期刊文献+
共找到102篇文章
< 1 2 6 >
每页显示 20 50 100
基于改进MMD-GAN的可再生能源随机场景生成 被引量:2
1
作者 吴艳梅 陈红坤 +3 位作者 陈磊 褚昱麟 高鹏 吴海涛 《电力系统保护与控制》 EI CSCD 北大核心 2024年第19期85-96,共12页
针对可再生能源出力不确定性的准确表征问题,提出了一种基于改进的最大均值差异生成对抗网络(maximum mean discrepancy generative adversarial networks,MMD-GAN)的可再生能源随机场景生成方法。首先,阐述了GAN及MMD-GAN的基本原理,... 针对可再生能源出力不确定性的准确表征问题,提出了一种基于改进的最大均值差异生成对抗网络(maximum mean discrepancy generative adversarial networks,MMD-GAN)的可再生能源随机场景生成方法。首先,阐述了GAN及MMD-GAN的基本原理,提出了MMD-GAN的改进方案,即在MMD-GAN的基础上改进鉴别器损失函数,并采用谱归一化和有界高斯核提升生成器和鉴别器的训练稳定性。然后,设计了基于改进MMD-GAN的可再生能源随机场景生成流程。最后,分析了所提方法在可再生能源随机场景生成中的效果,比较了改进MMD-GAN方法与MMD-GAN方法及典型GAN方法的性能差异。结果表明,改进MMD-GAN方法在生成分布和真实分布的Wasserstein距离上较对比方法降低超过50%,生成的场景精度得到有效提升。 展开更多
关键词 场景生成 最大均值差异 生成对抗网络 可再生能源 数据驱动
在线阅读 下载PDF
基于流形正则化框架和MMD的域自适应BLS模型 被引量:1
2
作者 赵慧敏 郑建杰 +1 位作者 郭晨 邓武 《自动化学报》 EI CAS CSCD 北大核心 2024年第7期1458-1471,共14页
宽度学习系统(Broad learning system,BLS)作为一种基于随机向量函数型网络(Random vector functionallink network,RVFLN)的高效增量学习系统,具有快速自适应模型结构选择能力和高精度的特点.但针对目标分类任务中有标签数据匮乏问题,... 宽度学习系统(Broad learning system,BLS)作为一种基于随机向量函数型网络(Random vector functionallink network,RVFLN)的高效增量学习系统,具有快速自适应模型结构选择能力和高精度的特点.但针对目标分类任务中有标签数据匮乏问题,传统的BLS难以借助相关领域知识来提升目标域的分类效果,为此提出一种基于流形正则化框架和最大均值差异(Maximum mean discrepancy,MMD)的域适应BLS(Domain adaptive BLS,DABLS)模型,实现目标域无标签条件下的跨域图像分类.DABLS模型首先构造BLS的特征节点和增强节点,从源域和目标域数据中有效提取特征;再利用流形正则化框架构造拉普拉斯矩阵,以探索目标域数据中的流形特性,挖掘目标域数据的潜在信息.然后基于迁移学习方法构建源域数据与目标域数据之间的MMD惩罚项,以匹配源域和目标域之间的投影均值;将特征节点、增强节点、MMD惩罚项和拉普拉斯矩阵相结合,构造目标函数,并采用岭回归分析法对其求解,获得输出系数,从而提高模型的跨域分类性能.最后在不同图像数据集上进行大量的验证与对比实验,结果表明DABLS在不同图像数据集上均能获得较好的跨域分类性能,具有较强的泛化能力和较好的稳定性. 展开更多
关键词 宽度学习系统 流形正则化框架 最大均值差异 域自适应 图像分类
在线阅读 下载PDF
Domain Generalization Prognosis Method for Lithium-Ion Battery State of Health with Transformer and Multi-Kernel MMD
3
作者 Yafei Zhu Tianyi Guo +2 位作者 Xiang Li Yewei Zhang Wei Zhang 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第4期311-323,共13页
