The existence of solutions at resonance is obtained by using the an example to demonstrate our result. noncontinuous. for the 2n-order m-point boundary value problem coincidence degree theory of Mawhin. We give The ...The existence of solutions at resonance is obtained by using the an example to demonstrate our result. noncontinuous. for the 2n-order m-point boundary value problem coincidence degree theory of Mawhin. We give The interest is that the nonlinear term may be展开更多
By using Mawhin's continuation theorem, the existence of a solution for a class of m-point boundary value problem at resonance with one-dimensional p-Laplacian is obtained. An example is given to demonstrate the main...By using Mawhin's continuation theorem, the existence of a solution for a class of m-point boundary value problem at resonance with one-dimensional p-Laplacian is obtained. An example is given to demonstrate the main result of this paper.展开更多
Using the theory of coincidence degree, a class of higher order multi-point boundary value problem for ordinary differential equations are studied. Under the boundary conditions satisfying the resonance case, some new...Using the theory of coincidence degree, a class of higher order multi-point boundary value problem for ordinary differential equations are studied. Under the boundary conditions satisfying the resonance case, some new existence results are obtained by supposing some conditions to the nonlinear term and applying a priori estimates.展开更多
A kind of third order multi-point boundary value problems, x'''( ι) = f( t, x ( t ), x" ( t ), x''' ( t ) ) + m 2 e(t),t∈(0, 1),x(0)=ax(ξ),x'(0)-0,x(l)= ^m2∑j=1 βjx(ηj), fεC[0,...A kind of third order multi-point boundary value problems, x'''( ι) = f( t, x ( t ), x" ( t ), x''' ( t ) ) + m 2 e(t),t∈(0, 1),x(0)=ax(ξ),x'(0)-0,x(l)= ^m2∑j=1 βjx(ηj), fεC[0, 1]×R^3, e(t)∈L^1[0, 1],a≥0, is considered, all theβj's have not the same sign, 0〈ξ〈 l, 0〈η1〈 η2〈… 〈ηm.2〈 1. By using the coincidence degree theory, some existence theorems for the problems at resonance are obtained.展开更多
This article deals with the following second-order multi-point boundary value problem x″(t)=r(t,x(t),x′(t))+e(t),t∈(0,1)x′(0)=m∑i=1aix′(ξi),x(1)=n∑j=1βjx(ηj), Under the resonance conditi...This article deals with the following second-order multi-point boundary value problem x″(t)=r(t,x(t),x′(t))+e(t),t∈(0,1)x′(0)=m∑i=1aix′(ξi),x(1)=n∑j=1βjx(ηj), Under the resonance conditions m∑i=1ai=1,n∑j=1βj=1,n∑j=1βjηj=1 , by applying the coincidence degree theory, some existence results of the problem are established. The emphasis here is that the dimension of the linear operator is two. In this paper, we extend and improve some previously known results like the ones in the references.展开更多
A class of the boundary value problem for fractional order nonlinear differential equation with Riemann-Liouville fractional derivative on the half line was studied. By using the coincidence degree theory due to Mawhi...A class of the boundary value problem for fractional order nonlinear differential equation with Riemann-Liouville fractional derivative on the half line was studied. By using the coincidence degree theory due to Mawhin and constructing the suitable operators,the existence theorem of at least one solution has been established. An example is given to illustrate our result.展开更多
A class of second order multi-point boundary value problem at resonance is considered. Under some appropriate conditions, the existence of solutions to the nonlinear problem is obtained by use of the coincidence degre...A class of second order multi-point boundary value problem at resonance is considered. Under some appropriate conditions, the existence of solutions to the nonlinear problem is obtained by use of the coincidence degree theory of Mawhin.展开更多
Using a fixed point theorem in cones, the paper consider the existence of positive solutions for a class of second-order m-point boundary value problem. Sufficient conditions to ensure the existence of double positive...Using a fixed point theorem in cones, the paper consider the existence of positive solutions for a class of second-order m-point boundary value problem. Sufficient conditions to ensure the existence of double positive solutions are obtained. The associated Green function of this problem is also given.展开更多
The existence of solutions for second order three-point boundary value problems with nonlinear growth at resonance is studied by using Mawhin continuation theorem. The result shows that theorem 1 and 2 at least have o...The existence of solutions for second order three-point boundary value problems with nonlinear growth at resonance is studied by using Mawhin continuation theorem. The result shows that theorem 1 and 2 at least have one solution in c1[0,1]展开更多
In his paper,we obtain a general theorem concerning the existence of solutions to an m-point boundary value problem for the second-order differential equation with impulses.Moreover,the result can also be applied to s...In his paper,we obtain a general theorem concerning the existence of solutions to an m-point boundary value problem for the second-order differential equation with impulses.Moreover,the result can also be applied to study the usual m-point boundary value problem at resonance without impulses.展开更多
