A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to ...A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.展开更多
BACKGROUND Mesenchymal stem cells,found in various tissues,possess significant healing and immunomodulatory properties,influencing macrophage polarization,which is essential for wound repair.However,chronic wounds pre...BACKGROUND Mesenchymal stem cells,found in various tissues,possess significant healing and immunomodulatory properties,influencing macrophage polarization,which is essential for wound repair.However,chronic wounds present significant therapeutic challenges,requiring novel strategies to improve healing outcomes.AIM To investigate the potential of fetal dermal mesenchymal stem cells(FDMSCs)in enhancing wound healing through modulation of macrophage polarization,specifically by promoting the M2 phenotype to address inflammatory responses in chronic wounds.METHODS FDMSCs were isolated from BalB/C mice and co-cultured with RAW264.7 macrophages to assess their effects on macrophage polarization.Flow cytometry,quantitative reverse transcriptase polymerase chain reaction,and histological analyses were employed to evaluate shifts in macrophage phenotype and wound healing in a mouse model.Statistical analysis was performed using GraphPad Prism.RESULTS FDMSCs induced macrophage polarization from the M1 to M2 phenotype,as demonstrated by a reduction in proinflammatory markers(inducible nitric oxide synthase,interleukin-6)and an increase in anti-inflammatory markers[mannose receptor(CD206),arginase-1]in co-cultured RAW264.7 macrophages.These shifts were confirmed by flow cytometry.In an acute skin wound model,FDMSC-treated mice exhibited faster wound healing,enhanced collagen deposition,and improved vascular regeneration compared to controls.Significantly higher expression of arginase-1 further indicated an enriched M2 macrophage environment.CONCLUSION FDMSCs effectively modulate macrophage polarization from M1 to M2,reduce inflammation,and enhance tissue repair,demonstrating their potential as an immunomodulatory strategy in wound healing.These findings highlight the promising therapeutic application of FDMSCs in managing chronic wounds.展开更多
Inflammation plays a crucial role in the regeneration of fish and avian retinas.However,how inflammation regulates Müller glia(MG)reprogramming remains unclear.Here,we used single-cell RNA sequencing to investiga...Inflammation plays a crucial role in the regeneration of fish and avian retinas.However,how inflammation regulates Müller glia(MG)reprogramming remains unclear.Here,we used single-cell RNA sequencing to investigate the cell heterogeneity and interactions of MG and immune cells in the regenerating zebrafish retina.We first showed that two types of quiescent MG(resting MG1 and MG2)reside in the uninjured retina.Following retinal injury,resting MG1 transitioned into an activated state expressing known reprogramming genes,while resting MG2 gave rise to rod progenitors.We further showed that retinal microglia can be categorized into three subtypes(microglia-1,microglia-2,and proliferative)and pseudotime analysis demonstrated dynamic changes in microglial status following retinal injury.Analysis of cell–cell interactions indicated extensive crosstalk between immune cells and MG,with many interactions shared among different immune cell types.Finally,we showed that inflammation activated Jak1–Stat3 signaling in MG,promoting their transition from a resting to an activated state.Our study reveals the cell heterogeneity and crosstalk of immune cells and MG in zebrafish retinal repair,and may provide valuable insights into future mammalian retina regeneration.展开更多
BACKGROUND Cervical cancer(CC)stem cell-like cells(CCSLCs),defined by the capacity of differentiation and self-renewal and proliferation,play a significant role in the progression of CC.However,the molecular mechanism...BACKGROUND Cervical cancer(CC)stem cell-like cells(CCSLCs),defined by the capacity of differentiation and self-renewal and proliferation,play a significant role in the progression of CC.However,the molecular mechanisms regulating their self-renewal are poorly understood.Therefore,elucidation of the epigenetic mechanisms that drive cancer stem cell self-renewal will enhance our ability to improve the effectiveness of targeted therapies for cancer stem cells.AIM To explore how DNA methyltransferase 1(DNMT1)/miR-342-3p/Forkhead box M1(FoxM1),which have been shown to have abnormal expression in CCSLCs,and their signaling pathways could stimulate self-renewal-related stemness in CCSLCs.METHODS Sphere-forming cells derived from CC cell lines HeLa,SiHa and CaSki served as CCSLCs.Self-renewal-related stemness was identified by determining sphere and colony formation efficiency,CD133 and CD49f protein level,and SRY-box transcription factor 2 and octamer-binding transcription factor 4 mRNA level.The