In recent years,a number of intelligent algorithm have been proposed for forecasting the lithium-ion battery state of health(SOH).Due to the varying specifications and operating conditions of batteries,it is difficult... In recent years,a number of intelligent algorithm have been proposed for forecasting the lithium-ion battery state of health(SOH).Due to the varying specifications and operating conditions of batteries,it is difficult to anticipate the health condition of lithium battery as it begins to deteriorate.There are still few studies on health state prediction models for different types of batteries.In this paper,40 battery data from 5 public datasets are selected to carry out research,and a model architecture consisting of Denoising Autoencoder and Transformer is designed.One or two types of battery packs are identified as the source domain,and multiple types of battery packs are identified as the target domain.By employing Maximum Mean Discrepancy(MMD)on the Transformer architecture,the source and target domains were evaluated and found to converge as training continued.Finally,29 transfer learning combination tasks were constructed.Results show that the model built with two kinds of batteries as the target domain has the best prediction accuracy and excels in prediction and is versatile in its application.The experimental results also reveal that this study provides a promising tool for predicting Lithium-ion batteries’SOH and strives to build a generalized model of the Lithium-ion batteries’SOH indicators. 展开更多
关键词 battery health management domain generation maximum mean discrepancy state of health prognosis TRANSFORMER
在线阅读 下载PDF
基于深度子领域适应卷积神经网络的结构损伤识别
4
作者 张健飞 曹雨 《振动与冲击》 北大核心 2025年第3期251-260,共10页
针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结... 针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结构为目标域,以有限元模型为源域,根据损伤类别将源域和目标域划分成一系列子领域。在CNN中嵌入子领域适应模块,构建DSACNN模型,通过最小化源域上的损伤分类误差和领域之间的局部最大均值差异,对齐两个领域对应子领域的特征、建立特征与损伤类别之间的映射,从而将源域上的损伤识别能力迁移到目标域之上。模型的训练无需已知目标域样本的损伤标签,采用预训练全局领域适应提高其伪标签的准确率。试验结果表明:与全局领域适应模型相比,基于预训练全局领域适应的DSACNN模型在模拟目标域上准确率最大提高幅度达到21.8%,在实测目标域上提高了9.6%,具有更强的泛化能力。 展开更多
