期刊文献+
共找到23,822篇文章
< 1 2 250 >
每页显示 20 50 100
Decoding molecular mechanisms:brain aging and Alzheimer's disease
1
作者 Mahnoor Hayat Rafay Ali Syed +9 位作者 Hammad Qaiser Mohammad Uzair Khalid Al-Regaiey Roaa Khallaf Lubna Abdullah Mohammed Albassam Imdad Kaleem Xueyi Wang Ran Wang Mehwish SBhatti Shahid Bashir 《Neural Regeneration Research》 SCIE CAS 2025年第8期2279-2299,共21页
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a... The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease. 展开更多
关键词 Alzheimer’s disease brain aging cognitive health DEMENTIA molecular mechanisms neuronal activity NEUROPLASTICITY NEUROTRANSMISSION
在线阅读 下载PDF
Pyroptosis,ferroptosis,and autophagy in spinal cord injury:regulatory mechanisms and therapeutic targets
2
作者 Qingcong Zheng Du Wang +1 位作者 Rongjie Lin Weihong Xu 《Neural Regeneration Research》 SCIE CAS 2025年第10期2787-2806,共20页
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne... Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury. 展开更多
关键词 AUTOPHAGY cell death ferroptosis INFLAMMATION pathological mechanisms PYROPTOSIS regulated cell death regulatory pathways spinal cord injury therapeutic targets
在线阅读 下载PDF
Contribution of mechanical forces to structural synaptic plasticity:insights from 3D cellular motility mechanisms
3
作者 Rita O.Teodoro Mafalda Ribeiro Ramos Lara Carvalho 《Neural Regeneration Research》 SCIE CAS 2025年第7期1995-1996,共2页
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi... Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024). 展开更多
关键词 PLASTICITY STRUCTURAL mechanisms
在线阅读 下载PDF
Molecular Mechanisms of the CIRBP Family in Tumors: Current Status and Future Perspectives
4
作者 Yu Cai Tingting Wang Yuan Zhan 《Journal of Cancer Therapy》 2025年第2期63-76,共14页
The Cold-Inducible RNA-Binding Protein (CIRBP) family plays a pivotal role in cellular stress responses and tumorigenesis. Recent studies have increasingly highlighted the expression alterations of CIRBP family member... The Cold-Inducible RNA-Binding Protein (CIRBP) family plays a pivotal role in cellular stress responses and tumorigenesis. Recent studies have increasingly highlighted the expression alterations of CIRBP family members across various cancer types and their potential molecular mechanisms. This review provides a comprehensive overview of the structural characteristics and functions of the CIRBP family, alongside their expression profiles in tumors and the regulatory molecular mechanisms involved. By synthesizing current knowledge, this review aims to offer new insights and directions for future cancer therapies, emphasizing the importance of CIRBP proteins in oncological research. 展开更多
关键词 CIRBP Family TUMORS Molecular mechanisms RNA-Binding Proteins Cellular Stress
在线阅读 下载PDF
Research progress on the physiological,biochemical and molecular regulatory mechanisms of fruit tree responses to high-temperature stress
5
作者 Que Wang Yaqiong Wu +2 位作者 Wenlong Wu Lianfei Lyu Weilin Li 《Horticultural Plant Journal》 2025年第1期1-14,共14页
Fruit trees face various adverse environmental factors,such as extreme hydrothermal changes,soil salinization and low precipitation,leading to different types of stress.High temperature is one of the main factors affe... Fruit trees face various adverse environmental factors,such as extreme hydrothermal changes,soil salinization and low precipitation,leading to different types of stress.High temperature is one of the main factors affecting the growth of fruit trees,and an appropriate ambient temperature is a necessary condition for the normal growth and development of fruit trees.Since the 20th century,due to the intensification of the greenhouse effect and global warming,there has been a significant increase in the occurrence and duration of extreme hot weather in summer has been occurring frequently and for longer durations.Thus,the growth and production of fruit trees are affected by severe hightemperature stress.Therefore,this paper primarily summarized the impacts of high-temperature stress on fruit growth and development,flowering,fruiting,fruit setting and quality.It also discussed the physiological and biochemical responses of fruit trees to high-temperature stress,research progress on the molecular mechanisms and signal transduction pathways underlying fruit tree resistance to heat or high temperature,and research on the investigation of relevant metabolites of fruit trees under stress conditions.The future research directions were discussed,and prospects and potential difficulties were proposed to serve a reference for further investigation on the high-temperature tolerance of fruit trees. 展开更多
关键词 Heat shock Heat resistance Regulatory mechanisms MIRNA Fruit crop
在线阅读 下载PDF
Plasma Combined with Drugs:Synergistic Mechanisms for Eliminating Cancer Cells
6
作者 Jie Bai 《Journal of Clinical and Nursing Research》 2025年第1期243-248,共6页
