BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology.Long noncoding RNAs(lncRNAs)are active participators of diabetic nephropathy(DN).X inactive specific transcript(X...BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology.Long noncoding RNAs(lncRNAs)are active participators of diabetic nephropathy(DN).X inactive specific transcript(XIST)expression has been reported to be elevated in the serum of DN patients.AIM To evaluate the mechanism of lncRNA XIST in renal tubular epithelial cell(RTEC)pyroptosis in DN.METHODS A DN rat model was established through streptozotocin injection,and XIST was knocked down by tail vein injection of the lentivirus LV sh-XIST.Renal metabolic and biochemical indices were detected,and pathological changes in the renal tissue were assessed.The expression of indicators related to inflammation and pyroptosis was also detected.High glucose(HG)was used to treat HK2 cells,and cell viability and lactate dehydrogenase(LDH)activity were detected after silencing XIST.The subcellular localization and downstream mechanism of XIST were investigated.Finally,a rescue experiment was carried out to verify that XIST regulates NLR family pyrin domain containing 3(NLRP3)/caspase-1-mediated RTEC pyroptosis through the microRNA-15-5p(miR-15b-5p)/Toll-like receptor 4(TLR4)axis.RESULTS XIST was highly expressed in the DN models.XIST silencing improved renal metabolism and biochemical indices and mitigated renal injury.The expression of inflammation and pyroptosis indicators was significantly increased in DN rats and HG-treated HK2 cells;cell viability was decreased and LDH activity was increased after HGtreatment. Silencing XIST inhibited RTEC pyroptosis by inhibiting NLRP3/caspase-1. Mechanistically,XIST sponged miR-15b-5p to regulate TLR4. Silencing XIST inhibited TLR4 by promotingmiR-15b-5p. miR-15b-5p inhibition or TLR4 overexpression averted the inhibitory effect ofsilencing XIST on HG-induced RTEC pyroptosis.CONCLUSIONSilencing XIST inhibits TLR4 by upregulating miR-15b-5p and ultimately inhibits renal injury inDN by inhibiting NLRP3/caspase-1-mediated RTEC pyroptosis.展开更多
BACKGROUND Recent studies have emphasized the emerging importance of long noncoding RNAs(lncRNAs)in colorectal cancer(CRC).However,the functions and regulatory mechanisms of numerous lncRNAs in CRC have not been fully...BACKGROUND Recent studies have emphasized the emerging importance of long noncoding RNAs(lncRNAs)in colorectal cancer(CRC).However,the functions and regulatory mechanisms of numerous lncRNAs in CRC have not been fully elucidated.AIM To explore the functional role and underlying molecular mechanisms of lncRNA TNFRSF10A-AS1 in CRC.METHODS TNFRSF10A-AS1 expression was measured by quantitative real-time polymerase chain reaction in CRC,and the relationship between TNFRSF10A-AS1 levels and the clinicopathological features of CRC patients was analyzed.The effect of TNFRSF10A-AS1 expression on CRC proliferation and metastasis was examined in vitro and in vivo.Mechanistically,we investigated how TNFRSF10A-AS1 is involved in CRC as a competitive endogenous RNA.RESULTS TNFRSF10A-AS1 was expressed at a high level in CRC and the upregulation of TNFRSF10A-AS1 was associated with advanced T grade and tumor size in CRC patients.A functional investigation revealed that TNFRSF10A-AS1 enhanced the proliferation,migration ability and invasion ability of colon cancer cells in vitro and in vivo.A mechanistic analysis demonstrated that TNFRSF10A-AS1 acted as a miR-3121-3p molecular sponge to regulate HuR expression,ultimately promoting colorectal tumorigenesis and progression.CONCLUSION TNFRSF10A-AS1 exerts a tumor-promoting function through the miR-3121-3p/HuR axis in CRC,indicating that it may be a novel target for CRC therapy.展开更多
AIM To investigate the role of long noncoding RNA(lnc RNA) RP4 in colorectal cancer.METHODS Lentivirus-mediated lnc RNA RP4 overexpression and knockdown were performed in the colorectal cancer cell line SW480. Cell pr...AIM To investigate the role of long noncoding RNA(lnc RNA) RP4 in colorectal cancer.METHODS Lentivirus-mediated lnc RNA RP4 overexpression and knockdown were performed in the colorectal cancer cell line SW480. Cell proliferation, tumor growth, and early apoptosis were evaluated by a cell counting kit-8 assay, an in vivo xenograft tumor model, and annexin V/propidium iodide staining, respectively. Analysis of the lnc RNA RP4 mechanism involved assessment of the association of its expression with mi R-7-5 p and the SH3 GLB1 gene. Western blot analysis was also performed to assess the effect of lnc RNA RP4 on the autophagy-mediated cell death pathway and phosphatidylinositol-3-kinase(PI3 K)/Akt signaling.RESULTS Cell proliferation, tumor growth, and early apoptosis in SW480 cells were negatively regulated by lnc RNA RP4. Functional experiments indicated that lnc RNA RP4 directly upregulated SH3 GLB1 expression by acting as a competing endogenous RNA(ce RNA) for mi R-7-5 p. This interaction led to activation of the autophagy-mediated cell death pathway and de-repression of PI3 K and Akt phosphorylation in colorectal cancer cells in vivo.CONCLUSION Our results demonstrated that lnc RNA RP4 is a ce RNA that plays an important role in the pathogenesis of colorectal cancer, and could be a potential therapeutic target for colorectal cancer treatment.展开更多
