期刊文献+
共找到959篇文章
< 1 2 48 >
每页显示 20 50 100
Modeling and Design of Real-Time Pricing Systems Based on Markov Decision Processes 被引量:4
1
作者 Koichi Kobayashi Ichiro Maruta +1 位作者 Kazunori Sakurama Shun-ichi Azuma 《Applied Mathematics》 2014年第10期1485-1495,共11页
A real-time pricing system of electricity is a system that charges different electricity prices for different hours of the day and for different days, and is effective for reducing the peak and flattening the load cur... A real-time pricing system of electricity is a system that charges different electricity prices for different hours of the day and for different days, and is effective for reducing the peak and flattening the load curve. In this paper, using a Markov decision process (MDP), we propose a modeling method and an optimal control method for real-time pricing systems. First, the outline of real-time pricing systems is explained. Next, a model of a set of customers is derived as a multi-agent MDP. Furthermore, the optimal control problem is formulated, and is reduced to a quadratic programming problem. Finally, a numerical simulation is presented. 展开更多
关键词 markov decision process OPTIMAL Control REAL-TIME PRICING System
在线阅读 下载PDF
Robust analysis of discounted Markov decision processes with uncertain transition probabilities 被引量:3
2
作者 LOU Zhen-kai HOU Fu-jun LOU Xu-ming 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2020年第4期417-436,共20页
Optimal policies in Markov decision problems may be quite sensitive with regard to transition probabilities.In practice,some transition probabilities may be uncertain.The goals of the present study are to find the rob... Optimal policies in Markov decision problems may be quite sensitive with regard to transition probabilities.In practice,some transition probabilities may be uncertain.The goals of the present study are to find the robust range for a certain optimal policy and to obtain value intervals of exact transition probabilities.Our research yields powerful contributions for Markov decision processes(MDPs)with uncertain transition probabilities.We first propose a method for estimating unknown transition probabilities based on maximum likelihood.Since the estimation may be far from accurate,and the highest expected total reward of the MDP may be sensitive to these transition probabilities,we analyze the robustness of an optimal policy and propose an approach for robust analysis.After giving the definition of a robust optimal policy with uncertain transition probabilities represented as sets of numbers,we formulate a model to obtain the optimal policy.Finally,we define the value intervals of the exact transition probabilities and construct models to determine the lower and upper bounds.Numerical examples are given to show the practicability of our methods. 展开更多
关键词 markov decision processes uncertain transition probabilities robustness and sensitivity robust optimal policy value interval
在线阅读 下载PDF
Variance minimization for continuous-time Markov decision processes: two approaches 被引量:1
3
作者 ZHU Quan-xin 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第4期400-410,共11页
This paper studies the limit average variance criterion for continuous-time Markov decision processes in Polish spaces. Based on two approaches, this paper proves not only the existence of solutions to the variance mi... This paper studies the limit average variance criterion for continuous-time Markov decision processes in Polish spaces. Based on two approaches, this paper proves not only the existence of solutions to the variance minimization optimality equation and the existence of a variance minimal policy that is canonical, but also the existence of solutions to the two variance minimization optimality inequalities and the existence of a variance minimal policy which may not be canonical. An example is given to illustrate all of our conditions. 展开更多
关键词 Continuous-time markov decision process Polish space variance minimization optimality equation optimality inequality.