microRNA expression profiles between HeLa cells and HeLa-derived CCSLCs or mRNA expression profiles that HeLaderived CCSLCs were transfected with or without miR-342-3p mimic were compared using quantitative PCR analysis.The expression levels of DNMT1 mRNA,miR-342-3p,and FoxM1 protein were examined by quantitative real-time PCR and western blotting.In vivo carcinogenicity was assessed using a mouse xenograft model.The functional effects of the DNMT1/miR-342-3p/FoxM1 axis were examined by in vivo and in vitro gain-of-activity and loss-of-activity assessments.Interplay among DNMT1,miR-342-3p,and FoxM1 was tested by methylationspecific PCR and a respective luciferase reporter assay.RESULTS CCSLCs derived from the established HeLa cell lines displayed higher self-renewal-related stemness,including enhanced sphere and colony formation efficiency,increased CD133 and CD49f protein level,and heightened transcriptional quantity of stemness-related factors SRY-box transcription factor 2 and octamer-binding transcription factor 4 in vitro as well as a stronger tumorigenic potential in vivo compared to their parental cells.Moreover,quantitative PCR showed that the miR-342-3p level was downregulated in HeLa-derived CCSLCs compared to HeLa cells.Its mimic significantly decreased DNMT1 and FoxM1 mRNA expression levels in CCSLCs.Knockdown of DNMT1 or miR-342-3p mimic transfection suppressed DNMT1 expression,increased miR-342-3p quantity by promoter demethylation,and inhibited CCSLC self-renewal.Inhibition of FoxM1 by shRNA transfection also resulted in the attenuation of CCSLC self-renewal but had little effect on the DNMT1 activity and miR-342-3p expression.Furthermore,the loss of CCSLC self-renewal exerted by miR-342-3p mimic was inverted by the overexpression of DNMT1 or FoxM1.Furthermore,DNMT1 and FoxM1 were recognized as straight targets by miR-342-3p in HeLa-derived CCSLCs.CONCLUSION Our findings suggested that a novel DNMT1/miR-342-3p/FoxM1 signal axis promotes CCSLC self-renewal and presented a potential target for the treatment of CC through suppression of CCSLC self-renewal.However,this pathway has been previously implicated in CC,as evidenced by prior studies showing miR-342-3p-mediated downregulation of FoxM1 in cervical cancer cells.Additionally,research on liver cancer further supports the involvement of miR-342-3p in suppressing FoxM1 expression.While our study contributed to this body of knowledge,we did not present a completely novel axis but reinforced the therapeutic potential of targeting the DNMT1/miR-342-3p/FoxM1 axis to suppress CCSLC self-renewal in CC treatment.展开更多
In this article,we comment on the article by Huang et al.The urgent development of new therapeutic strategies targeting macrophage polarization is critical in the fight against liver cancer.Tumor-associated macrophage...In this article,we comment on the article by Huang et al.The urgent development of new therapeutic strategies targeting macrophage polarization is critical in the fight against liver cancer.Tumor-associated macrophages(TAMs),primarily of the M2 subtype,are instrumental in cellular communication within the tumor microenvironment and are influenced by various signaling pathways,including the wingless/integrated(Wnt)pathway.Activation of the Wnt signaling pathway is pivotal in promoting M2 TAMs polarization,which in turn can exacerbate hepatocarcinoma cell proliferation and migration.This manuscript emphasizes the burgeoning significance of the Wnt signaling pathway and M2 TAMs polarization in the pathogenesis and progression of liver cancer,highlighting the potential therapeutic benefits of inhibiting the Wnt pathway.Lastly,we point out areas in Huang et al’s study that require further research,providing guidance and new directions for similar studies.展开更多
BACKGROUND Herlyn-Werner-Wunderlich(HWW)syndrome is a rare Müllerian duct anomaly,characterized by a combination of urogenital abnormalities.The occurrence of primary cervico-vaginal carcinomas in patients with H...BACKGROUND Herlyn-Werner-Wunderlich(HWW)syndrome is a rare Müllerian duct anomaly,characterized by a combination of urogenital abnormalities.The occurrence of primary cervico-vaginal carcinomas in patients with HWW syndrome is excep-tionally rare,posing significant challenges for screening,early diagnosis,and effective management.CASE SUMMARY We report a rare case of primary clear cell carcinoma of the vagina complicated in a 40-year-old woman with HWW syndrome.The patient presented with irregular vaginal bleeding for 4 years.On gynecological examination,an oblique vaginal septum was suspected.Surgical resection of the vaginal septum revealed a com-municating fistula and a tumor on the left vagina and the left side of the septum,which was confirmed as clear cell carcinoma.One month later,she underwent a radical hysterectomy,vaginectomy,bilateral salpingo-oophorectomy,and pelvic lymph node dissection.Due to significant side effects,she completed only one course of chemotherapy.A year later,lung metastasis was detected and continued to grow.A thoracoscopic wedge resection of the right upper lobe was performed 4 years after the initial surgery.We also conducted a systemic review of the lite-rature on primary cervical or vaginal carcinoma in HWW syndrome to explore this rare entity.CONCLUSION Cervico-vaginal adenocarcinomas in patients with HWW syndrome are occult,and require early surgical intervention and regular imaging surveillance.展开更多