In this paper,we study an m-point boundary value problem of third order ODEs at resonance. We prove some existence results for the m-point boundary value problem at resonance by the coincidence degree theory of [8,9]....In this paper,we study an m-point boundary value problem of third order ODEs at resonance. We prove some existence results for the m-point boundary value problem at resonance by the coincidence degree theory of [8,9]. Our result is new. Meanwhile,an example is presented to demonstrate the main result.展开更多
This paper is concerned with the existence of solutions for the following multipoint boundary value problem at resonance{(Φp (x'))' + f(t,x)=0,0 < t < 1,x' (0)=x'(ξ) x(1)=m-3 ∑i=1 βi x(η i),...This paper is concerned with the existence of solutions for the following multipoint boundary value problem at resonance{(Φp (x'))' + f(t,x)=0,0 < t < 1,x' (0)=x'(ξ) x(1)=m-3 ∑i=1 βi x(η i),where βi∈ R,m-3 ∑i=1 β i=1,0 < η 1 < η 2 < ··· < ηm-3 < 1,m-3 ∑i=1 βiηi=1,0 < ξ < 1.An existence theorem is obtained by using the extension of Mawhin's continuation theorem.Since almost all the multi-point boundary value problem at resonance in previous papers are for the linear operator without p-Laplacian by the use of Mawhin's continuation theorem,our method is new.展开更多
In this paper, we are concerned with the existence of solution to a boundary value problem of nonlinear fractional differential equation at resonance. By means of the coincidence degree theory, the existence of soluti...In this paper, we are concerned with the existence of solution to a boundary value problem of nonlinear fractional differential equation at resonance. By means of the coincidence degree theory, the existence of solution is obtained.展开更多
In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 tha...In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 that is similar to (LL) in Theorem 1.1, by index theory and Morse theory, we obtain more nontrivial solutions.展开更多
By topological degree theory,the three-point boundary value problem for p-Laplacian differential equation at resonance is studied. Some new results on the existence of solutions are obtained,which improve and extend s...By topological degree theory,the three-point boundary value problem for p-Laplacian differential equation at resonance is studied. Some new results on the existence of solutions are obtained,which improve and extend some known ones in the previous literatures.展开更多
The paper deals a fractional functional boundary value problems with integral boundary conditions. Besed on the coincidence degree theory, some existence criteria of solutions at resonance are established.
In this paper, we study the multiplicity of positive solutions to the following m-point boundary value problem of nonlinear fractional differential equations: Dqu(t) + f(t, u(t)) = 0, 0 t 1, u(0) = 0, u(1)...In this paper, we study the multiplicity of positive solutions to the following m-point boundary value problem of nonlinear fractional differential equations: Dqu(t) + f(t, u(t)) = 0, 0 t 1, u(0) = 0, u(1) =sum (μiDpu(t)|t = ξi ) from i =1 to ∞ m-2, where q ∈R , 1 q ≤2 , 0 ξ1 ξ2 ··· ξm-2 ≤ 1/2 , μi ∈[0 , +∞) and p = q-1/2 , Γ(q) sum (μiξi(q-1)/2 Γ(( q+1)/2) from i =1 to ∞ m-2,Dq is the standard Riemann-Liouville differentiation, and f ∈C ([0 , 1]×[0 , +∞) , [0 , +∞)). By using the Leggett-Williams fixed point theorem on a convex cone, some multiplicity results of positive solutions are obtained.展开更多
In this paper,we are concerned with the existence of positive solutions to an m-point boundary value problem with p-Laplacian of nonlinear fractional differential equation.By means of Krasnosel’skii fixed-point theor...In this paper,we are concerned with the existence of positive solutions to an m-point boundary value problem with p-Laplacian of nonlinear fractional differential equation.By means of Krasnosel’skii fixed-point theorem on a convex cone and Leggett-Williams fixed-point theorem,the existence results of solutions are obtained.展开更多
In this article, we establish the existence of at least two positive solutions for the semi-positone m-point boundary value problem with a parameter u (t) + λf (t, u) = 0, t ∈ (0, 1), u (0) = sum (biu (ξ...In this article, we establish the existence of at least two positive solutions for the semi-positone m-point boundary value problem with a parameter u (t) + λf (t, u) = 0, t ∈ (0, 1), u (0) = sum (biu (ξ i )) from i=1 to m-2, u(1)= sum (aiu(ξ i )) from i=1 to m-2, where λ 〉 0 is a parameter, 0 〈 ξ 1 〈 ξ 2 〈 ··· 〈 ξ m 2 〈 1 with 0 〈sum ai from i=1 to m-2 〈 1, sum bi from i=1 to m-2 =1 b i 〈 1, a i , b i ∈ [0, ∞) and f (t, u) ≥ M with M is a positive constant. The method employed is the Leggett-Williams fixed-point theorem. As an application, an example is given to demonstrate the main result.展开更多
基金the Natural Science Foundation of Hebei Province of China(No.A2006000298)the Doctoral Foundation of Hebei Province of China(No.B2004204)
文摘The existence of solutions at resonance is obtained by using the an example to demonstrate our result. noncontinuous. for the 2n-order m-point boundary value problem coincidence degree theory of Mawhin. We give The interest is that the nonlinear term may be
基金The NSF (Kj2007b055) of Anhui Educational Departmentthe Youth Project Foundation (2007jqL101,2007jqL102) of Anhui Educational Department.