在线阅读 下载PDF
Variance Optimization for Continuous-Time Markov Decision Processes
4
作者 Yaqing Fu 《Open Journal of Statistics》 2019年第2期181-195,共15页
This paper considers the variance optimization problem of average reward in continuous-time Markov decision process (MDP). It is assumed that the state space is countable and the action space is Borel measurable space... This paper considers the variance optimization problem of average reward in continuous-time Markov decision process (MDP). It is assumed that the state space is countable and the action space is Borel measurable space. The main purpose of this paper is to find the policy with the minimal variance in the deterministic stationary policy space. Unlike the traditional Markov decision process, the cost function in the variance criterion will be affected by future actions. To this end, we convert the variance minimization problem into a standard (MDP) by introducing a concept called pseudo-variance. Further, by giving the policy iterative algorithm of pseudo-variance optimization problem, the optimal policy of the original variance optimization problem is derived, and a sufficient condition for the variance optimal policy is given. Finally, we use an example to illustrate the conclusion of this paper. 展开更多
关键词 CONTINUOUS-TIME markov decision process Variance OPTIMALITY of Average REWARD Optimal POLICY of Variance POLICY ITERATION
在线阅读 下载PDF
Adaptive Strategies for Accelerating the Convergence of Average Cost Markov Decision Processes Using a Moving Average Digital Filter
5
作者 Edilson F. Arruda Fabrício Ourique 《American Journal of Operations Research》 2013年第6期514-520,共7页
This paper proposes a technique to accelerate the convergence of the value iteration algorithm applied to discrete average cost Markov decision processes. An adaptive partial information value iteration algorithm is p... This paper proposes a technique to accelerate the convergence of the value iteration algorithm applied to discrete average cost Markov decision processes. An adaptive partial information value iteration algorithm is proposed that updates an increasingly accurate approximate version of the original problem with a view to saving computations at the early iterations, when one is typically far from the optimal solution. The proposed algorithm is compared to classical value iteration for a broad set of adaptive parameters and the results suggest that significant computational savings can be obtained, while also ensuring a robust performance with respect to the parameters. 展开更多
关键词 AVERAGE Cost markov decision processes Value ITERATION Computational EFFORT GRADIENT
在线阅读 下载PDF
Conditional Value-at-Risk for Random Immediate Reward Variables in Markov Decision Processes
6
作者 Masayuki Kageyama Takayuki Fujii +1 位作者 Koji Kanefuji Hiroe Tsubaki 《American Journal of Computational Mathematics》 2011年第3期183-188,共6页
