期刊文献+
共找到1,085篇文章
< 1 2 55 >
每页显示 20 50 100
基于ARIMA-LSTM的矿区地表沉降预测方法
1
作者 王磊 马驰骋 +1 位作者 齐俊艳 袁瑞甫 《计算机工程》 北大核心 2025年第1期98-105,共8页
煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单... 煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单独进行概率预测或考虑时序特性进行点预测,难以在考虑数据的时序特征的同时对其随机性进行定量描述。针对此问题,在对数据本身性质进行观察分析后选择差分整合移动平均自回归(ARIMA)模型进行时序特征的概率预测,结合长短时记忆(LSTM)网络模型来学习复杂的且具有长期依赖性的非线性时序特征。提出基于ARIMA-LSTM的地表沉降预测模型,利用ARIMA模型对数据的时序线性部分进行预测,并将ARIMA模型预测的残差数据辅助LSTM模型训练,在考虑时序特征的同时对数据的随机性进行描述。研究结果表明,相较于单独采用ARIMA或LSTM模型,该方法具有更高的预测精度(MSE为0.262 87,MAE为0.408 15,RMSE为0.512 71)。进一步的对比结果显示,预测结果与雷达卫星影像数据(经SBAS-INSAR处理后)趋势一致,证实了该方法的有效性。 展开更多
关键词 煤矿采空区 地表沉降预测 时序概率预测 差分整合移动平均自回归 长短时记忆网络
在线阅读 下载PDF
基于MC2DCNN-LSTM模型的齿轮箱全故障分类识别模型
2
作者 陈蓉 王磊 《机电工程》 北大核心 2025年第2期287-297,共11页
针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识... 针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识别与分类目的,对齿轮箱典型故障进行了自适应分类;其次,该模型将齿轮箱的垂直、水平和轴向三个方向的振动信号融合构造输入样本,结合了二维卷积神经网络与长短时记忆神经网络的优势,设计了与之对应的二维卷积神经网络结构,其相较于传统的单通道信号包含了更多的状态信息;最后,分析了轧制过程数据和已有实验数据,对齿轮故障和齿轮箱全故障进行了特征识别和分类,验证了该模型的准确率。研究结果表明:模型对齿轮箱齿面磨损、齿根裂纹、断齿以及齿面点蚀等典型故障识别的平均准确率达到95.9%,最高准确率为98.6%;相较于单通道信号,多通道信号混合编码方式构造的分类样本极大地提升了神经网络分类的准确性,解调出了更丰富的故障信息。根据轧制过程中的运行数据和实验台数据,验证了该智能诊断方法较传统方法在分类和识别准确率上更具优势,为该方法的工程应用提供了理论基础。 展开更多
关键词 高精度轧机齿轮箱 智能故障诊断 多通道二维卷积神经网络 长短期记忆神经网络 数据分类
在线阅读 下载PDF
基于Bi‑LSTM和时序注意力的异常心音检测
3
作者 卢官明 蔡亚宁 +3 位作者 卢峻禾 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期12-20,共9页
异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧... 异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧处理,使用平均幅度差函数(Average Magnitude Difference Function,AMDF)和短时过零率(Short⁃Time Zero⁃Crossing Rate,STZCR)提取每帧心音信号的初始特征;然后将它们拼接后作为Bi⁃LSTM的输入,并引入时序注意力机制,挖掘特征的长期依赖关系,提取心音信号的上下文时域特征;最后通过Softmax分类器,实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016提供的心音公共数据集上对所提出的算法使用10折交叉验证法进行了评估,其准确度、灵敏度、特异性、精度和F1评分分别为0.9579、0.9364、0.9642、0.8838和0.9093,优于已有的其他算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,在心血管疾病的临床辅助诊断中具有潜在的应用前景。 展开更多