Background:Breast cancer(BC)is the most common cancer and the leading cause of cancer death in women.Immune features play an important role in improving the prognosis prediction of BC.However,while previous immune sig...Background:Breast cancer(BC)is the most common cancer and the leading cause of cancer death in women.Immune features play an important role in improving the prognosis prediction of BC.However,while previous immune signatures consisted mainly of immune genes,immune cell-based signatures have been rarely reported.Methods:In this study,we report that a novel immune cell signature is effective in improving prognostic prediction by combining M2 macrophages.We identified 17 differentially infiltrating immune cells between cancer and normal groups.Prognostic features of the four immune cells identified by LASSO COX analysis showed good performance for survival risk stratification in both the training and validation datasets.Independent prognostic analysis showed that M2 macrophages were significantly associated with survival in BC patients and both the cells and the risk score were the main prognostic factors independent of survival in BC patients.Results:Therefore,we combined M2 macrophages and risk scores to create a nomogram with good prognostic predictive power.Finally,we attempted to study the effect of M2 on M2 macrophage progression in BC in vitro.BC cells cultured with M2 macrophage-conditioned medium exhibited distinct malignant features,including migration and invasion.Conclusion:The findings suggest that M2 macrophages are associated with poor prognosis in breast cancer patients possibly by promoting tumor invasion and migration.This work may provide a new strategy for prognostic prediction and immunotherapy in BC.展开更多
Objective: Squamous esophageal carcinoma is highly prevalent in developing countries, especially in China. Tu Bei Mu (TBM), a traditional folk medicine, has been used to treat esophageal squamous cell carcinoma (E...Objective: Squamous esophageal carcinoma is highly prevalent in developing countries, especially in China. Tu Bei Mu (TBM), a traditional folk medicine, has been used to treat esophageal squamous cell carcinoma (ESCC) for a long term. tubeimoside I (TBMS1) is the main component of TBM, exhibiting great anticancer potential. In this study, we investigated the mechanism of TBMS1 cytotoxic effect on EC109 cells. Methods: Comparative nuclear proteomic approach was applied in the current study and we identified several altered protein spots. Further biochemical studies were carried out to detect the mitochondrial membrane potential, cell cycle and corresponding proteins' expression and location. Results: Subcellular proteomic study in the nucleus from EC109 cells revealed that altered proteins were associated with mitochondrial function and cell proliferation. Further biochemical studies showed that TBMSl-induced molecular events were related to mitochondria-induced intrinsic apoptosis and P21-cyclin B 1/cdc2 complex-related G2/M cell cycle arrest. Conclusions: Considering the conventional application of TBM in esophageal cancer, TBMS1 therefore may have a great potential as a chemotherapeutic drug candidate for ESCC.展开更多
Objective To examine the role of Cd-induced reactive oxygen species(ROS) generation in the apoptosis of neuronal cells. Methods Neuronal cells(primary rat cerebral cortical neurons and PC12 cells) were incubated w...Objective To examine the role of Cd-induced reactive oxygen species(ROS) generation in the apoptosis of neuronal cells. Methods Neuronal cells(primary rat cerebral cortical neurons and PC12 cells) were incubated with or without Cd post-pretreatment with rapamycin(Rap) or N-acetyl-L-cysteine(NAC). Cell viability was determined by MTT assay, apoptosis was examined using flow cytometry and fluorescence microscopy, and the activation of phosphoinositide 3’-kinase/protein kinase B(Akt)/mammalian target of rapamycin(m TOR) and mitochondrial apoptotic pathways were measured by western blotting or immunofluorescence assays. Results Cd-induced activation of Akt/m TOR signaling, including Akt, m TOR, p70 S6 kinase(p70 S6K), and eukaryotic initiation factor 4E binding protein 1(4E-BP1). Rap, an m TOR inhibitor and NAC, a ROS scavenger, blocked Cd-induced activation of Akt/m TOR signaling and apoptosis of neuronal cells. Furthermore, NAC blocked the decrease of B-cell lymphoma 2/Bcl-2 associated X protein(Bcl-2/Bax) ratio, release of cytochrome c, cleavage of caspase-3 and poly(ADP-ribose) polymerase(PARP), and nuclear translocation of apoptosis-inducing factor(AIF) and endonuclease G(Endo G). Conclusion Cd-induced ROS generation activates Akt/m TOR and mitochondrial pathways, leading to apoptosis of neuronal cells. Our findings suggest that m TOR inhibitors or antioxidants have potential for preventing Cd-induced neurodegenerative diseases.展开更多