关键词 结构损伤识别 子领域适应 局部最大均值差异 卷积神经网络(CNN)
在线阅读 下载PDF
多尺度迁移学习的轴承故障诊断
5
作者 尹洪申 刘文峰 +1 位作者 俞啸 丁恩杰 《机械设计与制造》 北大核心 2025年第1期10-14,共5页
针对实际采煤机轴承故障诊断中存在变工况特征提取困难,故障训练样本不足等问题,结合当今流行的迁移学习的方法,提出了一种多尺度迁移学习的轴承诊断方法。首先通过经验模式分解(Empirical Mode Decomposition,EMD)从振动信号中分解成... 针对实际采煤机轴承故障诊断中存在变工况特征提取困难,故障训练样本不足等问题,结合当今流行的迁移学习的方法,提出了一种多尺度迁移学习的轴承诊断方法。首先通过经验模式分解(Empirical Mode Decomposition,EMD)从振动信号中分解成不同频率的本征模态函数(Intrinsic Mode Function,IMF);其次将得到的不同频率的IMF与卷积神经网络中不同尺寸卷积核提取到的丰富特征互补构建多尺度特征融合;采用联合最大平均差异(Joint Maximum Mean Discrep⁃ancy,JMMD)特征迁移的方法使源域与目标域联合分布差异最小化,然后通过多尺度融合模型进行分类识别;最后在凯斯西储大学轴承数据集和江南大学数据集对该方法进行了验证。实验结果证明该模型在两种不同工况和型号的轴承数据集中均取得较高的准确率,表现出模型良好的泛化能力。 展开更多
关键词 振动信号 故障诊断 多尺度特征融合 迁移学习 联合最大平均差异 特征迁移
在线阅读 下载PDF
基于改进迁移学习的煤矿井下设备音频信号故障诊断方法
6
作者 邱吉尔 王琪 王鹏 《工矿自动化》 北大核心 2025年第2期91-99,共9页
煤矿井下生产运行环境恶劣,其关键设备如瓦斯泵、通风机、采煤机等长期处于启动状态,易产生缺陷性故障。目前端到端音频数据故障诊断方法的模型训练与更新高度依赖于数据标注,尽管可以获取海量原始数据,但这些数据通常未经标注,难以直... 煤矿井下生产运行环境恶劣,其关键设备如瓦斯泵、通风机、采煤机等长期处于启动状态,易产生缺陷性故障。目前端到端音频数据故障诊断方法的模型训练与更新高度依赖于数据标注,尽管可以获取海量原始数据,但这些数据通常未经标注,难以直接用于模型训练,设备运行工况的突变和设备重组等因素可能导致数据分布发生变化,从而引起模型性能下降。针对上述问题,提出了一种基于改进迁移学习的煤矿井下设备音频信号故障诊断方法。首先,对煤矿设备音频信号进行梅尔频率倒谱系数(MFCC)特征提取,捕捉设备运行状态中的关键信息,得到故障特征二维系数图。然后,构建基于改进迁移学习的故障诊断网络模型,以改进最大均值差异,即多核联合最大均值差异作为度量标准,借助伪标签计算联合分布距离,将标签信息通过多重线性映射进行特征匹配,以减少数据分布差异,实现边缘分布和条件分布同时对齐。实验结果表明:所提方法在无标签条件下能够实现高精度的故障诊断,准确率达到96.99%,标准差为0.014;在模型抗噪性能实验中,基于改进迁移学习的故障诊断模型在低信噪比(如10 dB)条件下仍能保持80%的故障诊断准确率,展现出较强的抗噪鲁棒性。 展开更多
关键词 煤矿井下设备 音频信号 故障诊断 迁移学习 梅尔频率倒谱系数 MFCC 最大均值差异 多核联合最大均值差异 源域 目标域
在线阅读 下载PDF
条件分布域适应下数模混动齿轮箱故障诊断
7
作者 王冉 韩海保 +1 位作者 颜福成 余亮 《振动与冲击》 北大核心 2025年第3期182-190,209,共10页