关键词 心音分类 平均幅度差函数 短时过零率 双向长短时记忆网络 时序注意力机制
在线阅读 下载PDF
基于LSTM-DDPG的再入制导方法
4
作者 闫循良 王宽 +1 位作者 张子剑 王培臣 《系统工程与电子技术》 北大核心 2025年第1期268-279,共12页
针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LST... 针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LSTM-DDPG)的再入制导方法。该方法采用纵、侧向制导解耦设计思想,在纵向制导方面,首先针对再入制导问题构建强化学习所需的状态、动作空间;其次,确定决策点和制导周期内的指令计算策略,并设计考虑综合性能的奖励函数;然后,引入LSTM网络构建强化学习训练网络,进而通过在线更新策略提升算法的多任务适用性;侧向制导则采用基于横程误差的动态倾侧反转方法,获得倾侧角符号。以美国超音速通用飞行器(common aero vehicle-hypersonic,CAV-H)再入滑翔为例进行仿真,结果表明:与传统数值预测-校正方法相比,所提制导方法具有相当的终端精度和更高的计算效率优势;与现有基于DDPG算法的再入制导方法相比,所提制导方法具有相当的计算效率以及更高的终端精度和鲁棒性。 展开更多
关键词 再入滑翔制导 强化学习 深度确定性策略梯度 长短期记忆网络
在线阅读 下载PDF
堆叠式LSTM组合模型的充电站用电量预测方法
5
作者 王彩玲 丁当 《计算机时代》 2025年第1期1-4,共4页
随着电动汽车的普及,充电站对电力需求预测的精确性日益提高。本文设计了堆叠式LSTM模型,使用预处理过的某电动汽车充电站用电量数据,对比分析传统模型和LSTM模型在不同评估指标上的表现,验证所提出模型的优越性;还对多层堆叠式LSTM模... 随着电动汽车的普及,充电站对电力需求预测的精确性日益提高。本文设计了堆叠式LSTM模型,使用预处理过的某电动汽车充电站用电量数据,对比分析传统模型和LSTM模型在不同评估指标上的表现,验证所提出模型的优越性;还对多层堆叠式LSTM模型进行训练和测试,分析不同层数LSTM模型的性能,实验结果表明,三层堆叠式LSTM模型优于其他模型,能够显著提高用电量预测的准确度。 展开更多
关键词 用电量预测 长短期记忆网络 卷积神经网络-长短期记忆网络 堆叠式lstm模型
在线阅读 下载PDF
Real-time UAV path planning based on LSTM network 被引量:1
6
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(lstm)
在线阅读 下载PDF
基于自适应VMD-LSTM的超短期风电功率预测 被引量:1
7
作者 王迪 傅晓锦 杜诗琪 《南京信息工程大学学报》 北大核心 2025年第1期74-87,共14页
针对风电功率波动性较强和预测精度较低的问题,提出一种改进蜣螂优化算法(Logistic-T-Dung Beetle Optimizer,LTDBO)优化变分模态分解(Variational Mode Decomposition,VMD)参数和LTDBO算法优化长短期记忆网络(Long Short-Term Memory,L... 针对风电功率波动性较强和预测精度较低的问题,提出一种改进蜣螂优化算法(Logistic-T-Dung Beetle Optimizer,LTDBO)优化变分模态分解(Variational Mode Decomposition,VMD)参数和LTDBO算法优化长短期记忆网络(Long Short-Term Memory,LSTM)超参数的混合短期风电功率预测模型.