With the continuous advancement of cancer treatment methods, plasma combined with drug therapy has garnered widespread attention as an emerging therapeutic strategy. This paper elaborates on the generation and charact... With the continuous advancement of cancer treatment methods, plasma combined with drug therapy has garnered widespread attention as an emerging therapeutic strategy. This paper elaborates on the generation and characteristics of plasma, as well as its mechanisms of action on cancer cells when used alone, including the production of reactive oxygen and nitrogen species, and damage to cancer cell membranes, and organelles. It emphasizes the synergistic mechanisms observed when plasma is combined with various anticancer drugs (e.g., chemotherapeutic agents, targeted drugs, and immunotherapies). The analysis focuses on enhancing drug uptake, promoting the activation of drug action targets, and improving the tumor microenvironment. These insights provide a theoretical basis for optimizing plasma-drug combination therapy for cancer. 展开更多
关键词 PLASMA Anticancer drugs SYNERGY Enhancement mechanisms
在线阅读 下载PDF
An Analysis of Using Blockchain to Enhance Trust in Agricultural Supply Chain Finance:Constraints and Mechanisms for Removing the Constraints
7
作者 Wang Xingyu Ren Le Li Tiantian 《Contemporary Social Sciences》 2025年第1期69-82,共14页
This paper begins with a discussion of the trust issues that agricultural supply chain finance faces.It then examines the constraints of using blockchain technology to enhance trust in agricultural supply chain financ... This paper begins with a discussion of the trust issues that agricultural supply chain finance faces.It then examines the constraints of using blockchain technology to enhance trust in agricultural supply chain finance in accordance with the technological and institutional logic of combining blockchain with supply chains.This study then proposes the creation of an agricultural“blockchain+supply chain”information service platform and a financing trust mechanism that can effectively ensure the authenticity of the initial information input on the blockchain,consistency between on-chain transaction data and off-chain physical transactions,the controllability of risks in the set up and execution of smart contracts,and the removal of information constraints,resource allocation constraints,and institutional constraints in the agricultural supply chain financing.This aims to improve the efficiency of financing in agricultural supply chains and contribute to the industrial development of rural areas and rural revitalization. 展开更多
关键词 blockchain agricultural supply chain finance trust enhancement CONSTRAINTS mechanisms for constraint removal
在线阅读 下载PDF
An Iterated Greedy Algorithm with Memory and Learning Mechanisms for the Distributed Permutation Flow Shop Scheduling Problem
8
作者 Binhui Wang Hongfeng Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期371-388,共18页
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o... The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling. 展开更多
关键词 Distributed permutation flow shop scheduling MAKESPAN iterated greedy algorithm memory mechanism cooperative reinforcement learning
在线阅读 下载PDF
Concurrent occurrence of adenocarcinoma and urothelial carcinoma of the prostate:Coexistence mechanisms from multiple perspectives
9
作者 Xu-Chang Liu Yu-Xiang Liu Chun Liu 《World Journal of Clinical Cases》 2025年第12期5-9,共5页
This article discusses the coexistence of prostate adenocarcinoma and prostate urothelial carcinoma.Combining existing literature and research results,the potential mechanisms of the co-occurrence of these two cancers... This article discusses the coexistence of prostate adenocarcinoma and prostate urothelial carcinoma.Combining existing literature and research results,the potential mechanisms of the co-occurrence of these two cancers are explored,including the role of androgen receptor,gene mutations,and their complex interactions in cell signaling pathways,etc.Also,the hypothesis of prostate cancer transformation into urothelial carcinoma is explained from some perspectives,including tumor multipotent stem cell differentiation,epithelial-mesenchymal transition,mesenchymal-epithelial transition,and other mechanisms.Ultimately,the goal is to provide more accurate diagnoses and more personalized treatments in clinical practice,as well as to lay the foundation for improving patient prognoses in the future. 展开更多
关键词 Prostate adenocarcinoma Prostate urothelial carcinoma Coexistence mechanism Transformation mechanism TUMOR
在线阅读 下载PDF
Acupuncture for postoperative ileus:Advancement and underlying mechanisms
10
作者 Yang Ye Xi-Yan Xin +6 位作者 Ze-Jun Huo Yu-Tian Zhu Rui-Wen Fan Hao-Lin Zhang Yu Gao Hong-Bo Shen Dong Li 《World Journal of Gastrointestinal Surgery》 2025年第2期11-15,共5页