文摘By using Mawhin's continuation theorem, the existence of a solution for a class of m-point boundary value problem at resonance with one-dimensional p-Laplacian is obtained. An example is given to demonstrate the main result of this paper.
基金Project supported by the National Natural Science Foundation of China (No.10371006)
文摘Using the theory of coincidence degree, a class of higher order multi-point boundary value problem for ordinary differential equations are studied. Under the boundary conditions satisfying the resonance case, some new existence results are obtained by supposing some conditions to the nonlinear term and applying a priori estimates.
文摘A kind of third order multi-point boundary value problems, x'''( ι) = f( t, x ( t ), x" ( t ), x''' ( t ) ) + m 2 e(t),t∈(0, 1),x(0)=ax(ξ),x'(0)-0,x(l)= ^m2∑j=1 βjx(ηj), fεC[0, 1]×R^3, e(t)∈L^1[0, 1],a≥0, is considered, all theβj's have not the same sign, 0〈ξ〈 l, 0〈η1〈 η2〈… 〈ηm.2〈 1. By using the coincidence degree theory, some existence theorems for the problems at resonance are obtained.
基金Supported by the NSF of Jiangsu Province(BK2008119)the NSF of the Education Department of Jiangsu Province (08KJB110011)+1 种基金Innovation Project of Jiangsu Province Postgraduate Training Project(CX07S 015z)the Qinglan Program of Jiangsu Province (QL200613)
文摘This article deals with the following second-order multi-point boundary value problem x″(t)=r(t,x(t),x′(t))+e(t),t∈(0,1)x′(0)=m∑i=1aix′(ξi),x(1)=n∑j=1βjx(ηj), Under the resonance conditions m∑i=1ai=1,n∑j=1βj=1,n∑j=1βjηj=1 , by applying the coincidence degree theory, some existence results of the problem are established. The emphasis here is that the dimension of the linear operator is two. In this paper, we extend and improve some previously known results like the ones in the references.
基金National Natural Science Foundation of China(No.11271248)
文摘A class of the boundary value problem for fractional order nonlinear differential equation with Riemann-Liouville fractional derivative on the half line was studied. By using the coincidence degree theory due to Mawhin and constructing the suitable operators,the existence theorem of at least one solution has been established. An example is given to illustrate our result.
文摘A class of second order multi-point boundary value problem at resonance is considered. Under some appropriate conditions, the existence of solutions to the nonlinear problem is obtained by use of the coincidence degree theory of Mawhin.
文摘Using a fixed point theorem in cones, the paper consider the existence of positive solutions for a class of second-order m-point boundary value problem. Sufficient conditions to ensure the existence of double positive solutions are obtained. The associated Green function of this problem is also given.
文摘The existence of solutions for second order three-point boundary value problems with nonlinear growth at resonance is studied by using Mawhin continuation theorem. The result shows that theorem 1 and 2 at least have one solution in c1[0,1]
基金Sponsored by the National Natural Science Foundation of China (No.10971238)
文摘In his paper,we obtain a general theorem concerning the existence of solutions to an m-point boundary value problem for the second-order differential equation with impulses.Moreover,the result can also be applied to study the usual m-point boundary value problem at resonance without impulses.