The onset of retinal degenerative disease is often associated with neuronal loss. Therefore, how to regenerate new neurons to restore vision is an important issue. NeuroD1 is a neural transcription factor with the abi...The onset of retinal degenerative disease is often associated with neuronal loss. Therefore, how to regenerate new neurons to restore vision is an important issue. NeuroD1 is a neural transcription factor with the ability to reprogram brain astrocytes into neurons in vivo. Here, we demonstrate that in adult mice, NeuroD1 can reprogram Müller cells, the principal glial cell type in the retina, to become retinal neurons. Most strikingly, ectopic expression of NeuroD1 using two different viral vectors converted Müller cells into different cell types. Specifically, AAV7 m8 GFAP681::GFP-ND1 converted Müller cells into inner retinal neurons, including amacrine cells and ganglion cells. In contrast, AAV9 GFAP104::ND1-GFP converted Müller cells into outer retinal neurons such as photoreceptors and horizontal cells, with higher conversion efficiency. Furthermore, we demonstrate that Müller cell conversion induced by AAV9 GFAP104::ND1-GFP displayed clear dose-and time-dependence. These results indicate that Müller cells in adult mice are highly plastic and can be reprogrammed into various subtypes of retinal neurons.展开更多
The gastrointestinal tract represents the largest mucosal membrane surface in the human body. The immune system in the gut is the first line of host defense against mucosal microbial pathogens and it plays a crucial r...The gastrointestinal tract represents the largest mucosal membrane surface in the human body. The immune system in the gut is the first line of host defense against mucosal microbial pathogens and it plays a crucial role in maintaining mucosal homeostasis. Membranous or microfold cells, commonly referred to as microfold cells, are specialized epithelial cells of the gut-associated lymphoid tissues (GALT) and they play a sentinel role for the intestinal immune system by delivering luminal antigens through the follicle-associated epithelium to the underlying immune cells. M cells sample and uptake antigens at their apical membrane, encase them in vesicles to transport them to the basolateral membrane of M cells, and from there deliver antigens to the nearby lymphocytes. On the flip side, some intestinal pathogens exploit M cells as their portal of entry to invade the host and cause infections. In this article, we briefly review our current knowledge on the morphology, development, and function of M cells, with an emphasis on their dual role in the pathogenesis of gut infection and in the development of host mucosal immunity.展开更多
Hepatitis C virus(HCV) is the main cause of chronic liver disease and cirrhosis in Western countries. Over time, the majority of cirrhotic patients develop hepatocellular carcinoma(HCC), one of the most common fatal c...Hepatitis C virus(HCV) is the main cause of chronic liver disease and cirrhosis in Western countries. Over time, the majority of cirrhotic patients develop hepatocellular carcinoma(HCC), one of the most common fatal cancers worldwide- fourth for incidence rate. A high public health priority need is the development of biomarkers to screen for liver disease progression and for early diagnosis of HCC development, particularly in the high risk population represented by HCV-positive patients with cirrhosis. Several studies have shown that serological determination of a novel biomarker, squamous cell carcinoma antigen-immunoglobulins M(SCCA-Ig M), might be useful to identify patients with progressive liver disease. In the initial part of this review we summarize the main clinical studies that have investigated this new circulating biomarker on HCV-infected patients, providing evidence that in chronic hepatitis C SCCA-Ig M may be used to monitor progression of liver disease, and also to assess the virological response to antiviral treatment. In the last part of this review we address other, not less important, clinical applications of this biomarker in hepatology.展开更多