Postoperative ileus(POI)remains a prevalent and significant challenge following abdominal surgeries,precipitating patient distress,prolonged hospital stays,and escalated medical expenditures.Conventionally addressed v... Postoperative ileus(POI)remains a prevalent and significant challenge following abdominal surgeries,precipitating patient distress,prolonged hospital stays,and escalated medical expenditures.Conventionally addressed via pharmacological interventions,POI is increasingly being explored through adjunctive therapeutic strategies,with acupuncture gaining recognition as a promising option.Acupuncture has demonstrated encouraging potential in promoting gastrointestinal motility in patients with POI.Moreover,recent research has shed light on the therapeutic mechanisms underlying its efficacy.This article aims to present a comprehensive overview of acupuncture as a treatment for POI,highlighting advancements in clinical research and recent elucidations of its mechanistic underpinnings.It aspires to contribute a pivotal reference point for scholars and enthusiasts keen on garnering a deeper understanding of acupuncture’s role in managing POI. 展开更多
关键词 ACUPUNCTURE Gastrointestinal motility MECHANISM PATIENTS Postoperative ileus
在线阅读 下载PDF
Elucidating the anti-obesity phytochemicals in Chenpi and their molecular mechanisms
11
作者 Jinhai Luo Weiqi Yan +1 位作者 Zhi Chen Baojun Xu 《Food Science and Human Wellness》 2025年第4期1224-1238,共15页
Obesity has become a significant global public health issue.Previous studies have found that the Chenpi has the anti-obesity activity.However,the anti-obesity phytochemicals and their mechanisms are still unclear.This... Obesity has become a significant global public health issue.Previous studies have found that the Chenpi has the anti-obesity activity.However,the anti-obesity phytochemicals and their mechanisms are still unclear.This study investigated the anti-obesity phytochemicals and molecular mechanisms involved in treating obesity by Chenpi through network pharmacology and molecular docking.A total of 17 bioactive phytochemicals from Chenpi and its 475 related anti-obesity targets have been identified.The KEGG pathway analysis showed that the PI3K/Akt signaling pathway,MAPK signaling pathway,AMPK signaling pathway,and nuclear factor kappa B signaling pathway are the main signaling pathways involved in the anti-obesity effect of Chenpi.According to molecular docking analysis,the phytochemicals of Chenpi can bind to central anti-obesity targets.Based on the ADMET analysis and network pharmacology results,tangeretin exhibited the lowest predicted toxicity and potential for anti-obesity effects.In the in vitro lipid accumulation model,tangeretin effectively suppressed the free fatty acid-induced lipid in Hep G2 cells by upregulating the PI3K/Akt/GSK3βsignaling pathway based on the result of q-PCR and Western blotting.The outcomes of this research give insights for future research on the anti-obesity phytochemicals and molecular mechanisms derived from Chenpi,also providing the theoretical basis for developing anti-obesity functional foods based on Chenpi. 展开更多
关键词 Chenpi PHYTOCHEMICALS OBESITY Network pharmacology Molecular mechanism Signaling pathway
在线阅读 下载PDF
Enhanced removal of heavy metals by wetland plant-microbiome symbiont:Prospect of potential strategies and mechanisms for environmental heavy metal regulation
12
作者 Ling LIU Xiaoyi FAN +1 位作者 Yuan HAN Hongjie WANG 《Pedosphere》 2025年第1期116-136,共21页
Wetland plants and their related environmental interfaces are colonized by a wide range of microbial communities,and the symbiotic system of plants and microorganisms can interact and cooperate with each other,playing... Wetland plants and their related environmental interfaces are colonized by a wide range of microbial communities,and the symbiotic system of plants and microorganisms can interact and cooperate with each other,playing an important role in environmental remediation of metal pollution,which has garnered significant attention.The dominant communities of wetland plants still have high treatment performance and survival rate under pollution conditions.Many studies show that hyperaccumulating metallophytes have the capacity to accumulate heavy metal up to several times higher than the plants in sterile soil,due to the interaction of microbes within the rhizosphere.Thus,biotechnological efforts are being explored to modify plants for heavy metal phytoremediation and to improve the adaptation of wetland plants,endophytes,and rhizospheric microorganisms to adverse environment.New phytoremediation techniques and enhanced symbiosis technique for endophytic bacteria inoculation with high efficiency are being pursued and utilized in heavy metal phytoremediation in wetland systems.Therefore,in this review,we systematically