齿轮箱的故障诊断对于确保机械系统的可靠性、安全性和经济可行性至关重要。在工业实际中,齿轮箱通常运行在正常状态下,因此故障状态发生较少,且由于获取有标签的故障数据的成本较高,导致齿轮箱的健康状态监测面临着有标签故障数据稀缺... 齿轮箱的故障诊断对于确保机械系统的可靠性、安全性和经济可行性至关重要。在工业实际中,齿轮箱通常运行在正常状态下,因此故障状态发生较少,且由于获取有标签的故障数据的成本较高,导致齿轮箱的健康状态监测面临着有标签故障数据稀缺的问题。然而,现有的深度迁移诊断方法存在数据生成质量不均匀和过度依赖少数类信息等局限性。为了克服这一挑战,提出条件分布域适应下数模混动齿轮箱故障诊断方法。首先,基于集中参数法构建不同齿轮故障的动力学模型以扩充少标签源域的故障数据;其次,类条件分布最大均值差异(class-conditional maximum mean discrepancy,CMMD)被嵌入诊断模型中,在再生希尔伯特核空间中(reproducing kernel Hilbert space,RKHS)显式构建了故障特征与故障标签的关系,以减小源域数据和目标域数据的分布差异;同时,为保证目标域样本建立可靠的伪标签,熵损失被引入模型训练过程中;最后,通过两个试验验证了所提出方法的有效性和可行性。 展开更多
关键词 齿轮箱故障诊断 动力学建模 条件最大均值差异
在线阅读 下载PDF
基于生成对抗网络的风光出力场景生成
8
作者 郭子铭 《工业技术与职业教育》 2025年第2期8-12,18,共6页
新型电力系统运行与规划中涉及大量新能源场景的建模和分析,场景选取的合理性对系统运行和规划的计算效率和可靠性有重要影响。为此,提出基于深度学习的VAE-DCGAN模型,该模型使用变分自动编码器作为生成对抗网络的生成器部分,使其学习... 新型电力系统运行与规划中涉及大量新能源场景的建模和分析,场景选取的合理性对系统运行和规划的计算效率和可靠性有重要影响。为此,提出基于深度学习的VAE-DCGAN模型,该模型使用变分自动编码器作为生成对抗网络的生成器部分,使其学习历史数据的出力特征,并通过与判别器的博弈训练生成大量风光出力场景。利用累积概率分布和最大均值差异距离等指标,对生成场景的优劣进行评估。结果表明,VAE-DCGAN模型的生成数据和真实数据的MMD距离为0.0329,模型可以较好地学习到风光历史数据的出力特征。 展开更多
关键词 场景生成 变分自动编码器 生成对抗网络 新能源出力 最大均值差异距离
在线阅读 下载PDF
基于MMD迁移学习的MEMS惯性传感器故障诊断方法 被引量:2
9
作者 高彤 盛蔚 +1 位作者 尹艳召 杜雪洁 《太原科技大学学报》 2023年第2期97-104,110,共9页
针对微机电系统(MEMS)惯性传感器温度诱导故障诊断任务,提出了一种基于最大平均差异(MMD)迁移学习的故障诊断方法,解决了离线样本充足而在线故障样本不足情况下的在线故障诊断问题。将MEMS惯性传感器在线故障诊断的问题转化为一个深度... 针对微机电系统(MEMS)惯性传感器温度诱导故障诊断任务,提出了一种基于最大平均差异(MMD)迁移学习的故障诊断方法,解决了离线样本充足而在线故障样本不足情况下的在线故障诊断问题。将MEMS惯性传感器在线故障诊断的问题转化为一个深度迁移学习问题,其中具有完整标签的离线样本作为迁移学习的源域,在线条件下的样本作为目标域;设计了基于多尺度卷积神经网络的故障模式识别方法;提出了一种基于MMD的迁移学习方法,将基于源域样本训练的模型迁移到目标域中,该方法采取了一种基于源域与目标域差异分析的半监督学习策略,使模型在目标域上获得满意的故障诊断性能。实验表明,提出的故障诊断方法较其他基于迁移学习的故障诊断方法在MEMS惯性传感器故障诊断任务中具有更好性能。 展开更多
关键词 故障诊断 最大平均差异(mmd) 迁移学习 卷积神经网络 MEMS惯性传感器
在线阅读 下载PDF
基于MMD心电域适应学习的分类模型
10
作者 韩昕哲 尚莉伽 +4 位作者 张宏坡 毛晓波 刘超 王汉章 逯鹏 《计算机应用与软件》 北大核心 2023年第1期117-121,233,共6页
针对心电信号分类中的无监督域适应问题,提出一种域适应分类模型MMD-Net。将源数据和目标数据映射至再生希尔伯特空间(Reproducing Kernel Hilbert Space, RKHS),使用最大均值差异(Maximum Mean Discrepancy, MMD)度量二者在公共特征空... 针对心电信号分类中的无监督域适应问题,提出一种域适应分类模型MMD-Net。将源数据和目标数据映射至再生希尔伯特空间(Reproducing Kernel Hilbert Space, RKHS),使用最大均值差异(Maximum Mean Discrepancy, MMD)度量二者在公共特征空间的差异,通过最小化该差异使分类器利用源域知识对目标数据进行分类,从而实现ECG模型的无监督域适应。在MIT-BIH心房颤动数据集和CCDD数据集上交替进行域适应实验,平均准确率分别达到了73.34%和70.75%,结果表明该方法可对目标心电数据有效分类。 展开更多
