In this study,the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented.Αmicro electro-mechanical systems,micro electro mechanical systems,sensor was housed i...In this study,the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented.Αmicro electro-mechanical systems,micro electro mechanical systems,sensor was housed in a robust enclosure and interfaced with a Raspberry Pi microcomputer with Internet connectivity into a proposed tilt and acceleration monitoring node.Online capabilities accessible by mobile phone such as real-time graph,early warning notification,and database logging were implemented using Python programming.The sensor response was calibrated for inherent bias and errors,and then tested thoroughly in the laboratory under static and dynamic loading conditions beside high-quality transducers.Satisfactory accuracy was achieved in real time using the Complementary Filter method,and it was further improved in LabVIEW using Kalman Filters with parameter tuning.A sensor interface with LabVIEW and a 600 MHz CPU microcontroller allowed real-time implementation of highspeed embedded filters,further optimizing sensor results.Kalman and embedded filtering results show agreement for the sensor,followed closely by the lowcomplexity complementary filter applied in real time.The sensor's dynamic response was also verified by shaking table tests,simulating past recorded seismic excitations or artificial vibrations,indicating negligible effect of external acceleration on measured tilt;sensor measurements were benchmarked using highquality tilt and acceleration measuring transducers.A preliminary field evaluation shows robustness of the sensor to harsh weather conditions.展开更多
Photoacoustic imaging(PAI)is a new biomedical imaging technology that provides a mixed contrast mechanism and excellent spatial resolution in biological tissues.It is a non-invasive technology that can provide in vivo...Photoacoustic imaging(PAI)is a new biomedical imaging technology that provides a mixed contrast mechanism and excellent spatial resolution in biological tissues.It is a non-invasive technology that can provide in vivo anatomical and functional information.This technology has great application potential in microscopic imaging and endoscope system.In recent years,the devel-opment of micro electro mechanical system(MEMS)technology has promoted the improvement and miniaturization of the photoacoustic imaging system,as well as its preclinical and clinical appli-cations.This paper introduces the research progress of MEMS technology in photoacoustic micro-scope systems and the miniaturization of photoacoustic endoscope ultrasonic transducers,and points out the shortcomings of existing technology and the direction of future development.展开更多
Currently, the monitoring of bridges in China heavily relies on manual operation, which has several major problems. It generally takes a very long time to complete an inspection process on bridges. The manual data is ...Currently, the monitoring of bridges in China heavily relies on manual operation, which has several major problems. It generally takes a very long time to complete an inspection process on bridges. The manual data is sometimes unreliable or even wrong in the case of careless operation. The inspection activity itself is dangerous for inspectors, e.g., bridges are located in the sea or river. Some semi-automatic monitoring methods are recently employed, but they are either very expensive or do not work properly. Therefore, the traditional bridge monitoring process becomes an increasing challenge for bridge operators. In this paper, a real-time and automatic bridge monitoring system is presented to meet the bridge monitoring needs, and MEMS (Micro Electro Mechanical Systems) are the key building block in this system. By using the MEMS-based sensors, it is much more efficient and accurate in monitoring bridges with the measurement of inclination, acceleration, displacement, moisture, temperature, stress and other data.展开更多
The virtual machine of code mechanism (VMCM) as a new concept for code mechanical solidification and verification is proposed and can be applied in MEMS (micro-electromechanical systems) security device for high c...The virtual machine of code mechanism (VMCM) as a new concept for code mechanical solidification and verification is proposed and can be applied in MEMS (micro-electromechanical systems) security device for high consequence systems. Based on a study of the running condition of physical code mechanism, VMCM's configuration, ternary encoding method, running action and logic are derived. The cases of multi-level code mechanism are designed and verified with the VMCM method, showing that the presented method is effective.展开更多
A novel and efficient absorption line recovery technique is presented.A micro-electromechanical systems(MEMS) mirror driven by an electrothermal actuator is used to generate laser intensity modulation through the mirr...A novel and efficient absorption line recovery technique is presented.A micro-electromechanical systems(MEMS) mirror driven by an electrothermal actuator is used to generate laser intensity modulation through the mirror reflection.Tunable diode laser spectroscopy(TDLS) and photoacoustic spectroscopy(PAS) are used to recover the target absorption line profile which is compared with the theoretical Voigt profile.The target gas is 0.01% acetylene(C2H2) in a nitrogen host gas.The laser diode wavelength is swept across the P17 absorption line of acetylene at 1 535.4 nm by a current ramp,and an erbium-doped fibre amplifier(EDFA) is used to enhance the optical intensity and increase the signal-to-noise ratio(SNR).A SNR of about 35 is obtained with 100 mW laser power from the EDFA.Good agreement is achieved between the experimental results and the theoretical simulation for the P17 absorption line profile.展开更多