We consider risk minimization problems for Markov decision processes. From a standpoint of making the risk of random reward variable at each time as small as possible, a risk measure is introduced using conditional va... We consider risk minimization problems for Markov decision processes. From a standpoint of making the risk of random reward variable at each time as small as possible, a risk measure is introduced using conditional value-at-risk for random immediate reward variables in Markov decision processes, under whose risk measure criteria the risk-optimal policies are characterized by the optimality equations for the discounted or average case. As an application, the inventory models are considered. 展开更多
关键词 markov decision processes CONDITIONAL VALUE-AT-RISK Risk Optimal Policy INVENTORY Model
在线阅读 下载PDF
Seeking for Passenger under Dynamic Prices: A Markov Decision Process Approach
7
作者 Qianrong Shen 《Journal of Computer and Communications》 2021年第12期80-97,共18页
In recent years, ride-on-demand (RoD) services such as Uber and Didi are becoming increasingly popular. Different from traditional taxi services, RoD services adopt dynamic pricing mechanisms to manipulate the supply ... In recent years, ride-on-demand (RoD) services such as Uber and Didi are becoming increasingly popular. Different from traditional taxi services, RoD services adopt dynamic pricing mechanisms to manipulate the supply and demand on the road, and such mechanisms improve service capacity and quality. Seeking route recommendation has been widely studied in taxi service. In RoD services, the dynamic price is a new and accurate indicator that represents the supply and demand condition, but it is yet rarely studied in providing clues for drivers to seek for passengers. In this paper, we proposed to incorporate the impacts of dynamic prices as a key factor in recommending seeking routes to drivers. We first showed the importance and need to do that by analyzing real service data. We then designed a Markov Decision Process (MDP) model based on passenger order and car GPS trajectories datasets, and took into account dynamic prices in designing rewards. Results show that our model not only guides drivers to locations with higher prices, but also significantly improves driver revenue. Compared with things with the drivers before using the model, the maximum yield after using it can be increased to 28%. 展开更多
关键词 Ride-on-Demand Service markov decision process Dynamic Pricing Taxi Services Route Recommendation
在线阅读 下载PDF
Heterogeneous Network Selection Optimization Algorithm Based on a Markov Decision Model 被引量:9
8
作者 Jianli Xie Wenjuan Gao Cuiran Li 《China Communications》 SCIE CSCD 2020年第2期40-53,共14页