关键词 心电信号 域适应 最大均值差异 门控循环单元
在线阅读 下载PDF
基于动态辅助对比学习的跨域行人重识别 被引量:1
11
作者 杨真真 邵静 +1 位作者 杨永鹏 吴心怡 《南京邮电大学学报(自然科学版)》 北大核心 2024年第3期63-71,共9页
具有混合记忆的自步对比学习(Self-paced Contrastive Learning,SpCL)通过集群聚类生成不同级别的伪标签来训练网络,取得了较好的识别效果,然而该方法从源域和目标域中捕获的行人数据之间存在典型的分布差异,使得训练出的网络不能准确... 具有混合记忆的自步对比学习(Self-paced Contrastive Learning,SpCL)通过集群聚类生成不同级别的伪标签来训练网络,取得了较好的识别效果,然而该方法从源域和目标域中捕获的行人数据之间存在典型的分布差异,使得训练出的网络不能准确区别目标域和源域数据域特征。针对此问题,提出了双分支动态辅助对比学习(Dynamic Auxiliary Contrastive Learning,DACL)框架。该方法首先通过动态减小源域和目标域之间的局部最大平均差异(Local Maximum Mean Discrepancy,LMMD),以有效地学习目标域的域不变特征;其次,引入广义均值(Generalized Mean,GeM)池化策略,在特征提取后再进行特征聚合,使提出的网络能够自适应地聚合图像的重要特征;最后,在3个经典行人重识别数据集上进行了仿真实验,提出的DACL与性能次之的无监督域自适应行人重识别方法相比,mAP和rank-1在Market1501数据集上分别增加了6.0个百分点和2.2个百分点,在MSMT17数据集上分别增加了2.8个百分点和3.6个百分点,在Duke数据集上分别增加了1.7个百分点和2.1个百分点。 展开更多
关键词 行人重识别 无监督域自适应 广义均值池化 局部最大平均差异 对比学习
在线阅读 下载PDF
基于改进多尺度卷积循环神经网络的滚动轴承故障研究 被引量:1
12
作者 董绍江 黄翔 +1 位作者 夏宗佑 邹松 《振动与冲击》 EI CSCD 北大核心 2024年第20期94-105,共12页
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo... 针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。 展开更多
关键词 故障诊断 多尺度卷积神经网络 双向长短期记忆(BiLSTM)网络 多头自注意力 多核最大均值差异
在线阅读 下载PDF
基于深度生成模型的医院网络异常信息入侵检测算法
13
作者 吴风浪 李晓亮 《吉林大学学报(信息科学版)》 CAS 2024年第5期908-913,共6页
为保障医院信息网络的安全管理,避免医疗信息泄露,提出了基于深度生成模型的医院网络异常信息入侵检测算法。采用二进制小波变换方法,多尺度分解医院网络运行数据,结合自适应软门限去噪系数提取有效数据。运用最优运输理论中的Wasserst... 为保障医院信息网络的安全管理,避免医疗信息泄露,提出了基于深度生成模型的医院网络异常信息入侵检测算法。采用二进制小波变换方法,多尺度分解医院网络运行数据,结合自适应软门限去噪系数提取有效数据。运用最优运输理论中的Wasserstein距离算法与MMD(Maximun Mean Discrepancy)距离算法,在深度生成模型中,对医院网络数据展开降维处理。向异常检测模型中输入降维后网络正常运行数据样本,并提取样本特征。利用深度学习策略中的Adam算法,生成异常信息判别函数,通过待测网络运行数据与正常网络运行数据的特征对比,实现医院网络异常信息入侵检测。实验结果表明,算法能实现对医院网络异常信息入侵的高效检测,精准检测多类型网络入侵行为,为医疗机构网络运行提供安全保障。 展开更多
关键词 二进制小波变换 深度生成模型 Wasserstein距离算法 mmd距离算法 医院网络 异常信息 入侵检测
在线阅读 下载PDF
基于最大均值差异的卷积神经网络故障诊断模型 被引量:1
14
作者 包从望 车守全 +2 位作者 刘永志 陈俊 张彩红 《机电工程》 CAS 北大核心 2024年第3期445-454,共10页