summarized the interface characteristics of wetland systems and the interaction of symbionts,with emphasis on the enhanced removal potential and regulation mechanisms of heavy metals by plant-microbe symbiosis in wetland systems,along with the applications of plant-microbiomes for heavy metal remediation in wetlands.Moreover,we explored the remediation mechanisms of combined endogenic-ecophytic microorganisms for wetland systems.In recent research,the exogeneous bacteria drastically remodeled the rhizospheric microbiome and further improved the activity of rhizospheric functional enzymes,with the metal removal at the rhizospheric region reaching up to 95%.In order to increase the effectiveness of plant-microbiome engineering in addressing wetland environmental pollution,the significance of incorporating synergistic techniques and taking a variety of environmental factors was discussed. 展开更多
关键词 heavy metal phytoremediation plant-microbe interaction symbiotic mechanism symbiotic relationship wetland system
原文传递
Collapse characteristics and mechanisms of shallow cross roadways under mining blasting disturbance
13
作者 XU Zhenyang LIU Aobo +3 位作者 REN Fuqiang YAN Yiran ZHANG Zuofu WANG Xuesong 《Journal of Mountain Science》 2025年第3期1101-1118,共18页
Cross roadway collapses are a common occurrence in underground mining operations.While the influence of mining blasts on the stability of surrounding rock is acknowledged,the underlying mechanisms remain inadequately ... Cross roadway collapses are a common occurrence in underground mining operations.While the influence of mining blasts on the stability of surrounding rock is acknowledged,the underlying mechanisms remain inadequately understood.This study investigates the characteristics and mechanisms of collapse in a shallow buried cross roadway subjected to mining blast disturbances,drawing insights from an engineering project in Anshan City,Northeast China.A strain-softening model based on unified strength theory was developed to effectively calculate and analyze the loosened zone thickness and surrounding rock displacement.The PFC3D-FLAC3D coupling method was employed to clarify the concentrated collapse area within the cross roadway,providing insight into the collapse mechanism through a cross-sectional model of the concentrated region.Results demonstrate that 50%of the cross roadway collapsed following the mining blast.Subsidence at the intersection was approximately one-fifth(0.66 m)of cross roadway’s net height,exceeding subsidence in other areas by 1.3.Under the action of repeated mining blasting,the cross section of the connection roadway forms a semi-elliptical high tensile stress zone.After the cumulative damage of the surrounding rock of the connection roadway exceeds the ultimate yield strength,the cumulative stress release causes the tensile failure of the surrounding rock.The plastic zone of the connecting roadway expands to three times of the initial,and continues to develop.The surrounding rock on both sides experienced tensile stress,cumulative stress release,and the vertical propagation of tensile cracks. 展开更多
关键词 Cross roadway PFC-FLAC coupling Blast vibration Collapse mechanism
在线阅读 下载PDF
Unraveling post-growth mechanisms of monolayer CsPbBr3 nanocubes:Laser-enhanced transformations and cathodoluminescence-electron microscopy correlations
14
作者 Mingxing Li Xiaoge Wang +5 位作者 Xiaofan Cao Zhiqun He Chunjun Liang Mingxing Chen Jing Ju Fangtian You 《Journal of Energy Chemistry》 2025年第1期146-156,共11页
Lead-halide perovskite nanoparticles(LHP NPs) are highly promising materials for next-generation displays and solid-state lighting due to their exceptional optical properties. However, their inherent instability prese... Lead-halide perovskite nanoparticles(LHP NPs) are highly promising materials for next-generation displays and solid-state lighting due to their exceptional optical properties. However, their inherent instability presents a significant challenge. Recent advances have demonstrated that optoelectronic devices based on monolayer nanoparticle films exhibit both high luminescence efficiency and long-term stability.Our research demonstrates that mobility limitations and anisotropic alignments in CsPbBr3nanocube monolayer films are key to their stabilization, hindering spontaneous growth through face-to-face fusion and resulting in the formation of connecting necks in a diagonal direction. Introducing laser irradiation confirmed this by significantly accelerating nanocubes growth, increasing mobility, and enhancing local structural ordering, leading to larger and more regularly shaped nanosheets. Fourier transform infrared spectroscopy and energy dispersive spectroscopy line-scan analyses indicated that laser irradiation did not disrupt the ligand structure. Transmission electron microscopy and correlative cathodoluminescence electron microscopy revealed the effects of post-growth and heterogeneous structures, including enhanced luminescence and inhomogeneous intensity in the nanosheets. These findings deepen the understanding of the post-growth mechanism of monolayer nanoparticles and the structure-emission correlation and highlight the unique role of laser irradiation in directing the formation of well-defined and regular nanostructures. 展开更多