AIM: To investigate the effect of protein kinase C (PKC) on transforming growth factor-β2 (TGFβ2) and dopamine in retinal Müller cells of guinea pig myopic eye. METHODS: Myopia was induced by translucent goggle...AIM: To investigate the effect of protein kinase C (PKC) on transforming growth factor-β2 (TGFβ2) and dopamine in retinal Müller cells of guinea pig myopic eye. METHODS: Myopia was induced by translucent goggles in guinea pig, whose retinal Müller cells were cultured using the enzyme-digesting method. Retinal Müller cells were divided into 5 groups: normal control, myopia, myopia plus GF109203X, myopia plus PMA, myopia plus DMSO. PKC activities were detected by the non-radioactive methods. TGFβ2 and tyrosine hydroxylase (TH) proteins were analyzed by Western Blotting in retinal Müller cells. Dopamine was determined by the high-performance liquid chromatography- electrochemical detection in suspensions. RESULTS: After 14 days deprived, the occluded eyes became myopic with ocular axle elongating. Müller cells of guinea pigs were obtained using enzyme digestion. Compared with normal control group, the increase in PKC activity and the up-regulation in TGFβ2 expression were found in retinal Müller cells of myopic eyes, with the decrease of TH and dopamine content (P <0.05). After PKC activated by PMA, TGFβ2 and TH content were up-regulated with the increase of dopamine content (P <0.05). While the PKC activities was inhibited by GF109203X, proteins of TGFβ2 and TH were down-regulated in the myopic eyes, with the decrease of dopamine content (P <0.05). CONCLUSION: TGFβ2 and dopamine are modulated by PKC in Müller cells of the myopic eyes in guinea pig.展开更多
·AIM: To explore the effects and potential mechanisms of curcumin on retinal Müller cell in early diabetic rats. ·METHODS: Diabetic rats were induced by a single intraperitoneal injection of streptozoto...·AIM: To explore the effects and potential mechanisms of curcumin on retinal Müller cell in early diabetic rats. ·METHODS: Diabetic rats were induced by a single intraperitoneal injection of streptozotocin (STZ). Male Sprague-Dawley (SD) rats were randomly assigned into 4 groups: control group (nave SD rats administered with a single intraperitoneal injection of citric buffer), diabetic group (STZ -diabetic rats), dimethyl sulfoxide (DMSO) group (diabetic rats intraperitoneally administered with mixture of DMSO and normal saline, once a day) and curcumin group (diabetic rats intraperitoneally administered with curcumin, 80mg/kg, once a day). Three months after diabetes onset, malondialdehyde (MDA, indication of oxidative stress level) and reduced glutathione (GSH) in retina were detected with kits, glial fibrillary acidic protein (GFAP) in retina was revealed by immunohistochemistry and Western blot, and retinal glutamine synthetase (GS) were observed by Western blot. ·RESULTS: Compared with control group, retinal MDA was increased, and GSH was decreased in diabetic and DMSO groups ( 【0.05, respectively). While, retinal MDA and GSH in curcumin group showed no difference compared with control group ( 】0.05). Furthermore, upregulation of retinal GFAP and down-regulation of retinal GS were detected in diabetic and DMSO groups, and no alteration could be observed in curcumin group revealed with Western blot. Compared with control group, retinal Müller cells showed significant increase in GFAP immunochemistry staining in diabetic and DMSO groups. Moreover, GFAP -positive staining was decreased in curcumin group compared with diabetic group. · CONCLUSION: Curcumin inhibits diabetic retinal oxidative stress, protects Müller cell, and prevents the down -regulation of GS in diabetic retina. Therefore, curcumin has a therapeutic potential in the treatment of diabetic retinopathy (DR).展开更多
Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeox...Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeoxycholic acid. Results from immunofluorescent co-localization experiments showed that both caspase-12 protein and c-Jun N-terminal kinase 1 phosphorylation levels significantly in- creased, which was associated with retinal ganglion cell death in diabetic retinas. The C/ERB ho- mologous protein pathway directly contributed to glial reactivity, and was subsequently responsible for neuronal loss and vascular abnormalities in diabetic retinopathy. Our experimental findings in- dicate that endoplasmic reticulum stress plays an important role in diabetes-induced retinal neu- ronal loss and vascular abnormalities, and that inhibiting the activation of the endoplasmic reticulum stress pathway provides effective protection against diabetic retinopathy.展开更多