Macroautophagy(hereafter referred to as autophagy)is a prosurvival mechanism for the clearance of damaged cellular components,specifically related to exposure to various stressors such as starvation,excessive ethanol ...Macroautophagy(hereafter referred to as autophagy)is a prosurvival mechanism for the clearance of damaged cellular components,specifically related to exposure to various stressors such as starvation,excessive ethanol intake,and chemotherapy.This editorial reviews and comments on an article by Zhao et al,to be published in World J Gastrointestinal Oncology in 2024.Based on various molecular biology methodologies,they found that humanβ-defensin-1 reduced the proliferation of colon cancer cells,which was associated with the inhibition of the mammalian target of rapamycin,resulting in autophagy activation.The activation of autophagy is evidenced by increased levels of Beclin1 and LC3II/I proteins and mediated by the upregulation of long non-coding RNA TCONS_00014506.Our study discusses the impact of autophagy activation and mechanisms of autophagy,including autophagic flux,on cancer cells.Additionally,we emphasize the importance of describing the detailed methods for isolating long noncoding RNAs TCONS_00014506.Our review will benefit the scientific community and improve the overall clarity of the paper.展开更多
Background: Accumulating documents have demonstrated that long noncoding RNAs (lncRNAs) play critical roles in tumorigenesis. As an lncRNA, nuclear-enriched abundant transcript 1 (NEAT1) has been identified to be...Background: Accumulating documents have demonstrated that long noncoding RNAs (lncRNAs) play critical roles in tumorigenesis. As an lncRNA, nuclear-enriched abundant transcript 1 (NEAT1) has been identified to be involved in the progression of many types of cancers. However, the biological function of NE.4T1 in cervical cancer is not fully investigated. The aim of this study was to disclose the specific biological function of lncRNA NEATI in cervical cancer progression. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to identify the expression of lncRNA NE,4 T1 in the cervical cancer tissues and cell lines. All cervical cancer samples used in this study were collected from the Affiliated Suzhou Hospital of Nanjing Medical University between September 2012 and September 2017. The correlation between NE,4T1 expression and the overall survival rate of cervical cancer patients was analyzed by Kaplan-Meier analysis. The effects of NEAT1 knockdown or overexpression on cell proliferation were tested by performing MTT assays and colony formation assays. Transwell assays were conducted to detect the migratory ability of cervical cancer cells, in which NEAT1 was silenced or overexpressed. Western blotting was utilized to validate whether NEAT1 promotes cervical cancer progression through activating PI3K-Akt signaling pathway. Results: High expression of NE,4T1 predicted poor prognosis of cervical cancer patients (χ^2= 0.735, P = 0.005). Knockdown of NE,4T1 decreased the number of colonies in CaSki cell from 136.667 ± 13.503 to 71.667 ± 7.506 (t = -18.76, P = 0.003) and decreased the number of colonies in HeLa cell from 128.667 ± 13.317 to 65.667 ± 7.024 (t = -5.54, P = 0.031). However, overexpression of NEA T1 increased the number of colonies in SiHa cell from 84.667 ± 12.014 to 150.667 ± 18.037 (t = 7.27, P = 0.018). Knockdown of NEAT1 decreased the migratory number of CaSki cell from 100.333 ± 9.866 to 58.333 ± 5.859 (t = -8.08, P = 0.015) and reduced the migratory number in HeLa cell from 123.667± 12.097 to 67.667 ± 7.095 (t = -6.03, P = 0.026). Overexpression of NEAT1 increased the migratory number of SiHa cell from 127.333 ±16.042 to 231.333 ±31.786 (t = 4.92, P = 0.039). Conclusion: NEAT1 may exert oncogenic function in cervical cancer and serve as a novel therapeutic target for cervical cancer.展开更多
基金Supported by Natural Science Foundation of Shenzhen University General Hospital (SUGH2020QD011)