关键词 CsPbBr3 nanocubes Post-growth mechanism Heterogeneous structure Single-particle spectroscopy Laser irradiation
在线阅读 下载PDF
Wnt/β-catenin signaling components and mechanisms in bone formation,homeostasis,and disease 被引量:3
15
作者 Lifang Hu Wei Chen +1 位作者 Airong Qian Yi-Ping Li 《Bone Research》 SCIE CAS CSCD 2024年第3期469-501,共33页
Wnts are secreted,lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways,which control various biological processes throughout embryo... Wnts are secreted,lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways,which control various biological processes throughout embryonic development and adult life.Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. 展开更多
关键词 HOMEOSTASIS CANONICAL mechanisms
在线阅读 下载PDF
Overview of the immunological mechanisms in hepatitis B virus reactivation:Implications for disease progression and management strategies 被引量:3
16
作者 Hui Ma Qing-Zhu Yan +2 位作者 Jing-Ru Ma Dong-Fu Li Jun-Ling Yang 《World Journal of Gastroenterology》 SCIE CAS 2024年第10期1295-1312,共18页
Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and manageme... Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and management.It delves into host immune responses and reactivation’s delicate balance,spanning innate and adaptive immunity.Viral factors’disruption of this balance,as are interac-tions between viral antigens,immune cells,cytokine networks,and immune checkpoint pathways,are examined.Notably,the roles of T cells,natural killer cells,and antigen-presenting cells are discussed,highlighting their influence on disease progression.HBV reactivation’s impact on disease severity,hepatic flares,liver fibrosis progression,and hepatocellular carcinoma is detailed.Management strategies,including anti-viral and immunomodulatory approaches,are critically analyzed.The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation.In conclusion,this compre-hensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation.With a dedicated focus on understanding its implic-ations for disease progression and the prospects of efficient management stra-tegies,this article contributes significantly to the knowledge base.The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches,ultimately enhancing disease management and elevating patient outcomes.The dynamic landscape of management strategies is critically scrutinized,spanning anti-viral and immunomodulatory approaches.The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation. 展开更多
关键词 Hepatitis B virus reactivation Immunological mechanisms Disease progression Management strategies Immune response
在线阅读 下载PDF
Regeneration of the heart:f rom molecular mechanisms to clinical therapeutics 被引量:2
17
作者 Qian-Yun Guo Jia-Qi Yang +1 位作者 Xun-Xun Feng Yu-Jie Zhou 《Military Medical Research》 SCIE CAS CSCD 2024年第1期80-97,共18页
Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public hea... Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public health burden.Military personnel,compared with civilians,is exposed to more stress,a risk factor for heart diseases,making cardiovascular health management and treatment innovation an important topic for military medicine.So far,medical intervention can slow down cardiovascular disease progression,but not yet induce heart regeneration.In the past decades,studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury.Insights have emerged from studies in animal models and early clinical trials.Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease.In this review,we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury. 展开更多
关键词 Heart regeneration Cardiac disease THERAPEUTICS Signaling mechanisms
在线阅读 下载PDF
Extracellular vesicles in anti-tumor drug resistance: Mechanisms and therapeutic prospects 被引量:1
18
作者 Hao-Yang Cheng Guang-Liang Su +2 位作者 Yu-Xuan Wu Gang Chen Zi-Li Yu 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第7期940-954,共15页