Recent advances in avian transgenic studies highlight the possibility of utilizing lentiviral vectors as tools to generate transgenic chickens. However, low rates of gonadal chimerism and germ line transmission effici...Recent advances in avian transgenic studies highlight the possibility of utilizing lentiviral vectors as tools to generate transgenic chickens. However, low rates of gonadal chimerism and germ line transmission efficiency still limit the broad usage of this method in creating transgenic chickens. In this study, we implemented a simple strategy using modified lentiviral vectors targeted to chicken primordial germ cells(PGCs) to generate transgenic chickens. The lentiviral vectors were pseudotyped with a modified Sindbis virus envelope protein(termed M168) and conjugated with an antibody specific to PGC membrane proteins. We demonstrated that these optimized M168-pseudotyped lentiviral vectors conjugated with SSEA4 antibodies successfully targeted transduction of PGCs in vitro and in vivo. Compared with the control, 50.0%–66.7% of chicken embryos expressed green fluorescent protein(GFP) in gonads transduced by the M168-pseudotyped lentivirus. This improved the targeted transduction efficiency by 30.0%–46.7%. Efficient chimerism of exogenous genes was also observed. This targeting technology could improve the efficiency of germ line transmission and provide greater opportunities for transgenic poultry studies.展开更多
AIM: To determine the effect of pirfenidone on the activated human Müller cells by platelet-derived growth factor-BB(PDGF-BB). METHODS: The primary human Müller cells were separated from retinal tissues and ...AIM: To determine the effect of pirfenidone on the activated human Müller cells by platelet-derived growth factor-BB(PDGF-BB). METHODS: The primary human Müller cells were separated from retinal tissues and established the pathogenic model by stimulated with PDGF-BB. The Müller cells behaviour of normal group and the model group was measured by MTT assay, Trypan blue assay, cell migration assay, and collagen contraction assay. The expression of transforming growth factor(TGF)-β1,-β2, and pigment epithelium-derived factor(PEDF) was estimated with realtime polymerase chain reaction(PCR), Western blot and immunofluorescence analyses. RESULTS: A pathogenic/proliferative model of Müller cells was established by stimulating normal cultured Müller cells with 10 ng/mL PDGF-BB for 48 h. After treated with 0.2 and 0.3 mg/mL pirfenidone, the proliferation, migration and collagen contraction was statistically significantly depressed in the model group compared with the normal groups. The expression levels of TGF-β1 and TGF-β2 were significantly down-regulated, while the PEDF expression was significantly up-regulated after treated with 0.2 and 0.3 mg/mL pirfenidone in the model group. CONCLUSION: Pirfenidone effectively suppress the proliferation, migration and collagen contraction of the human Müller cells stimulated with PDGF-BB through down-regulation of TGF-β1/TGF-β2 and up-regulation of PEDF.展开更多
BACKGROUND Retinal organoids serve as excellent human-specific disease models for conditions affecting otherwise inaccessible retinal tissue from patients.They permit the isolation of key cell types affected in variou...BACKGROUND Retinal organoids serve as excellent human-specific disease models for conditions affecting otherwise inaccessible retinal tissue from patients.They permit the isolation of key cell types affected in various eye diseases including retinal ganglion cells(RGCs)and Müller glia.AIM To refine human-induced pluripotent stem cells(hiPSCs)differentiated into threedimensional(3D)retinal organoids to generate sufficient numbers of RGCs and Müller glia progenitors for downstream analyses.METHODS In this study we described,evaluated,and refined methods with which to generate Müller glia and RGC progenitors,isolated them via magnetic-activated cell sorting,and assessed their lineage stability after prolonged 2D culture.Putative progenitor populations were characterized via quantitative PCR and immunocytochemistry,and the ultrastructural composition of retinal organoid cells was investigated.RESULTS Our study confirms the feasibility of generating marker-characterized Müller glia and RGC progenitors within retinal organoids.Such retinal organoids can be dissociated and the Müller glia and RGC progenitor-like cells isolated via magnetic-activated cell sorting and propagated as monolayers.CONCLUSION Enrichment of Müller glia and RGC progenitors from retinal organoids is a feasible method with which to study cell type-specific disease phenotypes and to potentially generate specific retinal populations for cell replacement therapies.展开更多