A network selection optimization algorithm based on the Markov decision process(MDP)is proposed so that mobile terminals can always connect to the best wireless network in a heterogeneous network environment.Consideri... A network selection optimization algorithm based on the Markov decision process(MDP)is proposed so that mobile terminals can always connect to the best wireless network in a heterogeneous network environment.Considering the different types of service requirements,the MDP model and its reward function are constructed based on the quality of service(QoS)attribute parameters of the mobile users,and the network attribute weights are calculated by using the analytic hierarchy process(AHP).The network handoff decision condition is designed according to the different types of user services and the time-varying characteristics of the network,and the MDP model is solved by using the genetic algorithm and simulated annealing(GA-SA),thus,users can seamlessly switch to the network with the best long-term expected reward value.Simulation results show that the proposed algorithm has good convergence performance,and can guarantee that users with different service types will obtain satisfactory expected total reward values and have low numbers of network handoffs. 展开更多
关键词 heterogeneous wireless networks markov decision process reward function genetic algorithm simulated annealing
在线阅读 下载PDF
An Optimized Vertical Handoff Algorithm Based on Markov Process in Vehicle Heterogeneous Network 被引量:4
9
作者 MA Bin DENG Hong +1 位作者 XIE Xianzhong LIAO Xiaofeng 《China Communications》 SCIE CSCD 2015年第4期106-116,共11页
In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm bas... In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm based on markov process is proposed and discussed in this paper. This algorithm takes into account that the status transformation of available network will affect the quality of service(Qo S) of vehicle terminal's communication service. Firstly, Markov process is used to predict the transformation of wireless network's status after the decision via transition probability. Then the weights of evaluating parameters will be determined by fuzzy logic method. Finally, by comparing the total incomes of each wireless network, including handoff decision incomes, handoff execution incomes and communication service incomes after handoff, the optimal network to handoff will be selected. Simulation results show that: the algorithm proposed, compared to the existing algorithm, is able to receive a higher level of load balancing and effectively improves the average blocking rate, packet loss rate and ping-pang effect. 展开更多
关键词 vehicle heterogeneous network vertical handoff markov process fuzzy logic multi-attribute decision
在线阅读 下载PDF
基于MDP的无人机避撞航迹规划研究 被引量:1
10
作者 阚煌 辛长范 +3 位作者 谭哲卿 高鑫 史铭姗 张谦 《计算机测量与控制》 2024年第6期292-298,共7页
无人机(UAV)进行避撞前提下的目标搜索航迹规划是指在复杂且众多的环境障碍约束中通过合理规划飞行路径,以更快、更高效的形式找到目标;研究了无障碍环境条件下有限位置马尔科夫移动的规律,构建了相应的马尔科夫移动分布模型;在借鉴搜... 无人机(UAV)进行避撞前提下的目标搜索航迹规划是指在复杂且众多的环境障碍约束中通过合理规划飞行路径,以更快、更高效的形式找到目标;研究了无障碍环境条件下有限位置马尔科夫移动的规律,构建了相应的马尔科夫移动分布模型;在借鉴搜索系统航迹规划的前沿研究成果之上,结合马尔科夫决策过程理论(MDP),引入了负奖励机制对Q-Learning策略算法迭代;类比“风险井”的可视化方式将障碍威胁区域对无人机的负奖励作用直观地呈现出来,构建了复杂障碍约束环境下单无人机目标搜索航迹规划模型,并进行仿真实验证明该算法可行,对航迹规划算法的设计具有一定的参考意义。 展开更多