Drug resistance presents a significant challenge to achieving positive clinical outcomes in anti-tumor therapy.Prior research has illuminated reasons behind drug resistance,including increased drug efflux,alterations ... Drug resistance presents a significant challenge to achieving positive clinical outcomes in anti-tumor therapy.Prior research has illuminated reasons behind drug resistance,including increased drug efflux,alterations in drug targets,and abnormal activation of oncogenic pathways.However,there's a need for deeper investigation into the impact of drug-resistant cells on parental tumor cells and intricate crosstalk between tumor cells and the malignant tumor microenvironment(TME).Recent studies on extracellular vesicles(EVs)have provided valuable insights.EVs are membrane-bound particles secreted by all cells,mediating cell-to-cell communication.They contain functional cargoes like DNA,RNA,lipids,proteins,and metabolites from mother cells,delivered to other cells.Notably,EVs are increasingly recognized as regulators in the resistance to anti-cancer drugs.This review aims to summarize the mechanisms of EV-mediated anti-tumor drug resistance,covering therapeutic approaches like chemo-therapy,targeted therapy,immunotherapy and even radiotherapy.Detecting Ev-based biomarkers to predict drug resistance assists in bypassing anti-tumor drug resistance.Additionally,targeted inhibition of EV biogenesis and secretion emerges as a promising approach to counter drug resistance.We highlight the importance of conducting in-depth mechanistic research on EVs,their cargoes,and functional ap-proaches specifically focusing on EV subpopulations.These efforts will significantly advance the devel-opment of strategies to overcome drug resistance in anti-tumor therapy. 展开更多
关键词 Extracellular vesicle Anti-Tumor therapy Drug resistance mechanisms PROSPECTS
在线阅读 下载PDF
Pathological mechanisms of amyotrophic lateral sclerosis 被引量:1
19
作者 Yushu Hu Wenzhi Chen +4 位作者 Caihui Wei Shishi Jiang Shu Li Xinxin Wang Renshi Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1036-1044,共9页
Amyotrophic lateral sclerosis refers to a neurodegenerative disease involving the motor system,the cause of which remains unexplained despite several years of research.Thus,the journey to understanding or treating amy... Amyotrophic lateral sclerosis refers to a neurodegenerative disease involving the motor system,the cause of which remains unexplained despite several years of research.Thus,the journey to understanding or treating amyotrophic lateral sclerosis is still a long one.According to current research,amyotrophic lateral sclerosis is likely not due to a single factor but rather to a combination of mechanisms mediated by complex interactions between molecular and genetic pathways.The progression of the disease involves multiple cellular processes and the interaction between different complex mechanisms makes it difficult to identify the causative factors of amyotrophic lateral sclerosis.Here,we review the most common amyotrophic lateral sclerosis-associated pathogenic genes and the pathways involved in amyotrophic lateral sclerosis,as well as summarize currently proposed potential mechanisms responsible for amyotrophic lateral sclerosis disease and their evidence for involvement in amyotrophic lateral sclerosis.In addition,we discuss current emerging strategies for the treatment of amyotrophic lateral sclerosis.Studying the emergence of these new therapies may help to further our understanding of the pathogenic mechanisms of the disease. 展开更多
关键词 amyotrophic lateral sclerosis cellular pathways disease mechanisms motor neuron neurodegenerative disease
在线阅读 下载PDF
Mechanisms and active substances of targeting lipid peroxidation in ferroptosis regulation 被引量:1
20
作者 Hui Chen Lingli Chen Wenjun Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2502-2518,共17页
Ferroptosis is a novel form of cell death driven by iron-dependent lipid peroxidation and it is implicated in various diseases,such as liver disease,acute kidney injury,cardiovascular disease,neurodegenerative disease... Ferroptosis is a novel form of cell death driven by iron-dependent lipid peroxidation and it is implicated in various diseases,such as liver disease,acute kidney injury,cardiovascular disease,neurodegenerative disease and cancer.Lipid-based reactive oxygen species(ROS),particularly lipid hydroperoxides in the cellular membrane can lead to membrane disruption and cell death mediated by ferroptosis.There are three necessary stages involving in the process of lipid peroxidation regulation in ferroptosis,including the synthesis of membrane phospholipids,initiation of lipid peroxidation and clearance of lipid peroxides.In this review,we summarized the molecular modulation mechanisms of lipid peroxidation in ferroptosis from the above three stages,as well as various ferroptosis modulators targeting lipid peroxidation,including commonly used products,natural bioactive compounds and selenocompounds.Collectively,these findings suggest the vital role of lipid peroxidation in ferroptosis,and targeting lipid peroxidation in ferroptosis is potential to treat ferroptosis-associated diseases. 展开更多
关键词 Ferroptosis Lipid peroxidation mechanisms Natural bioactive compounds Selenocompounds
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部