AIM To investigate the role of macrophage colony-stimulating factor(M-CSF) in patients with hepatocellular carcinoma(HCC) after surgery. METHODS Expression of M-CSF, distribution of M2 macrophages(Mφs), and angiogene...AIM To investigate the role of macrophage colony-stimulating factor(M-CSF) in patients with hepatocellular carcinoma(HCC) after surgery. METHODS Expression of M-CSF, distribution of M2 macrophages(Mφs), and angiogenesis were assessed in the liver, including tumors and peritumoral liver tissues. The prognostic power of these factors was assessed. Mouse isolated hepatic Mφs or monocytes were cultured with media containing M-CSF. The concentration of vascular endothelial growth factor(VEGF) in media was assessed. Furthermore, the role of the M-CSF-matured hepatic Mφs on proliferation of the vascular endothelial cell(VEC) was investigated. RESULTS A strong correlation between the expressions of M-CSF and CD163 was observed in the peritumoral area. Also, groups with high density of M-CSF, CD163 or CD31 showed a significantly shorter time to recurrence(TTR) than low density groups. Multivariate analysis revealedthe expression of M-CSF or hepatic M2Mφs in the peritumoral area as the most crucial factor responsible for shorter TTR. Moreover, the expression of M-CSF and hepatic M2Mφs in the peritumoral area had better predictable power of overall survival. Values of VEGF in culture media were significantly greater in the hepatic Mφs compared with the monocytes. Proliferation of the VEC was greatest in the cells co-cultured with hepatic Mφs when M-CSF was present in media.CONCLUSION M-CSF increases hepatocarcinogenesis, most likely by enhancing an angiogenic factor derived from hepatic Mφ and could be a useful target for therapy against HCC.展开更多
Serotonin is ubiquitous across all forms of life and functions in responses to biotic and abiotic stresses.In rice,the conversion of tryptamine to serotonin is catalyzed by Sekiguchi lesion(SL).Previous studies have i...Serotonin is ubiquitous across all forms of life and functions in responses to biotic and abiotic stresses.In rice,the conversion of tryptamine to serotonin is catalyzed by Sekiguchi lesion(SL).Previous studies have identified an sl mutation(a null mutation of SL)in several rice varieties and confirmed its increase of resistance and cell death.However,a systematic understanding of the reprogrammed cellular processes causing cell death and resistance is lacking.We performed a multi-omics analysis to clarify the fundamental mechanisms at the protein,gene transcript,and metabolite levels.We found that cell death and Magnaporthe oryzae(M.oryzae)infection of the sl-MH-1 mutant activated plant hormone signal transduction involving salicylic acid(SA),jasmonic acid(JA),and abscisic acid(ABA)in multiple regulatory layers.We characterized the dynamic changes of several key hormone levels during disease progression and under the cell death conditions and showed that SA and JA positively regulated rice cell death and disease resistance.SL-overexpressing lines confirmed that the sl-MH-1 mutant positively regulated rice resistance to M.oryzae.Our studies shed light on cell death and facilitate further mechanistic dissection of programmed cell death in rice.展开更多
基金supported by the Army Laboratory Animal Foundation of China,No.SYDW[2020]22(to TC)the Shaanxi Provincial Key R&D Plan General Project of China,No.2022SF-236(to YM)the National Natural Science Foundation of China,No.82202070(to TC)。
文摘A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.
基金National Natural Science Foundation of China,No.81873934and Jinan Science and Technology Planning Project,No.202225065.
文摘BACKGROUND Mesenchymal stem cells,found in various tissues,possess significant healing and immunomodulatory properties,influencing macrophage polarization,which is essential for wound repair.However,chronic wounds present significant therapeutic challenges,requiring novel strategies to improve healing outcomes.AIM To investigate the potential of fetal dermal mesenchymal stem cells(FDMSCs)in enhancing wound healing through modulation of macrophage polarization,specifically by promoting the M2 phenotype to address inflammatory responses in chronic wounds.METHODS FDMSCs were isolated from BalB/C mice and co-cultured with RAW264.7 macrophages to assess their effects on macrophage polarization.Flow cytometry,quantitative reverse transcriptase polymerase chain reaction,and histological analyses were employed to evaluate shifts in macrophage phenotype and wound healing in a mouse model.Statistical analysis was performed using GraphPad Prism.RESULTS FDMSCs induced macrophage polarization from the M1 to M2 phenotype,as demonstrated by a reduction in proinflammatory markers(inducible nitric oxide synthase,interleukin-6)and an increase in anti-inflammatory markers[mannose receptor(CD206),arginase-1]in co-cultured RAW264.7 macrophages.These shifts were confirmed by flow cytometry.In an acute skin wound model,FDMSC-treated mice exhibited faster wound healing,enhanced collagen deposition,and improved vascular regeneration compared to controls.Significantly higher expression of arginase-1 further indicated an enriched M2 macrophage environment.CONCLUSION FDMSCs effectively modulate macrophage polarization from M1 to M2,reduce inflammation,and enhance tissue repair,demonstrating their potential as an immunomodulatory strategy in wound healing.These findings highlight the promising therapeutic application of FDMSCs in managing chronic wounds.