文摘BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology.Long noncoding RNAs(lncRNAs)are active participators of diabetic nephropathy(DN).X inactive specific transcript(XIST)expression has been reported to be elevated in the serum of DN patients.AIM To evaluate the mechanism of lncRNA XIST in renal tubular epithelial cell(RTEC)pyroptosis in DN.METHODS A DN rat model was established through streptozotocin injection,and XIST was knocked down by tail vein injection of the lentivirus LV sh-XIST.Renal metabolic and biochemical indices were detected,and pathological changes in the renal tissue were assessed.The expression of indicators related to inflammation and pyroptosis was also detected.High glucose(HG)was used to treat HK2 cells,and cell viability and lactate dehydrogenase(LDH)activity were detected after silencing XIST.The subcellular localization and downstream mechanism of XIST were investigated.Finally,a rescue experiment was carried out to verify that XIST regulates NLR family pyrin domain containing 3(NLRP3)/caspase-1-mediated RTEC pyroptosis through the microRNA-15-5p(miR-15b-5p)/Toll-like receptor 4(TLR4)axis.RESULTS XIST was highly expressed in the DN models.XIST silencing improved renal metabolism and biochemical indices and mitigated renal injury.The expression of inflammation and pyroptosis indicators was significantly increased in DN rats and HG-treated HK2 cells;cell viability was decreased and LDH activity was increased after HGtreatment. Silencing XIST inhibited RTEC pyroptosis by inhibiting NLRP3/caspase-1. Mechanistically,XIST sponged miR-15b-5p to regulate TLR4. Silencing XIST inhibited TLR4 by promotingmiR-15b-5p. miR-15b-5p inhibition or TLR4 overexpression averted the inhibitory effect ofsilencing XIST on HG-induced RTEC pyroptosis.CONCLUSIONSilencing XIST inhibits TLR4 by upregulating miR-15b-5p and ultimately inhibits renal injury inDN by inhibiting NLRP3/caspase-1-mediated RTEC pyroptosis.
基金The study was reviewed and approved by the Ethics Committee of the Second Hospital of Hebei Medical University(No.2021-R241).
文摘BACKGROUND Recent studies have emphasized the emerging importance of long noncoding RNAs(lncRNAs)in colorectal cancer(CRC).However,the functions and regulatory mechanisms of numerous lncRNAs in CRC have not been fully elucidated.AIM To explore the functional role and underlying molecular mechanisms of lncRNA TNFRSF10A-AS1 in CRC.METHODS TNFRSF10A-AS1 expression was measured by quantitative real-time polymerase chain reaction in CRC,and the relationship between TNFRSF10A-AS1 levels and the clinicopathological features of CRC patients was analyzed.The effect of TNFRSF10A-AS1 expression on CRC proliferation and metastasis was examined in vitro and in vivo.Mechanistically,we investigated how TNFRSF10A-AS1 is involved in CRC as a competitive endogenous RNA.RESULTS TNFRSF10A-AS1 was expressed at a high level in CRC and the upregulation of TNFRSF10A-AS1 was associated with advanced T grade and tumor size in CRC patients.A functional investigation revealed that TNFRSF10A-AS1 enhanced the proliferation,migration ability and invasion ability of colon cancer cells in vitro and in vivo.A mechanistic analysis demonstrated that TNFRSF10A-AS1 acted as a miR-3121-3p molecular sponge to regulate HuR expression,ultimately promoting colorectal tumorigenesis and progression.CONCLUSION TNFRSF10A-AS1 exerts a tumor-promoting function through the miR-3121-3p/HuR axis in CRC,indicating that it may be a novel target for CRC therapy.
基金Supported by Scientific Research Foundation of Anhui Education Department,No.KJ2017A219 to Liu MLScientific Research Foundation of Academic Leader of Anhui Province,No.2016H105 to Liu ML+2 种基金Education Talent Foundation of Universities of Anhui Education Department,No.gxbj ZD2016070 to Liu MLNational Natural Science Foundation of China,No.81500373 to Wang WBNatural Science Foundation of Anhui Province,No.1608085MH193 to Wang WB
文摘AIM To investigate the role of long noncoding RNA(lnc RNA) RP4 in colorectal cancer.METHODS Lentivirus-mediated lnc RNA RP4 overexpression and knockdown were performed in the colorectal cancer cell line SW480. Cell proliferation, tumor growth, and early apoptosis were evaluated by a cell counting kit-8 assay, an in vivo xenograft tumor model, and annexin V/propidium iodide staining, respectively. Analysis of the lnc RNA RP4 mechanism involved assessment of the association of its expression with mi R-7-5 p and the SH3 GLB1 gene. Western blot analysis was also performed to assess the effect of lnc RNA RP4 on the autophagy-mediated cell death pathway and phosphatidylinositol-3-kinase(PI3 K)/Akt signaling.RESULTS Cell proliferation, tumor growth, and early apoptosis in SW480 cells were negatively regulated by lnc RNA RP4. Functional experiments indicated that lnc RNA RP4 directly upregulated SH3 GLB1 expression by acting as a competing endogenous RNA(ce RNA) for mi R-7-5 p. This interaction led to activation of the autophagy-mediated cell death pathway and de-repression of PI3 K and Akt phosphorylation in colorectal cancer cells in vivo.CONCLUSION Our results demonstrated that lnc RNA RP4 is a ce RNA that plays an important role in the pathogenesis of colorectal cancer, and could be a potential therapeutic target for colorectal cancer treatment.