关键词 无人机 航迹规划 避撞 静态目标搜索 马尔科夫决策过程(mdp) 风险井
在线阅读 下载PDF
动态电磁环境下多功能雷达一体化发射资源管理方案
11
作者 张鹏 严俊坤 +2 位作者 高畅 李康 刘宏伟 《雷达学报(中英文)》 北大核心 2025年第2期456-469,共14页
传统多功能雷达仅面向目标特性优化发射资源,在动态电磁环境下面临干扰智能时变、优化模型失配的问题。因此,该文提出一种基于数据驱动的一体化发射资源管理方案,旨在通过对动态干扰信息在线感知与利用提升多功能雷达在动态电磁环境下... 传统多功能雷达仅面向目标特性优化发射资源,在动态电磁环境下面临干扰智能时变、优化模型失配的问题。因此,该文提出一种基于数据驱动的一体化发射资源管理方案,旨在通过对动态干扰信息在线感知与利用提升多功能雷达在动态电磁环境下的多目标跟踪(MTT)性能。该方案首先建立马尔可夫决策过程,数学化描述雷达被敌方截获和干扰的风险。而后将该马尔可夫决策过程感知的干扰信息耦合进MTT精度计算,一体化发射资源管理方法被设计为具有约束动作空间的优化问题。最后提出一种贪婪排序回溯算法对其进行求解。仿真结果表明,所提方法在面向动态干扰环境时不仅可以降低敌方截获概率,还能在被干扰时降低干扰对雷达的影响,改善MTT性能。 展开更多
关键词 一体化发射资源管理 多目标跟踪 动态电磁环境 马尔可夫决策过程 优化问题
在线阅读 下载PDF
考虑峰值功率受限约束的柔性作业车间调度研究
12
作者 李益兵 曹岩 +3 位作者 郭钧 王磊 李西兴 孙利波 《中国机械工程》 北大核心 2025年第2期280-293,共14页
针对车间峰值功率受限约束下的柔性作业车间调度面临的作业周期增加、机器负荷增大的问题,建立以最小化最大完工时间和最小化机器最大负载为优化目标、考虑车间峰值功率约束的柔性作业车间调度问题(PPCFJSP)模型。为更好地调度决策,首... 针对车间峰值功率受限约束下的柔性作业车间调度面临的作业周期增加、机器负荷增大的问题,建立以最小化最大完工时间和最小化机器最大负载为优化目标、考虑车间峰值功率约束的柔性作业车间调度问题(PPCFJSP)模型。为更好地调度决策,首先将该问题转化为马尔可夫决策过程,基于此设计了一个结合离线训练与在线调度的用于求解PPCFJSP的调度框架。然后设计了一种基于优先级经验重放的双重决斗深度Q网络(D3QNPER)算法,并设计了一种引入噪声的ε-贪婪递减策略,提高了算法收敛速度,进一步提高了求解能力和求解结果的稳定性。最后开展实验与算法对比研究,验证了模型和算法的有效性。 展开更多
关键词 柔性作业车间调度 马尔可夫决策过程 深度强化学习 峰值功率受限
在线阅读 下载PDF
基于马尔可夫判定过程的光纤网络入侵检测方法
13
作者 郭海智 贾志诚 李金库 《激光杂志》 北大核心 2025年第3期193-198,共6页
为了可以精准实现光纤网络入侵检测,提出基于马尔可夫判定过程的光纤网络入侵检测方法。通过频域分块技术对光纤网络信号展开信号提纯,利用经验模态分解方法对入侵信号进行初始检测,采用模糊层次分析法确定网络接入行为信用度,对于信用... 为了可以精准实现光纤网络入侵检测,提出基于马尔可夫判定过程的光纤网络入侵检测方法。通过频域分块技术对光纤网络信号展开信号提纯,利用经验模态分解方法对入侵信号进行初始检测,采用模糊层次分析法确定网络接入行为信用度,对于信用度较高的接入行为直接通过,剩余接入行为则利用马尔可夫判定过程展开判定,由此实现入侵检测。实验结果表明,该方法能够快速、准确检测入侵信号,特别是针对Pording数据集所遭受侵入式窃听行为,检出率高达0.985。在整个实验中,该方法检出率的最小值也可以达到0.920,平均检测误判率、平均检测漏判率的最大值分别为0.01、0.02。这说明该方法显著提升光纤网络的安全性和稳定性,为保障网络安全提供有力的支持。 展开更多
关键词 马尔可夫判定过程 光纤网络 经验模态分解 模糊层次分析法 入侵检测
在线阅读 下载PDF
基于MDP框架的飞行器隐蔽接敌策略 被引量:11
14
作者 徐安 于雷 +2 位作者 寇英信 徐保伟 李战武 《系统工程与电子技术》 EI CSCD 北大核心 2011年第5期1063-1068,共6页
基于近似动态规划(approximate dynamic programming,ADP)对空战飞行器隐蔽接敌决策问题进行研究。基于作战飞行器的战术使用原则,提出了隐蔽接敌过程中的优势区域与暴露区域;构建了基于马尔科夫决策过程(Markov decision process,MDP)... 基于近似动态规划(approximate dynamic programming,ADP)对空战飞行器隐蔽接敌决策问题进行研究。基于作战飞行器的战术使用原则,提出了隐蔽接敌过程中的优势区域与暴露区域;构建了基于马尔科夫决策过程(Markov decision process,MDP)的隐蔽接敌策略的强化学习方法;通过态势得分函数对非连续的即时收益函数进行修正,给出了基于ADP方法的策略学习与策略提取方法。分别针对对手在有无信息源支持情况下的不同机动对策进行了仿真验证。仿真结果表明,将ADP方法应用于隐蔽接敌策略的学习是可行的,在不同态势下可获得较为有效的接敌策略。 展开更多
关键词 隐蔽接敌 马尔科夫决策过程 近似动态规划 空战决策 近似值函数
在线阅读 下载PDF
基于HMDP的无人机三维路径规划 被引量:8
15
作者 洪晔 房建成 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2009年第1期100-103,共4页
路径规划是UAV(Unmanned Aerial Vehicle)自主飞行的重要保障.初步建立了基于MDP(Markov Decision Processes)的全局路径规划模型,把UAV的路径规划看作是给定环境模型和奖惩原则的情况下,寻求最优策略的问题;为解决算法时空开销大、UAV... 路径规划是UAV(Unmanned Aerial Vehicle)自主飞行的重要保障.初步建立了基于MDP(Markov Decision Processes)的全局路径规划模型,把UAV的路径规划看作是给定环境模型和奖惩原则的情况下,寻求最优策略的问题;为解决算法时空开销大、UAV航向改变频繁的缺点,提出一种基于状态聚类方法的HMDP(Hierarchical Markov Decision Processes)模型,并将其拓展到三维规划中.仿真实验证明:这种简单的规划模型可以有效解决UAV的三维全局路径规划问题,为其在实际飞行中的局部规划奠定了基础. 展开更多
关键词 无人机(UAV) 路径规划 马尔可夫决策过程(mdp) 分层马尔可夫决策过程(Hmdp) 仿真
在线阅读 下载PDF
基于POMDP的不稳定心绞痛中西医结合治疗方案优化研究 被引量:14
16