首先以平均包络谱峭度作为适应度函数,利用LTDBO算法对VMD分解层数和惩罚因子进行寻优,然后使用VMD对数据清洗后的风电序列进行分解,得到不同频率的平稳的固有模态分量(Intrinsic Mode Function,IMF),并将各IMF输入由LTDBO进行超参数寻优的LSTM进行预测,最后将各IMF预测值进行叠加重构,得到最终结果.实验结果表明:LTDBO算法可以找到VMD和LSTM的最优超参数组合,LTDBO-VMD-LTDBO-LSTM组合模型在风电功率预测领域具有较好的预测精度和鲁棒性. 展开更多
关键词 风电功率 蜣螂优化算法 变分模态分解 长短期记忆网络 数据清洗
在线阅读 下载PDF
基于表面肌电信号的CNN-LSTM模型下肢动作识别
8
作者 周智伟 陶庆 +3 位作者 苏娜 刘景轩 李博文 裴浩 《科学技术与工程》 北大核心 2025年第7期2841-2848,共8页
为了提高对下肢运动的分类准确度,提出了一种基于表面肌电信号(surface electromyography, sEMG)的卷积神经网络与长短期记忆网络融合识别模型(convolutional neural network and long short-term memory network, CNN-LSTM)。首先,采集... 为了提高对下肢运动的分类准确度,提出了一种基于表面肌电信号(surface electromyography, sEMG)的卷积神经网络与长短期记忆网络融合识别模型(convolutional neural network and long short-term memory network, CNN-LSTM)。首先,采集了20名受试者进行上楼、下楼、行走和蹲起4种步态动作的sEMG;接着,对采集到的sEMG数据进行预处理,并提取了两种时域和频域特征,用作机器学习识别模型的特征输入;最后,基于预处理后肌电信号数据,构建了CNN-LSTM的下肢动作识别模型,并与CNN、LSTM和支持向量机(support vector machine, SVM)模型的性能进行对比。结果显示,CNN-LSTM模型在下肢动作识别准确率上分别比CNN、LSTM和SVM模型高出2.16%、8.34%、和11.16%,证明了其优越的分类性能。研究结论为康复医疗器械与助力器械提供了一个有效的下肢运动功能改善方案。 展开更多
关键词 表面肌电信号 下肢动作识别 CNN-lstm 卷积神经网络 长短时记忆网络
在线阅读 下载PDF
基于LSTM网络的轨道车辆基准轴速度预测方法
9
作者 孙卫兵 杨磊 方松 《中国铁路》 北大核心 2025年第1期92-99,共8页
滑行检测是列车制动系统防滑控制的关键技术,以真实轨道车辆制动系统的运行数据为样本进行特征分析,提出基于长短期记忆网络(LSTM)的列车基准轴速度预测方法。该方法根据车辆4个轴的实时速度及其邻近时刻的速度,对下一时间段的基准轴速... 滑行检测是列车制动系统防滑控制的关键技术,以真实轨道车辆制动系统的运行数据为样本进行特征分析,提出基于长短期记忆网络(LSTM)的列车基准轴速度预测方法。该方法根据车辆4个轴的实时速度及其邻近时刻的速度,对下一时间段的基准轴速度进行迭代预测。与常规基准轴速度估算方法相比,LSTM算法预测的基准轴速度在全轴滑行工况下更接近列车真实速度,可更早地检测到全轴滑行,有利于制动系统及时采取防滑控制措施或其他黏着控制,提高黏着利用率。 展开更多
关键词 轨道车辆 基准轴速度 列车制动 长短期记忆网络 神经网络 滑行检测 黏着控制
在线阅读 下载PDF
基于VMD-LSTM对大地电磁信号进行噪声检测和预测重构
10
作者 李博 李长伟 +2 位作者 罗润林 吕玉增 王占 《物探与化探》 2025年第1期100-117,共18页