文摘Macroautophagy(hereafter referred to as autophagy)is a prosurvival mechanism for the clearance of damaged cellular components,specifically related to exposure to various stressors such as starvation,excessive ethanol intake,and chemotherapy.This editorial reviews and comments on an article by Zhao et al,to be published in World J Gastrointestinal Oncology in 2024.Based on various molecular biology methodologies,they found that humanβ-defensin-1 reduced the proliferation of colon cancer cells,which was associated with the inhibition of the mammalian target of rapamycin,resulting in autophagy activation.The activation of autophagy is evidenced by increased levels of Beclin1 and LC3II/I proteins and mediated by the upregulation of long non-coding RNA TCONS_00014506.Our study discusses the impact of autophagy activation and mechanisms of autophagy,including autophagic flux,on cancer cells.Additionally,we emphasize the importance of describing the detailed methods for isolating long noncoding RNAs TCONS_00014506.Our review will benefit the scientific community and improve the overall clarity of the paper.
基金This study was supported by grants from the National Natural Science Foundation of China (No. 81370719 and No. 81671535), the Science Foundation of Jiangsu (No. BE2015642, and No. WSW023), the Jiangsu Key Discipline of Human Assisted Reproduction Medicine Foundation (No. FXK201749), and the Jiangsu Provincial Medical Youth Talent of the Project of Invigorating Health Care through Science, Technology, and Education (No. ZDRCA2016044).
文摘Background: Accumulating documents have demonstrated that long noncoding RNAs (lncRNAs) play critical roles in tumorigenesis. As an lncRNA, nuclear-enriched abundant transcript 1 (NEAT1) has been identified to be involved in the progression of many types of cancers. However, the biological function of NE.4T1 in cervical cancer is not fully investigated. The aim of this study was to disclose the specific biological function of lncRNA NEATI in cervical cancer progression. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to identify the expression of lncRNA NE,4 T1 in the cervical cancer tissues and cell lines. All cervical cancer samples used in this study were collected from the Affiliated Suzhou Hospital of Nanjing Medical University between September 2012 and September 2017. The correlation between NE,4T1 expression and the overall survival rate of cervical cancer patients was analyzed by Kaplan-Meier analysis. The effects of NEAT1 knockdown or overexpression on cell proliferation were tested by performing MTT assays and colony formation assays. Transwell assays were conducted to detect the migratory ability of cervical cancer cells, in which NEAT1 was silenced or overexpressed. Western blotting was utilized to validate whether NEAT1 promotes cervical cancer progression through activating PI3K-Akt signaling pathway. Results: High expression of NE,4T1 predicted poor prognosis of cervical cancer patients (χ^2= 0.735, P = 0.005). Knockdown of NE,4T1 decreased the number of colonies in CaSki cell from 136.667 ± 13.503 to 71.667 ± 7.506 (t = -18.76, P = 0.003) and decreased the number of colonies in HeLa cell from 128.667 ± 13.317 to 65.667 ± 7.024 (t = -5.54, P = 0.031). However, overexpression of NEA T1 increased the number of colonies in SiHa cell from 84.667 ± 12.014 to 150.667 ± 18.037 (t = 7.27, P = 0.018). Knockdown of NEAT1 decreased the migratory number of CaSki cell from 100.333 ± 9.866 to 58.333 ± 5.859 (t = -8.08, P = 0.015) and reduced the migratory number in HeLa cell from 123.667± 12.097 to 67.667 ± 7.095 (t = -6.03, P = 0.026). Overexpression of NEAT1 increased the migratory number of SiHa cell from 127.333 ±16.042 to 231.333 ±31.786 (t = 4.92, P = 0.039). Conclusion: NEAT1 may exert oncogenic function in cervical cancer and serve as a novel therapeutic target for cervical cancer.