针对工程场景中轴承故障数据采集困难,小样本下轴承故障诊断准确率较低且稳定性不高的问题,提出了一种小样本下滚动轴承故障的诊断方法,即基于最大均值差异(MMD)的卷积神经网络(CNN)诊断模型(方法)。首先,根据轴承故障机理,获取了滚动... 针对工程场景中轴承故障数据采集困难,小样本下轴承故障诊断准确率较低且稳定性不高的问题,提出了一种小样本下滚动轴承故障的诊断方法,即基于最大均值差异(MMD)的卷积神经网络(CNN)诊断模型(方法)。首先,根据轴承故障机理,获取了滚动轴承故障的仿真信号,基于生成式对抗网络构建了仿真信号与少量真实样本间的对抗训练模型,得到了伪域样本,并将其扩充为训练数据集;其次,以交叉熵损失和最大均值差异(MMD)为卷积神经网络(CNN)的优化准则,引入了缩放因子,对网络进行了动态优化,根据测试结果选取缩放因子为0.05作为最优网络结构参数,构建了故障诊断的训练模型;最后,将结构均为1024个数据点的伪域样本和真实样本共同构成模型的训练集,对其进行了归一化处理,然后将其输入到构建的网络模型中,并以MMD作为约束,进行了卷积、池化操作,以实现特征提取的目的,经反向传播对模型进行了优化,实现了诊断模型参数的迭代更新目标。研究结果表明:基于MMD的CNN诊断模型(方法)对小样本下轴承的故障诊断识别精度有明显的改善,当样本数仅为16时,识别率可达95%以上,证明该方法在小样本下的轴承故障诊断中依然能获得较高的故障识别率。 展开更多
关键词 滚动轴承 故障诊断 小样本 生成式对抗网络 卷积神经网络 最大均值差异 交叉熵损失
在线阅读 下载PDF
基于选择性通信策略的高效联邦学习研究 被引量:1
15
作者 李群 陈思光 《小型微型计算机系统》 CSCD 北大核心 2024年第3期549-554,共6页
近年来,随着人工智能技术的飞速发展,人们越来越重视数据隐私与安全,世界各国也出台一系列法律法规以保护用户隐私.面对制约人工智能发展的数据孤岛以及数据隐私和安全问题,联邦学习作为一种新型的分布式机器学习技术应运而生.然而,高... 近年来,随着人工智能技术的飞速发展,人们越来越重视数据隐私与安全,世界各国也出台一系列法律法规以保护用户隐私.面对制约人工智能发展的数据孤岛以及数据隐私和安全问题,联邦学习作为一种新型的分布式机器学习技术应运而生.然而,高通信开销问题阻碍着联邦学习的进一步发展,为此,本文提出了基于选择性通信策略的高效联邦学习算法.具体地,该算法基于联邦学习的网络结构特点,采取选择性通信策略,在客户端通过最大均值差异衡量本地模型与全局模型的相关性以过滤相关性较低的本地模型,并在服务器端依据相关性对本地模型进行加权聚合.通过上述操作,所提算法在保证模型快速收敛的同时能够有效减少通信开销.仿真结果表明,与FedAvg算法和FedProx算法相比,所提算法能够在保证准确率的前提下,将通信轮次分别减少54%和60%左右. 展开更多
关键词 联邦学习 通信开销 最大均值差异
在线阅读 下载PDF
基于深度学习与域自适应的工件涡流热成像的缺陷检测 被引量:1
16
作者 张毅 范玉刚 《红外技术》 CSCD 北大核心 2024年第3期347-353,共7页
机械设备运行过程中,标记的故障样本量小,导致建立的模型故障诊断准确率低,为此本文提出一种结合深度学习与域自适应的工件涡流热成像的缺陷检测方法。首先将注意力机制引入深度残差网络ResNet50中,加强模型的特征提取能力;然后将源域... 机械设备运行过程中,标记的故障样本量小,导致建立的模型故障诊断准确率低,为此本文提出一种结合深度学习与域自适应的工件涡流热成像的缺陷检测方法。首先将注意力机制引入深度残差网络ResNet50中,加强模型的特征提取能力;然后将源域和目标域数据送入改进的ResNet50网络中提取深度特征,并且在网络的全连接层中引入局部最大均值差异,用于缩小两域特征间的分布差异,以此实现相关子域的分布对齐;最后在网络的Softmax分类器中实现对工件金属材料的缺陷检测。在公开的磁瓦数据集和本文实验采集的金属板涡流红外图像数据集上进行实验,结果表明,本文方法对涡流红外图像的裂纹缺陷检测识别准确率较高,通过t分布随机邻居嵌入方法对分析结果可视化,验证了本文方法的优越性。 展开更多
关键词 涡流热成像 深度残差网络 注意力机制 域自适应 局部最大均值差异
在线阅读 下载PDF
Tool Wear State Recognition with Deep Transfer Learning Based on Spindle Vibration for Milling Process 被引量:1
17
作者 Qixin Lan Binqiang Chen +1 位作者 Bin Yao Wangpeng He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2825-2844,共20页
