM) neural networks pattern classification short time series
在线阅读 下载PDF
Data-driven approaches for time series prediction of daily production in the Sulige tight gas field, China
9
作者 Qi Zhang Ziwei Chen +4 位作者 Yuan Zeng Hang Gao Qiansheng Wei Tiaoyu Luo Zhiguo Wang 《Artificial Intelligence in Geosciences》 2021年第1期165-170,共6页
The Sulige tight gas field is presently the largest gas field in China.Owing to the ultralow permeability and strong heterogeneity of the reservoirs in Sulige,the number of production wells has exceeded 3,000,keeping ... The Sulige tight gas field is presently the largest gas field in China.Owing to the ultralow permeability and strong heterogeneity of the reservoirs in Sulige,the number of production wells has exceeded 3,000,keeping the stable gas supply in the decade.Thus,the daily production prediction of gas wells is significant for monitoring production and for implementing and evaluating stimulation measures.Therefore,on the basis of the three datadriven time series approaches,the daily production of 1692 wells over 10 years was mining for the daily production prediction of wells in Sulige.The jointed deep long short-term memory and fully connected neural network(DLSTM-FNN)model was proposed by introducing the recurrent neural network's sequential expression ability and was compared with random forest(RF)and support vector regression(SVR).After the daily production predictions of thousands of wells in Sulige,the proposed DLSTM-FNN model significantly improved the time series prediction accuracy and efficiency in the short training samples and had strong availability and practicability in the Sulige tight gas field. 展开更多
关键词 Prediction of production time series long short-term memory neural network Random forest Support vector machine
在线阅读 下载PDF
基于LSTNet的液压爬模压力预测研究
10
作者 严国平 李仕煌 +2 位作者 李京 钟飞 许超斌 《机床与液压》 北大核心 2024年第22期149-154,共6页
液压爬模是一种用于建筑施工的设备,对其进行压力预测将有助于在桥梁建设过程中监测工作状态与提供故障预警。为了获得更加精准的压力预测结果,提出一种基于长短期时间序列网络(LSTNet)的液压爬模压力预测模型。通过Spearman相关系数法... 液压爬模是一种用于建筑施工的设备,对其进行压力预测将有助于在桥梁建设过程中监测工作状态与提供故障预警。为了获得更加精准的压力预测结果,提出一种基于长短期时间序列网络(LSTNet)的液压爬模压力预测模型。通过Spearman相关系数法筛选与液压爬模设备压力数据强相关的数据,减少不相关数据的干扰。利用LSTNet模型寻找液压爬模设备压力数据的长期和短期依赖,并引入线性的自适应回归层,结合神经网络的非线性部分,提高网络模型的预测精度。最后使用常泰长江大桥液压爬模项目采集的压力数据进行模型的训练,并与LSTM模型、LSTM-Attention模型和CNN-BiLSTM-Attention模型进行对比。结果表明:在液压爬模的压力预测实验中,LSTNet模型展示了良好的拟合性和预测性能,相较其他3个模型的准确率更高。此外,LSTNet模型结合了线性与非线性特征提取能力,增强了时间序列数据的建模灵活性和准确性,提升了模型的预测性能。 展开更多
关键词 深度学习 液压爬模 在线监测平台 长短期时间序列网络(lstnet) 压力预测
在线阅读 下载PDF
强化数据预处理的BLSTNet-CBAM短期电力负荷预测 被引量:2
11
作者 陈万志 张思维 王天元 《计算机系统应用》 2024年第5期47-56,共10页
针对负荷数据复杂性、非平稳性以及负荷预测误差较大等问题,提出一种综合特征构建和模型优化的短期电力负荷预测新方法.首先采用最大信息系数(MIC)分析特征变量的相关性,选取与电力负荷序列相关的特征变量,同时,考虑变分模态分解(VMD)... 针对负荷数据复杂性、非平稳性以及负荷预测误差较大等问题,提出一种综合特征构建和模型优化的短期电力负荷预测新方法.首先采用最大信息系数(MIC)分析特征变量的相关性,选取与电力负荷序列相关的特征变量,同时,考虑变分模态分解(VMD)方法容易受主观因素的影响,采用霜冰优化算法(RIME)优化VMD,完成原始电力负荷序列的分解.然后改进长短期时间序列网络(LSTNet)作为预测模型,将其递归层LSTM更新为BiLSTM,并引入卷积块注意力机制(CBAM)进行预测.通过对比实验和消融实验的结果表明:经RIME-VMD优化后,LSTM、GRU、LSTNet模型预测的均方根误差(RMSE)均降低20%以上,显著提高模型预测精度,且能够适应于不同预测模型.所提出的BLSTNet-CBAM模型与LSTM、GRU、LSTNet相比,RMSE分别降低了35.54%、6.78%、1.46%,提高了短期电力负荷预测的准确性. 展开更多
关键词 短期电力负荷预测 霜冰优化算法 变分模态分解 长短期时间序列网络 卷积块注意力机制
在线阅读 下载PDF
基于TimeGAN增强的CNN-LSTM模型在盾构掘进地表沉降中的预测研究
