A zero-speed fin stabilizer system was developed for rolling control of a marine robot.As a robot steering device near the sea surface with low speed,it will have rolling motion due to disturbance from waves.Based on ...A zero-speed fin stabilizer system was developed for rolling control of a marine robot.As a robot steering device near the sea surface with low speed,it will have rolling motion due to disturbance from waves.Based on the working principle of a zero-speed fin stabilizer and a marine robot’s dynamic properties,a roll damping controller was designed with a master-slave structure.It was composed of a sliding mode controller and an output tracking controller that calculates the desired righting moment and drives the zero-speed fin stabilizer.The methods of input-output linearization and model reference were used to realize the tracking control.Simulations were presented to demonstrate the validity of the control law proposed.展开更多
The safe storage and sharing of medical data have promoted the development of the public medical field.At the same time,blockchain technology guarantees the safe storage and sharing of medical data.However,the consens...The safe storage and sharing of medical data have promoted the development of the public medical field.At the same time,blockchain technology guarantees the safe storage and sharing of medical data.However,the consensus algorithm in the current medical blockchain cannot meet the requirements of low delay and high throughput in the large-scale network,and the identity of the primary node is exposed and vulnerable to attack.Therefore,this paper proposes an efficient consensus algorithm for medical data storage and sharing based on a master–slave multi-chain of alliance chain(ECA_MDSS).Firstly,institutional nodes in the healthcare alliance chain are clustered according to geographical location and medical system structure to form a multi-zones network.The system adopts master–slave multi-chain architecture to ensure security,and each zone processes transactions in parallel to improve consensus efficiency.Secondly,the aggregation signature is used to improve the practical Byzantine fault-tolerant(PBFT)consensus to reduce the communication interaction of consensus in each zone.Finally,an efficient ring signature is used to ensure the anonymity and privacy of the primary node in each zone and to prevent adaptive attacks.Meanwhile,a trust model is introduced to evaluate the trust degree of the node to reduce the evil done by malicious nodes.The experimental results show that ECA_MDSS can effectively reduce communication overhead and consensus delay,improve transaction throughput,and enhance system scalability.展开更多
基金Supported by the National Natural Science Foundation under Grant No50879012
文摘A zero-speed fin stabilizer system was developed for rolling control of a marine robot.As a robot steering device near the sea surface with low speed,it will have rolling motion due to disturbance from waves.Based on the working principle of a zero-speed fin stabilizer and a marine robot’s dynamic properties,a roll damping controller was designed with a master-slave structure.It was composed of a sliding mode controller and an output tracking controller that calculates the desired righting moment and drives the zero-speed fin stabilizer.The methods of input-output linearization and model reference were used to realize the tracking control.Simulations were presented to demonstrate the validity of the control law proposed.
基金supported in part by the National Natural Science Foundation of China(61871466).
文摘The safe storage and sharing of medical data have promoted the development of the public medical field.At the same time,blockchain technology guarantees the safe storage and sharing of medical data.However,the consensus algorithm in the current medical blockchain cannot meet the requirements of low delay and high throughput in the large-scale network,and the identity of the primary node is exposed and vulnerable to attack.Therefore,this paper proposes an efficient consensus algorithm for medical data storage and sharing based on a master–slave multi-chain of alliance chain(ECA_MDSS).Firstly,institutional nodes in the healthcare alliance chain are clustered according to geographical location and medical system structure to form a multi-zones network.The system adopts master–slave multi-chain architecture to ensure security,and each zone processes transactions in parallel to improve consensus efficiency.Secondly,the aggregation signature is used to improve the practical Byzantine fault-tolerant(PBFT)consensus to reduce the communication interaction of consensus in each zone.Finally,an efficient ring signature is used to ensure the anonymity and privacy of the primary node in each zone and to prevent adaptive attacks.Meanwhile,a trust model is introduced to evaluate the trust degree of the node to reduce the evil done by malicious nodes.The experimental results show that ECA_MDSS can effectively reduce communication overhead and consensus delay,improve transaction throughput,and enhance system scalability.