The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the s... The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the surfaceintegrity of the workpiece. Hence, during the cutting process, it is imperative to continually monitor the tool wearstate andpromptly replace anyheavilyworn tools toguarantee thequality of the cutting.The conventional tool wearmonitoring models, which are based on machine learning, are specifically built for the intended cutting conditions.However, these models require retraining when the cutting conditions undergo any changes. This method has noapplication value if the cutting conditions frequently change. This manuscript proposes a method for monitoringtool wear basedonunsuperviseddeep transfer learning. Due to the similarity of the tool wear process under varyingworking conditions, a tool wear recognitionmodel that can adapt to both current and previous working conditionshas been developed by utilizing cutting monitoring data from history. To extract and classify cutting vibrationsignals, the unsupervised deep transfer learning network comprises a one-dimensional (1D) convolutional neuralnetwork (CNN) with a multi-layer perceptron (MLP). To achieve distribution alignment of deep features throughthe maximum mean discrepancy algorithm, a domain adaptive layer is embedded in the penultimate layer of thenetwork. A platformformonitoring tool wear during endmilling has been constructed. The proposedmethod wasverified through the execution of a full life test of end milling under multiple working conditions with a Cr12MoVsteel workpiece. Our experiments demonstrate that the transfer learning model maintains a classification accuracyof over 80%. In comparisonwith the most advanced tool wearmonitoring methods, the presentedmodel guaranteessuperior performance in the target domains. 展开更多