12
作者 郁万浩 刘陕南 肖晓春 《隧道建设(中英文)》 CSCD 北大核心 2024年第11期2223-2232,共10页
为更准确地预测小数据量下盾构法施工造成的地表沉降,提出基于TimeGAN(time series generative adversarial networks,时间序列生成对抗网络)增强的CNN(convolutional neural networks,卷积神经网络)-LSTM(long short-term memory,长短... 为更准确地预测小数据量下盾构法施工造成的地表沉降,提出基于TimeGAN(time series generative adversarial networks,时间序列生成对抗网络)增强的CNN(convolutional neural networks,卷积神经网络)-LSTM(long short-term memory,长短期记忆网络)盾构掘进地表沉降预测模型,并依托上海北横通道新建工程Ⅱ标盾构施工项目验证该增强模型的性能。首先,选取300环的部分施工参数、地质参数、几何参数以及地表最大沉降,对比LSTM、CNN-LSTM与TimeGAN-CNN-LSTM的性能,证明CNN-LSTM对于盾构施工环境下多参数的预测效果明显优于LSTM,TimeGAN-CNN-LSTM增强模型优于CNN-LSTM;然后,通过更改训练集及测试集的大小,对不同数据集下TimeGAN-CNN-LSTM增强模型相较CNN-LSTM的预测效果进行研究。结果表明:TimeGAN-CNN-LSTM增强模型预测效果相较CNN-LSTM模型提升显著,且当训练集与测试集比值为4~8时,提升最为显著。 展开更多
关键词 盾构隧道 地表沉降 卷积神经网络 长短期记忆网络 时间序列生成对抗网络
在线阅读 下载PDF
Study on Ecological Change Remote Sensing Monitoring Method Based on Elman Dynamic Recurrent Neural Network
13
作者 Zhen Chen Yiyang Zheng 《Journal of Geoscience and Environment Protection》 2024年第4期31-44,共14页
In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to t... In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area. 展开更多
关键词 Remote Sensing Ecological Index long time series Space-time Change Elman Dynamic Recurrent Neural network
在线阅读 下载PDF
时间序列雷达数据识别耕地种粮类型的研究
14
作者 武晓天 欧正蜂 +3 位作者 王晓蕾 孙汉英 王长委 黄永奇 《中国农村水利水电》 北大核心 2025年第1期124-128,135,共6页
以广东省揭阳市揭西县为研究对象,采用2021年下半年的时间序列哨兵一号数据,分析了实测样本的水稻、玉米、坑塘水面、未耕种、树林和蔬菜等耕地上不同覆盖物的时间序列后向散射系数特征和类间差异性,结果表明耕地种粮类型分类的最优极... 以广东省揭阳市揭西县为研究对象,采用2021年下半年的时间序列哨兵一号数据,分析了实测样本的水稻、玉米、坑塘水面、未耕种、树林和蔬菜等耕地上不同覆盖物的时间序列后向散射系数特征和类间差异性,结果表明耕地种粮类型分类的最优极化方式为VH极化,在此基础上构建了基于长短期记忆网络(Long Short-Term Memory networks,LSTM)的耕地种粮类型识别模型,模型精度达到90%。根据模型提取了研究区的水稻、玉米、坑塘水面、未耕种、树林和蔬菜的空间分布,为多云地区的耕地种类监测提供了新的遥感技术手段。 展开更多
关键词 耕地种粮监测 哨兵一号 时间序列 长短期记忆网络 揭西县
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法
15
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
Inversion for sound speed profile in shallow water based on long short-term memory networks and ray theory
16
作者 WU Longhao LIU Song +2 位作者 WU Zhaozhi PAN Caineng YUAN Fei 《Chinese Journal of Acoustics》 2025年第1期1-17,共17页
To address the problem of underwater sound speed profile(SSP)inversion in underwater acoustic multipath channels,this paper combines deep learning and ray theory to propose an inversion method using a long short-term ... To address the problem of underwater sound speed profile(SSP)inversion in underwater acoustic multipath channels,this paper combines deep learning and ray theory to propose an inversion method using a long short-term memory(LSTM)network.Based on the equidistant characteristics of the horizontal line array,the proposed method takes the sensing matrix composed of multi-modal data,such as time difference of arrival and angle of arrival,as input,and utilizes the ability of the LSTM network to process timeseries data to mine the correlations between spatially ordered receiving array elements for sound speed profile inversion.On this basis,a time delay estimation method based on hard threshold estimation method and cross-correlation function is proposed to reduce the measurement errors of the sensing matrix and improve the anti-multipath performance.The feasibility and accuracy of the proposed method are verified through numerical simulations.Compared with the traditional optimization algorithm,the proposed algorithm better captures the nonlinear characteristics of SSP,with higher inversion accuracy and stronger noise resistance. 展开更多