在大地电磁法中,强干扰噪声限制了该方法还原真实地下结构的精度,会对后期资料解释造成不良影响。本文基于大地电磁时间序列的特点,对不同类型噪声的特征进行分析,提出了一种基于VMD(变分模态分解)与LSTM(长短时记循环神经网络)预测重... 在大地电磁法中,强干扰噪声限制了该方法还原真实地下结构的精度,会对后期资料解释造成不良影响。本文基于大地电磁时间序列的特点,对不同类型噪声的特征进行分析,提出了一种基于VMD(变分模态分解)与LSTM(长短时记循环神经网络)预测重构的信号去噪技术。首先通过VMD信号分解算法对原始大地电磁数据进行去基线漂移处理,对处理好的时间序列继续通过VMD分解为多个不同的模态IMFs,选用含噪声轮廓信息的RSE分量中无干扰数据训练LSTM时间序列检测模型,对RSE分量进行识别并标记含噪时间段,计算噪声的步长,将噪声信息传递给原始信号并截断删除。最后通过对IMFs训练LSTM多维预测模型,对空缺的位置预测不同模态下的信号,将所有模态输出结果叠加可得大地电磁预测信号,重构信号后针对VMD方法识别度不高的尖脉冲噪声进行二次信噪分离即完成去噪。通过该技术可精确识别大地电磁信号中的强干扰噪声,只针对噪声发生时间段进行处理,有效保护了信号中无干扰数据,且预测数据误差可控制在大地电磁信号数据处理的误差允许范围内,去噪效果显著。 展开更多
关键词 大地电磁 变分模态分解VMD 长短时循环神经网络lstm 深度学习 信号去噪
在线阅读 下载PDF
基于SVM-SARIMA-LSTM模型的城市用水量实时预测
11
作者 李轩 吴永强 +2 位作者 王佳伟 杨伟超 张天洋 《水电能源科学》 北大核心 2025年第3期36-39,6,共5页
为提高气象波动下城市用水量预测精度,通过季节性分解的趋势—季节性—残差程序(STL)将城市时用水量分解为趋势分量、季节性分量和残差分量3部分,使用季节性自回归移动平均模型(SARIMA)对季节性部分进行捕捉,利用支持向量机(SVM)提取趋... 为提高气象波动下城市用水量预测精度,通过季节性分解的趋势—季节性—残差程序(STL)将城市时用水量分解为趋势分量、季节性分量和残差分量3部分,使用季节性自回归移动平均模型(SARIMA)对季节性部分进行捕捉,利用支持向量机(SVM)提取趋势部分与气温、降水、风速、气压和相对湿度5个气象因素之间的关系,利用长短时记忆网络(LSTM)对波动性明显的残差部分进行关系捕捉,构建了SVM-SARIMA-LSTM用水量实时预测模型,并利用衡水市3个月时用水量数据和气象数据训练SVM-SARIMA-LSTM模型,以随后1周的实测数据作为验证集对模型预测性能进行评估。结果表明,SVM-SARIMA-LSTM模型的平均绝对百分比误差(E_(MAP))比SARIMA模型低4.502%,均方根误差(E_(RMSE))降低了39.084%,确定系数R^(2)提高了9.965%,最大绝对误差(E_(maxA))减小了55.946%,具有较好的应用价值。所建模型通过整合关键气象因素,准确地捕捉到城市用水量的季节性趋势及非季节性波动,展现了优良的泛化性。 展开更多
关键词 SARIMA模型 支持向量机 长短时记忆神经网络 SVM-SARIMA-lstm模型 STL分解程序 气象因素 用水量预测
在线阅读 下载PDF
基于WOA-IGWO-LSTM的作业车间实时调度
12
作者 郑华丽 魏光艳 +2 位作者 孙东 王明君 叶春明 《机床与液压》 北大核心 2025年第2期54-63,共10页
针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特... 针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特征进行降维,以提高模型泛化能力和准确性。引入非线性收敛因子设计一种改进灰狼算法(IGWO)用于调节LSTM参数,提高算法实用性。最后,通过对比试验验证了WOA、IGWO以及WOA-IGWO-LSTM的有效性,并利用工业案例数据验证了WOA-IGWO-LSTM对于解决作业车间实时调度问题的有效性和可行性。 展开更多
关键词 长短期记忆(lstm)神经网络 鲸鱼优化算法(WOA) 改进灰狼算法 作业车间实时调度
在线阅读 下载PDF
基于LOF-EEMD-LSTM模型的污水水质预测研究
13
作者 游旭 陈会娟 余昭旭 《自动化仪表》 2025年第2期51-56,共6页