关键词 Multi-working conditions tool wear state recognition unsupervised transfer learning domain adaptation maximum mean discrepancy(mmd)
在线阅读 下载PDF
基于云模型和最大均值差异的指标迁移学习
18
作者 徐丽霞 钟季龙 +7 位作者 伍劭实 丁一珊 翟小玉 陈世钊 王鹥喆 温雪 曾隽芳 侯新文 《系统仿真学报》 CAS CSCD 北大核心 2024年第9期2004-2015,共12页
针对应用实验场景中数据样例稀少的难题,提出基于云模型和最大均值差异的指标迁移学习方法,将典型仿真试验实验场景中的指标计算模型迁移到应用实验场景中,以适应跨平台跨领域仿真评估需求。使用最大均值差异方法将典型仿真实验场景中... 针对应用实验场景中数据样例稀少的难题,提出基于云模型和最大均值差异的指标迁移学习方法,将典型仿真试验实验场景中的指标计算模型迁移到应用实验场景中,以适应跨平台跨领域仿真评估需求。使用最大均值差异方法将典型仿真实验场景中的指标分布与应用实验场景中的指标分布对齐,从而实现指标迁移;使用云模型基于少量样例对指标分布进行建模和采样,提高了指标迁移学习建模效率。通过典型仿真实验场景到多个应用实验场景的指标模型迁移学习仿真实验结果验证了本文方法的有效性,得到的目标域分布较基于生成对抗网络迁移方法得到的目标域分布更为接近源域,采用Wasserstein距离度量感知、认知、决策、学习能力指标的迁移学习性能平均提升了36.62%。 展开更多
关键词 云模型 最大均值差异 指标迁移学习 跨平台跨领域仿真评估 小数据仿真评估 指标聚合
在线阅读 下载PDF
基于一维卷积子域适应对抗网络的变负荷轴承故障诊断
19
作者 张敏 宋执环 杨春节 《控制工程》 CSCD 北大核心 2024年第10期1899-1904,共6页
在大型旋转机械滚动轴承故障诊断的建模中,由于设备运行负载不同,若训练数据与测试数据具有分布差异,则会使训练得到的深度神经网络诊断模型的准确率下降。针对此问题,基于迁移学习理论,提出了基于一维卷积子域适应对抗网络的故障诊断... 在大型旋转机械滚动轴承故障诊断的建模中,由于设备运行负载不同,若训练数据与测试数据具有分布差异,则会使训练得到的深度神经网络诊断模型的准确率下降。针对此问题,基于迁移学习理论,提出了基于一维卷积子域适应对抗网络的故障诊断方法。该方法嵌入了融合样本级权重的局部最大均值差异来促进子域对齐,并引入域判别器与特征提取器进行对抗训练,辅助提取域共性特征。建立了一种有效的跨负载轴承故障诊断模型,实现了目标域的无监督故障诊断,提高了滚动轴承故障诊断的准确性。最后,在凯斯西储大学发布的轴承故障数据集上进行实验,实验结果验证了所提方法的有效性。 展开更多
关键词 迁移学习 滚动轴承故障诊断 局部最大均值差异 样本级权重
在线阅读 下载PDF
基于多源域深度域自适应的跨工况滚动轴承故障诊断
20
作者 吕智明 董绍江 +2 位作者 朱孙科 邹松 黄翔 《机床与液压》 北大核心 2024年第20期230-238,共9页
在实际生产中,不同工况下的源域数据与目标域数据分布差异大且含标签的故障样本量少,单源域迁移故障诊断无法同时利用多个源域提供的诊断信息,会出现负迁移与模型泛化能力差的问题。针对此情况,提出一种基于多源域深度域自适应模型的滚... 在实际生产中,不同工况下的源域数据与目标域数据分布差异大且含标签的故障样本量少,单源域迁移故障诊断无法同时利用多个源域提供的诊断信息,会出现负迁移与模型泛化能力差的问题。针对此情况,提出一种基于多源域深度域自适应模型的滚动轴承故障诊断方法。将多个源域与目标域的原始一维时域信号输入到模型中的共享特征提取网络中,提取所有域的域不变特征;利用私有特征提取网络分别匹配每个源域与目标域的特征空间分布,结合最大均方差异(MMSD)与局部最大均值差异(LMMD)设计新型损失函数——局部最大均方差异(LMMSD),减小每对源域与目标域之间的数据特征分布差异,同时,使用领域判别器损失进一步增加域混淆;最后,根据LMMSD损失获得不同源域相对于目标域的权重,将多个源分类器与相应的权重相结合,对设备状态进行综合诊断。在2个公开变工况滚动轴承故障数据集上进行实验验证,结果表明:所提方法相比其他方法具有更高的诊断精度与泛化能力。 展开更多
关键词 故障诊断 多源域 特征提取 局部最大均方差异(LMMSD)
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部