基金sponsored by the National Natural Science Foundation of China (10671023)the Scientific Creative Platform Foundation of Beijing Municipal Commission of Education (PXM2008-014224-067420)the Science Foundation of Ministry of Education of Beijing (KM200810772010)
文摘In this paper,we study an m-point boundary value problem of third order ODEs at resonance. We prove some existence results for the m-point boundary value problem at resonance by the coincidence degree theory of [8,9]. Our result is new. Meanwhile,an example is presented to demonstrate the main result.
文摘This paper is concerned with the existence of solutions for the following multipoint boundary value problem at resonance{(Φp (x'))' + f(t,x)=0,0 < t < 1,x' (0)=x'(ξ) x(1)=m-3 ∑i=1 βi x(η i),where βi∈ R,m-3 ∑i=1 β i=1,0 < η 1 < η 2 < ··· < ηm-3 < 1,m-3 ∑i=1 βiηi=1,0 < ξ < 1.An existence theorem is obtained by using the extension of Mawhin's continuation theorem.Since almost all the multi-point boundary value problem at resonance in previous papers are for the linear operator without p-Laplacian by the use of Mawhin's continuation theorem,our method is new.
基金supported by the NSF of Shandong (ZR2010AM035, ZR2009GZ001)the NNSF of China (60874032, 11026176)
文摘In this paper, we are concerned with the existence of solution to a boundary value problem of nonlinear fractional differential equation at resonance. By means of the coincidence degree theory, the existence of solution is obtained.
文摘In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 that is similar to (LL) in Theorem 1.1, by index theory and Morse theory, we obtain more nontrivial solutions.
文摘By topological degree theory,the three-point boundary value problem for p-Laplacian differential equation at resonance is studied. Some new results on the existence of solutions are obtained,which improve and extend some known ones in the previous literatures.
基金Supported by the Fundamental Research Funds for the Central Universities
文摘The paper deals a fractional functional boundary value problems with integral boundary conditions. Besed on the coincidence degree theory, some existence criteria of solutions at resonance are established.
基金supported by Hunan Provincial Natural Science Foundation of China(11JJ3009)supported by the Scientific Research Foundation of Hunan Provincial Education Department(11C1187)the Construct Program of the Key Discipline in Hunan Province
文摘In this paper, we study the multiplicity of positive solutions to the following m-point boundary value problem of nonlinear fractional differential equations: Dqu(t) + f(t, u(t)) = 0, 0 t 1, u(0) = 0, u(1) =sum (μiDpu(t)|t = ξi ) from i =1 to ∞ m-2, where q ∈R , 1 q ≤2 , 0 ξ1 ξ2 ··· ξm-2 ≤ 1/2 , μi ∈[0 , +∞) and p = q-1/2 , Γ(q) sum (μiξi(q-1)/2 Γ(( q+1)/2) from i =1 to ∞ m-2,Dq is the standard Riemann-Liouville differentiation, and f ∈C ([0 , 1]×[0 , +∞) , [0 , +∞)). By using the Leggett-Williams fixed point theorem on a convex cone, some multiplicity results of positive solutions are obtained.
基金supported by the National Natural Science Foundation of China (10971173)the Natural Science Foundation of Hunan Province (10JJ3096)
文摘In this paper,we are concerned with the existence of positive solutions to an m-point boundary value problem with p-Laplacian of nonlinear fractional differential equation.By means of Krasnosel’skii fixed-point theorem on a convex cone and Leggett-Williams fixed-point theorem,the existence results of solutions are obtained.
基金Supported by Fund of National Natural Science of China (No. 10371068)Science Foundation of Business College of Shanxi University (No. 2008053)
文摘In this article, we establish the existence of at least two positive solutions for the semi-positone m-point boundary value problem with a parameter u (t) + λf (t, u) = 0, t ∈ (0, 1), u (0) = sum (biu (ξ i )) from i=1 to m-2, u(1)= sum (aiu(ξ i )) from i=1 to m-2, where λ 〉 0 is a parameter, 0 〈 ξ 1 〈 ξ 2 〈 ··· 〈 ξ m 2 〈 1 with 0 〈sum ai from i=1 to m-2 〈 1, sum bi from i=1 to m-2 =1 b i 〈 1, a i , b i ∈ [0, ∞) and f (t, u) ≥ M with M is a positive constant. The method employed is the Leggett-Williams fixed-point theorem. As an application, an example is given to demonstrate the main result.