为了精准预测污水中溶解氧(DO)浓度值,通过局部异常因子(LOF)算法对深圳某污水处理厂5个月的数据进行分析。利用集合经验模态分解(EEMD)-长短期记忆(LSTM)神经网络模型,对曝气控制系统的出水水质影响较大的DO浓度进行准确预测。首先,通... 为了精准预测污水中溶解氧(DO)浓度值,通过局部异常因子(LOF)算法对深圳某污水处理厂5个月的数据进行分析。利用集合经验模态分解(EEMD)-长短期记忆(LSTM)神经网络模型,对曝气控制系统的出水水质影响较大的DO浓度进行准确预测。首先,通过LOF算法剔除数据中的异常值。然后,使用EEMD算法筛选出输入数据中强相关的特征子序列。最后,将特征子序列输入LSTM模型中以得到DO预测值。试验结果表明,LOF-EEMD-LSTM模型的准确率可达95.4%、平均绝对误差(MAE)为0.036、均方误差(MSE)为0.0038、均方根误差(RMSE)为0.0614、平均绝对百分比误差(MAPE)为0.046。以上指标相比于反向传播(BP)神经网络、随机森林、LSTM、LOF-LSTM、EEMD-LSTM和变分模态分解-最小二乘支持向量机(VMD-LSSVM)预测模型皆有明显的提升。所提模型的预测精度较高,具有较高的实用价值。 展开更多
关键词 污水处理 水质预测 溶解氧 局部异常因子算法 集合经验模态分解 长短期记忆神经网络
在线阅读 下载PDF
基于ICEEMDAN和SSA-LSTM组合模型的电离层TEC预测
14
作者 张振国 孙希延 +1 位作者 纪元法 贾茜子 《全球定位系统》 2025年第1期48-59,共12页
针对电离层总电子含量(total electron content,TEC)具有非线性和非平稳性的特性及单一长短期记忆神经网络(long short-term memory,LSTM)模型在预测中存在精度不高且易陷入局部最优等问题,在改进的自适应噪声完备集合经验模态分解(impr... 针对电离层总电子含量(total electron content,TEC)具有非线性和非平稳性的特性及单一长短期记忆神经网络(long short-term memory,LSTM)模型在预测中存在精度不高且易陷入局部最优等问题,在改进的自适应噪声完备集合经验模态分解(improved complete ensemble EMD with adaptive noise,ICEEMDAN)和样本熵(sample entropy,SE)算法的基础上,结合麻雀搜索算法(sparrow search algorithm,SSA)和LSTM构建电离层TEC组合预测模型,并对太阳活动低年平静期和太阳活动高年扰动期电离层TEC连续5 d的预测精度分析.实验结果表明,本文组合模型相较于单一LSTM模型和SSA-LSTM模型在低太阳活动平静期和高太阳活动扰动期的不同经纬度下,均方根误差(root mean square error,RMSE)分别最大降低1.06 TECU和2.25 TECU,平均绝对误差(mean absolute error,MAE)分别最大降低了0.74 TECU和1.68 TECU,平均相对精度分别最大提升了7.63%和8.97%,组合模型的预测效果要明显优于单一LSTM模型和SSA-LSTM模型. 展开更多
关键词 电离层 总电子含量(TEC)预测 改进的自适应噪声完备集合经验模态分解(ICEEMDAN) 样本熵(SE) 麻雀搜索算法(SSA) 长短期记忆神经网络(lstm)
在线阅读 下载PDF
基于反馈约束变分模态分解和LSTM网络的并联电抗器油温预测研究
15
作者 丁文涛 淡淑恒 +1 位作者 陈浩宇 蔡立川 《高压电器》 北大核心 2025年第2期83-92,101,共11页