基金Research Committee,National Technical University of Athens。
文摘In this study,the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented.Αmicro electro-mechanical systems,micro electro mechanical systems,sensor was housed in a robust enclosure and interfaced with a Raspberry Pi microcomputer with Internet connectivity into a proposed tilt and acceleration monitoring node.Online capabilities accessible by mobile phone such as real-time graph,early warning notification,and database logging were implemented using Python programming.The sensor response was calibrated for inherent bias and errors,and then tested thoroughly in the laboratory under static and dynamic loading conditions beside high-quality transducers.Satisfactory accuracy was achieved in real time using the Complementary Filter method,and it was further improved in LabVIEW using Kalman Filters with parameter tuning.A sensor interface with LabVIEW and a 600 MHz CPU microcontroller allowed real-time implementation of highspeed embedded filters,further optimizing sensor results.Kalman and embedded filtering results show agreement for the sensor,followed closely by the lowcomplexity complementary filter applied in real time.The sensor's dynamic response was also verified by shaking table tests,simulating past recorded seismic excitations or artificial vibrations,indicating negligible effect of external acceleration on measured tilt;sensor measurements were benchmarked using highquality tilt and acceleration measuring transducers.A preliminary field evaluation shows robustness of the sensor to harsh weather conditions.
基金supported by the National Natural Science Foundation of China(No.32101153)the Fundamental Research Funds for the Central Universities(No.2021CX11018).
文摘Photoacoustic imaging(PAI)is a new biomedical imaging technology that provides a mixed contrast mechanism and excellent spatial resolution in biological tissues.It is a non-invasive technology that can provide in vivo anatomical and functional information.This technology has great application potential in microscopic imaging and endoscope system.In recent years,the devel-opment of micro electro mechanical system(MEMS)technology has promoted the improvement and miniaturization of the photoacoustic imaging system,as well as its preclinical and clinical appli-cations.This paper introduces the research progress of MEMS technology in photoacoustic micro-scope systems and the miniaturization of photoacoustic endoscope ultrasonic transducers,and points out the shortcomings of existing technology and the direction of future development.
文摘Currently, the monitoring of bridges in China heavily relies on manual operation, which has several major problems. It generally takes a very long time to complete an inspection process on bridges. The manual data is sometimes unreliable or even wrong in the case of careless operation. The inspection activity itself is dangerous for inspectors, e.g., bridges are located in the sea or river. Some semi-automatic monitoring methods are recently employed, but they are either very expensive or do not work properly. Therefore, the traditional bridge monitoring process becomes an increasing challenge for bridge operators. In this paper, a real-time and automatic bridge monitoring system is presented to meet the bridge monitoring needs, and MEMS (Micro Electro Mechanical Systems) are the key building block in this system. By using the MEMS-based sensors, it is much more efficient and accurate in monitoring bridges with the measurement of inclination, acceleration, displacement, moisture, temperature, stress and other data.
基金Project supported by High-Technology Research and Develop-ment Program of China (Grant No .863 -2003AA404210)
文摘The virtual machine of code mechanism (VMCM) as a new concept for code mechanical solidification and verification is proposed and can be applied in MEMS (micro-electromechanical systems) security device for high consequence systems. Based on a study of the running condition of physical code mechanism, VMCM's configuration, ternary encoding method, running action and logic are derived. The cases of multi-level code mechanism are designed and verified with the VMCM method, showing that the presented method is effective.
基金Financial support from National High Technology Research and Development Programof China(Grant No.:2007A A06Z1122007AA03Z446)
文摘A novel and efficient absorption line recovery technique is presented.A micro-electromechanical systems(MEMS) mirror driven by an electrothermal actuator is used to generate laser intensity modulation through the mirror reflection.Tunable diode laser spectroscopy(TDLS) and photoacoustic spectroscopy(PAS) are used to recover the target absorption line profile which is compared with the theoretical Voigt profile.The target gas is 0.01% acetylene(C2H2) in a nitrogen host gas.The laser diode wavelength is swept across the P17 absorption line of acetylene at 1 535.4 nm by a current ramp,and an erbium-doped fibre amplifier(EDFA) is used to enhance the optical intensity and increase the signal-to-noise ratio(SNR).A SNR of about 35 is obtained with 100 mW laser power from the EDFA.Good agreement is achieved between the experimental results and the theoretical simulation for the P17 absorption line profile.