关键词 Sound speed profile long short-term memory network Underwater acoustic multipath channel time delay estimation
原文传递
基于ECA-TCN的数据中心磁盘故障预测
17
作者 张铭泉 王宝兴 《智能系统学报》 北大核心 2025年第2期389-399,共11页
随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-tem... 随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-temporal convolutional network,ECA-TCN)模型,通过结合传统卷积神经网络一维卷积的优势,融入扩张卷积和残差结构,并引入注意力机制,该模型能够提高磁盘故障预测的准确性和稳定性。在实验中,将ECA-TCN模型与其他经典深度学习方法进行了比较,实验结果表明,ECA-TCN模型在磁盘故障预测任务上具有较高的准确性和稳定性。 展开更多
关键词 磁盘故障预测 长短时记忆网络 循环神经网络 扩张卷积 高效通道注意力机制 神经网络模型 时间序列预测 深度学习优化
在线阅读 下载PDF
Short-term prediction of the influent quantity time series of wastewater treatment plant based on a chaos neural network model
18
作者 LI Xiaodong ZENG Guangming +2 位作者 HUANG Guohe LI Jianbing JIANG Ru 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2007年第3期334-338,共5页
By predicting influent quantity,a wastewater treatment plant(WWTP)can be well controlled.The non-linear dynamic characteristic of WWTP influent quantity time series was analyzed,with the assumption that the series was... By predicting influent quantity,a wastewater treatment plant(WWTP)can be well controlled.The non-linear dynamic characteristic of WWTP influent quantity time series was analyzed,with the assumption that the series was predictable.Based on this,a short-term forecasting chaos neural network model of WWTP influent quantity was built by phase space reconstruction.Reasonable forecasting results were achieved using this method. 展开更多
关键词 wastewater treatment plant(WWTP) influent quantity short-term forecasting time series chaos neural network model
原文传递
基于近邻传播聚类与LSTNet的分布式光伏电站群短期功率预测 被引量:20
19
作者 王晓霞 俞敏 +1 位作者 霍泽健 杨迪 《电力系统自动化》 EI CSCD 北大核心 2023年第6期133-141,共9页
为了应对分布式光伏渗透率不断提高带给电网运行的挑战,提出了一种基于近邻传播聚类与长短期时间序列网络(LSTNet)的区域分布式光伏电站群短期功率预测模型。首先,利用近邻传播算法划分区域内不同季节的分布式光伏电站群,并通过皮尔逊... 为了应对分布式光伏渗透率不断提高带给电网运行的挑战,提出了一种基于近邻传播聚类与长短期时间序列网络(LSTNet)的区域分布式光伏电站群短期功率预测模型。首先,利用近邻传播算法划分区域内不同季节的分布式光伏电站群,并通过皮尔逊相关系数确定光伏出力的强相关气象因子,结合双线性插值法加密对应光伏电站群的气象数据。然后,通过LSTNet挖掘光伏功率和气象因子序列的长期和短期时空依赖,并叠加自回归的线性分量,实现了群内多个光伏电站的同时预测。最后,利用美国国家能源部可再生能源实验室的实测数据集验证了所提方法的有效性。实验比较表明,所提预测模型具有较高的预测精度和鲁棒性。 展开更多
关键词 分布式光伏电站群 短期功率预测 近邻传播聚类 长短期时间序列网络
在线阅读 下载PDF
基于条件互信息与LSTNet的特高压变压器顶层油温预测方法 被引量:10
20
作者 缪希仁 林蔚青 +3 位作者 肖洒 江灏 陈静 庄胜斌 《电网技术》 EI CSCD 北大核心 2022年第7期2601-2609,共9页
顶层油温预测可为特高压变压器绝缘老化评估及故障预警提供重要依据。该文提出一种基于条件互信息(conditional mutual information,CMI)及长期和短期时间序列网络(long-and short-term time-series network,LSTNet)的特高压变压器顶层... 顶层油温预测可为特高压变压器绝缘老化评估及故障预警提供重要依据。该文提出一种基于条件互信息(conditional mutual information,CMI)及长期和短期时间序列网络(long-and short-term time-series network,LSTNet)的特高压变压器顶层油温预测方法。基于历史监测数据包括顶层油温、油中溶解气体含量、绕组温度、绕组电流、环境温度等9种参量,采用条件互信息方法,为顶层油温预测选取具有强信息增益的特征量,以降低预测模型输入特征维度;在此基础上,利用LSTNet提取特征量中蕴含的长期周期性规律和短期非线性变化特性,建立基于CMI-LSTNet预测模型,实现特高压变压器多个部位顶层油温预测。算例结果表明,相较于现有典型预测方法,该文方法不仅适应特高压变压器顶层油温变化趋势,且具有较高的预测精度。 展开更多
关键词 特高压变压器 顶层油温 条件互信息 长期和短期时间序列网络
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部