并联电抗器作为电网重要的电力设备,准确估计其油温变化趋势,可为早期故障监测和预警提供重要依据。提出一种基于反馈约束变分模态分解(VMD)和长短期记忆神经网络(LSTM)的并联电抗器油温预测模型;利用信号反馈约束和加权样本熵优化VMD... 并联电抗器作为电网重要的电力设备,准确估计其油温变化趋势,可为早期故障监测和预警提供重要依据。提出一种基于反馈约束变分模态分解(VMD)和长短期记忆神经网络(LSTM)的并联电抗器油温预测模型;利用信号反馈约束和加权样本熵优化VMD分解个数k和惩罚因子α,形成VMDFS分解方法将并联电抗器原始油温序列分解成多组平稳的子序列,消除不平稳信息的影响;再对各子序列构建LSTM神经网络预测模型,用粒子群优化神经元个数;最后将各子序列预测油温叠加得到并联电抗器最终预测油温。通过对某变电站一台220 kV并联电抗器实测数据分析,证明所提模型在单步和多步预测性能上具有精度高、鲁棒性强和误差累积缓慢等优势,能有效反映并联电抗器油温变化趋势,为其监测预警提供参考。 展开更多
关键词 并联电抗器 油温预测 VMDFS lstm神经网络
在线阅读 下载PDF
基于SABO-LSTM的高铁沿线短期风速预测方法
16
作者 牛兆吉 李德仓 +1 位作者 胥如迅 陈晓强 《科学技术与工程》 北大核心 2025年第9期3880-3887,共8页
准确的高铁沿线风速预测是铁路灾害预警系统的基础需求,为了提升应对和处理强风灾害致突发事件的能力,提出一种基于减法平均优化(subtraction average based optimizer,SABO)算法优化长短时记忆(long short-term memory,LSTM)神经网络... 准确的高铁沿线风速预测是铁路灾害预警系统的基础需求,为了提升应对和处理强风灾害致突发事件的能力,提出一种基于减法平均优化(subtraction average based optimizer,SABO)算法优化长短时记忆(long short-term memory,LSTM)神经网络的高铁沿线短期风速预测方法。首先,针对风速非线性和非平稳特性,采用极小化极大(min-max,MM)方法对风速数据进行归一化处理;其次,采用SABO算法中的“-v”方法对LSTM模型的关键参数搜索寻优,并构建风速预测模型;最后,以中国宝兰高铁沿线风速采集点采集的实测风速数据为例,对模型进行有效性检验。实验结果表明:SABO算法的寻优效果更加良好,预测精度更高,所建模型的平均绝对误差(mean absolute error,MAE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和均方根误差(route mean square error,RMSE)分别仅为11.96%、1.23%和16.47%,决定系数(r-square,R^(2))为0.995。与其他模型相比,通过SABO算法优化后的LSTM神经网络在短期风速预测上具有较好的拟合效果和更高的预测精度,可为高铁沿线大风预测预警提供一种新的方法和思路。 展开更多
关键词 高铁 风速预测 减法平均优化算法 长短时记忆神经网络
在线阅读 下载PDF
基于增强Bi-LSTM的船舶运动模型辨识
17
作者 张浩晢 杨智博 +2 位作者 焦绪国 吕成兴 雷鹏 《中国舰船研究》 北大核心 2025年第1期76-84,共9页
[目的]针对基于数据驱动的船舶建模策略获得的模型预测精度低、适应性差等特点,提出一种增强的双向长短期记忆(Bi-LSTM)神经网络用于船舶的高精度非参数化建模。[方法]首先,利用Bi-LSTM神经网络的特点,实现对序列双向时间维度的特征提... [目的]针对基于数据驱动的船舶建模策略获得的模型预测精度低、适应性差等特点,提出一种增强的双向长短期记忆(Bi-LSTM)神经网络用于船舶的高精度非参数化建模。[方法]首先,利用Bi-LSTM神经网络的特点,实现对序列双向时间维度的特征提取。基于此,设计一维卷积神经网络(1D-CNN)提取序列的空间维度特征。然后,采用多头自注意力机制(MHSA)多角度对序列进行自适应加权处理。利用KVLCC2船舶航行数据,将所提增强Bi-LSTM模型与支持向量机(SVM)、门控循环单元(GRU)、长短期记忆神经网络(LSTM)模型的预测效果进行对比。[结果]所提增强Bi-LSTM模型在测试集中均方根误差(RMSE)、平均绝对误差(MAE)性能指标分别低于0.015和0.011,决定系数(R2)高于0.99913,预测精度显著高于SVM,GRU,LSTM模型。[结论]增强Bi-LSTM模型泛化性能优异,预测稳定性及预测精度高,有效实现了船舶的运动模型辨识。 展开更多