作者 冯妍 徐浩 +2 位作者 刘凯 周雪忠 陈可冀 《中国中西医结合杂志》 CAS CSCD 北大核心 2013年第7期878-882,共5页
目的初步优化中西医结合防治不稳定心绞痛(unstable angina,UA)的综合治疗方案。方法基于部分可观察的马尔科夫决策过程模型(Partially Observable Markov Decision Process,POMDP)的方法,选择气虚、血瘀、痰浊3个主要证侯要素,对UA住... 目的初步优化中西医结合防治不稳定心绞痛(unstable angina,UA)的综合治疗方案。方法基于部分可观察的马尔科夫决策过程模型(Partially Observable Markov Decision Process,POMDP)的方法,选择气虚、血瘀、痰浊3个主要证侯要素,对UA住院患者的诊治情况进行深层次数据挖掘、分析,客观评价UA中西医结合的疗效。结果 UA气虚证、血瘀证、痰浊证患者的推荐治疗方案依次为:硝酸酯类+他汀类+氯吡格雷+血管紧张素Ⅱ受体阻滞剂+肝素类+黄芪+党参+茯苓+白术(ADR=0.85077869);硝酸酯类+阿司匹林+氯吡格雷+他汀类+肝素类+当归+红花+桃仁+赤芍(ADR=0.70773000);硝酸酯类+阿司匹林+他汀类+血管紧张素转换酶抑制剂+栝蒌+薤白+半夏+陈皮(ADR=0.72509600)。结论本研究基于POMDP优化了UA的治疗方案,可作为进一步规范和制定中西医结合治疗UA方案的参考。 展开更多
关键词 部分可观察马尔科夫决策过程 不稳定心绞痛 治疗方案优化
在线阅读 下载PDF
基于MDP随机路径模拟的电动汽车充电负荷时空分布预测 被引量:56
17
作者 张谦 王众 +2 位作者 谭维玉 刘桦臻 李晨 《电力系统自动化》 EI CSCD 北大核心 2018年第20期59-66,共8页
针对电动汽车时空转移随机性的问题,计及实时交通与温度,提出了一种基于马尔可夫决策过程随机路径模拟的城市电动汽车充电负荷时空分布预测方法。首先,根据各类车型充电方式与出行特点对各类电动汽车进行分类;其次,根据蒙特卡洛方法建... 针对电动汽车时空转移随机性的问题,计及实时交通与温度,提出了一种基于马尔可夫决策过程随机路径模拟的城市电动汽车充电负荷时空分布预测方法。首先,根据各类车型充电方式与出行特点对各类电动汽车进行分类;其次,根据蒙特卡洛方法建立各类电动汽车的时空转移模型,采用马尔可夫决策理论对出行路径进行实时动态随机模拟;根据电动汽车实测数据建立温度、交通能耗模型,计算得到实时单位里程耗电量。最后,以某典型城区为例,对不同温度、不同交通状况下电动汽车区域充电负荷进行计算。仿真结果表明,区域内快充负荷较大的节点充电波动性较大,环境温度升高或交通拥堵状况恶化会导致充电负荷高峰的持续时间增高。 展开更多
关键词 电动汽车 时空分布 马尔可夫决策过程 随机路径模拟 充电负荷
在线阅读 下载PDF
云网融合环境下服务组合的未来属性验证
18
作者 王湛 张鹏程 +1 位作者 金惠颖 吉顺慧 《计算机工程》 北大核心 2025年第3期310-319,共10页
随着云网融合技术以及空天地一体化网络的快速发展,越来越多的服务开始在云网融合环境下运行。在云网融合环境下,用户呈现移动性特征,导致服务组合过程变得愈发复杂,服务组合验证变得尤为关键。同时,在云网融合环境下用户要求服务组合... 随着云网融合技术以及空天地一体化网络的快速发展,越来越多的服务开始在云网融合环境下运行。在云网融合环境下,用户呈现移动性特征,导致服务组合过程变得愈发复杂,服务组合验证变得尤为关键。同时,在云网融合环境下用户要求服务组合不仅在当前时间段内稳定运行,还需要在未来时间段内持续满足用户需求。为了解决以上问题,提出一种云网融合环境下的服务组合未来属性验证方法。首先,对云网融合中的服务组合过程进行形式化建模,同时考虑用户移动导致的云网环境下服务场景的转换关系;然后,为了准确描述用户需求,对云网融合场景下的用户需求进行形式化描述;最后,为了解决云网融合环境下用户对服务组合未来时间段内的验证需求,对服务组合未来时间段的服务属性进行预测,利用PRISM模型检验工具来进行云网融合环境下的服务组合验证,以确保在未来时间段内仍然满足性能和可用性要求。实验结果表明,在云网融合环境下,当服务数量达到1000时验证模型构建时间以及模型检测时间分别为3.372 s和0.075 s,通过云网融合环境下的服务组合案例说明了所提方法的有效性与可行性。 展开更多
关键词 云网融合 服务组合 马尔可夫决策过程 服务质量 形式化验证
在线阅读 下载PDF
基于POMDP的信道感知接入算法 被引量:2
19
作者 郭文慧 王亚林 韩迎鸽 《计算机工程与应用》 CSCD 2014年第5期203-207,共5页
在认知无线电中,为了最大化次用户的吞吐量,同时对主用户的干扰低于预定值,提出一种基于POMDP的信道感知接入算法。次用户将主用户信道在时间轴上细分成等间隔的时隙,在每个时隙开始时,次用户从频谱感知、以较高的功率接入信道和以较低... 在认知无线电中,为了最大化次用户的吞吐量,同时对主用户的干扰低于预定值,提出一种基于POMDP的信道感知接入算法。次用户将主用户信道在时间轴上细分成等间隔的时隙,在每个时隙开始时,次用户从频谱感知、以较高的功率接入信道和以较低的功率接入信道三种可选策略中选择最优的策略。将次用户的选择过程建模成一个POMDP问题,并采用一些相应的最优策略求解。计算机仿真结果验证了算法的有效性。 展开更多
关键词 认知无线电 频谱感知 吞吐量 半马尔科夫链 PARTIALLY OBSERVABLE markov decision process(POmdp)
在线阅读 下载PDF
基于Markov决策过程用交叉熵方法优化软件测试 被引量:11
20
作者 张德平 聂长海 徐宝文 《软件学报》 EI CSCD 北大核心 2008年第10期2770-2779,共10页
研究了待测软件某些参数已知的条件下,以最小化平均测试费用为目标的软件测试优化问题.将软件测试过程处理成马尔可夫(Markov)决策过程,给出了软件测试的马尔可夫决策模型,运用交叉熵方法,通过一种学习策略获得软件测试的最优测试剖面,... 研究了待测软件某些参数已知的条件下,以最小化平均测试费用为目标的软件测试优化问题.将软件测试过程处理成马尔可夫(Markov)决策过程,给出了软件测试的马尔可夫决策模型,运用交叉熵方法,通过一种学习策略获得软件测试的最优测试剖面,用于优化软件测试.模拟结果表明,学习策略给出的测试剖面要优于随机测试策略,检测和排除相同数目的软件缺陷,学习策略比随机测试能够显著地减少测试用例数,降低测试成本,提高缺陷检测效率. 展开更多
关键词 软件测试 马尔可夫决策过程 交叉熵方法 最优测试剖面
在线阅读 下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部