关键词 系统辨识 非参数化建模 一维卷积神经网络 双向长短期记忆神经网络 多头自注意力机制
在线阅读 下载PDF
基于LSTM的充电桩异常运行数据自动跟踪方法
18
作者 吴俊菁 陈吉 夏学智 《信息技术》 2025年第1期191-196,共6页
为了提高对充电桩异常数据的跟踪效率,提出基于LSTM的充电桩异常运行数据自动跟踪方法。根据充电桩充电功率与电池荷电状态变化,对异常数据进行挖掘和处理。引入叠加函数计算异常数据局部可达密度,结合单层循环矩阵求取异常数据轨迹分布... 为了提高对充电桩异常数据的跟踪效率,提出基于LSTM的充电桩异常运行数据自动跟踪方法。根据充电桩充电功率与电池荷电状态变化,对异常数据进行挖掘和处理。引入叠加函数计算异常数据局部可达密度,结合单层循环矩阵求取异常数据轨迹分布,确定异常数据跟踪范围。基于此,采用长短时记忆神经网络算法(LSTM)输出跟踪算子,并依据空间映射原理,生成跟踪路径,由此实现充电桩异常运行数据自动跟踪。对比实验结果显示,所提方法能够高效跟踪充电桩异常运行数据,跟踪效率较高。 展开更多
关键词 长短时记忆神经网络 充电桩 异常运行数据 自动跟踪
在线阅读 下载PDF
基于LSTM算法的麒麟系统网络异常数据辨识方法
19
作者 王少骥 《通信电源技术》 2025年第4期134-137,共4页
传统传输方法受到网络配置及策略影响,限制了远程桌面协议端口、数据库端口等数据的传输,导致异常数据辨识的准确性较低。为此引进长短期记忆(Long Short Term Memory,LSTM)算法,以国产麒麟系统为例,开展网络异常数据辨识方法的设计。... 传统传输方法受到网络配置及策略影响,限制了远程桌面协议端口、数据库端口等数据的传输,导致异常数据辨识的准确性较低。为此引进长短期记忆(Long Short Term Memory,LSTM)算法,以国产麒麟系统为例,开展网络异常数据辨识方法的设计。引入网络异常数据变化程度系数,建立网络异常数据的特征分布函数以此量化异常数据的特征,计算国产麒麟系统网络异常节点权重。将节点权重作为输入,利用LSTM算法对时序数据进行学习,从而识别系统异常节点特征,并得到识别结果。结合异常节点特征,计算国产麒麟系统网络异常数据的综合特征值,综合运用异常数据的状态空间以及与之相关的测量值和信息熵,输出最具有代表性的异常数据。基于此,实现对网络传输节点异常数据的辨识定位。对比实验结果表明,设计的方法不仅可以提高传输数据异常辨识的时效性,还可以精准划分正常数据与异常数据。 展开更多
关键词 长短期记忆(lstm)算法 辨识方法 异常数据 传输 网络数据 国产麒麟系统
在线阅读 下载PDF
基于CNN-LSTM-Attention的气井井筒积液诊断
20
作者 徐子鸿 王仪 《成都工业学院学报》 2025年第1期14-20,共7页
为了解决传统积液诊断模型存在的诸多问题,如选择缺乏定性标准、计算结果差异大以及无法满足实际工程需求等,提出一种基于神经网络的气井井筒积液诊断方法,该模型将卷积神经网络(CNN)和长短期记忆网络(LSTM)的结合,使其能够有效捕捉气... 为了解决传统积液诊断模型存在的诸多问题,如选择缺乏定性标准、计算结果差异大以及无法满足实际工程需求等,提出一种基于神经网络的气井井筒积液诊断方法,该模型将卷积神经网络(CNN)和长短期记忆网络(LSTM)的结合,使其能够有效捕捉气井在不同工况下的动态特征,增强模型对复杂数据的处理能力,并在此基础上引入注意力机制自动聚焦于输入数据中最相关的信息,从而提升特征的权重。在实验中,使用真实气井生产相关数据集,对比分析多个模型与所提出的CNN-LSTM-Attention模型的相关性能指标。实验结果显示,所提模型的准确率高达97.6%,多次试验结果方差值明显优于其他深度学习模型和传统方法。这一显著的性能提升,验证了模型的有效性,并对气田生产具有一定的指导作用。 展开更多
关键词 卷积神经网络 长短期记忆网络 注意力机制 气井积液诊断
在线阅读 下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部