基金supported by the National Natural Science Foundation of China,Nos.81970820(to HX),31771644(to JL),31930068(to JL),82371176(to JL),81801331(to LC)National Key Research and Development Project of China.Nos.2017YFA0104100(to JL),2017YFA0701304(to HX)+1 种基金Shanghai Yangzhi Rehabilitation Hospital(Shanghai Sunshine Rehabilitation Center)Talent Introduction Plan,No.KYPT202204(to LC)the Fundamental Research Funds for the Central Universities,No.22120230292(to JL)。
文摘Inflammation plays a crucial role in the regeneration of fish and avian retinas.However,how inflammation regulates Müller glia(MG)reprogramming remains unclear.Here,we used single-cell RNA sequencing to investigate the cell heterogeneity and interactions of MG and immune cells in the regenerating zebrafish retina.We first showed that two types of quiescent MG(resting MG1 and MG2)reside in the uninjured retina.Following retinal injury,resting MG1 transitioned into an activated state expressing known reprogramming genes,while resting MG2 gave rise to rod progenitors.We further showed that retinal microglia can be categorized into three subtypes(microglia-1,microglia-2,and proliferative)and pseudotime analysis demonstrated dynamic changes in microglial status following retinal injury.Analysis of cell–cell interactions indicated extensive crosstalk between immune cells and MG,with many interactions shared among different immune cell types.Finally,we showed that inflammation activated Jak1–Stat3 signaling in MG,promoting their transition from a resting to an activated state.Our study reveals the cell heterogeneity and crosstalk of immune cells and MG in zebrafish retinal repair,and may provide valuable insights into future mammalian retina regeneration.
基金Supported by Guangzhou Basic and Applied Basic Research Foundation,No.202201010121Medical Joint Fund of Jinan University,No.YXZY2024014 and No.YXJC2022001+2 种基金Hospital Achievement Transformation and Cultivation Project,No.ZH201911the Key Discipline Project of Guangdong Province,No.2019-GDXK-0016and the Medical Science and Technology Research Foundation of Guangdong Province,No.B2021145.
文摘BACKGROUND Cervical cancer(CC)stem cell-like cells(CCSLCs),defined by the capacity of differentiation and self-renewal and proliferation,play a significant role in the progression of CC.However,the molecular mechanisms regulating their self-renewal are poorly understood.Therefore,elucidation of the epigenetic mechanisms that drive cancer stem cell self-renewal will enhance our ability to improve the effectiveness of targeted therapies for cancer stem cells.AIM To explore how DNA methyltransferase 1(DNMT1)/miR-342-3p/Forkhead box M1(FoxM1),which have been shown to have abnormal expression in CCSLCs,and their signaling pathways could stimulate self-renewal-related stemness in CCSLCs.METHODS Sphere-forming cells derived from CC cell lines HeLa,SiHa and CaSki served as CCSLCs.Self-renewal-related stemness was identified by determining sphere and colony formation efficiency,CD133 and CD49f protein level,and SRY-box transcription factor 2 and octamer-binding transcription factor 4 mRNA level.The microRNA expression profiles between HeLa cells and HeLa-derived CCSLCs or mRNA expression profiles that HeLaderived CCSLCs were transfected with or without miR-342-3p mimic were compared using quantitative PCR analysis.The expression levels of DNMT1 mRNA,miR-342-3p,and FoxM1 protein were examined by quantitative real-time PCR and western blotting.In vivo carcinogenicity was assessed using a mouse xenograft model.The functional effects of the DNMT1/miR-342-3p/FoxM1 axis were examined by in vivo and in vitro gain-of-activity and loss-of-activity assessments.Interplay among DNMT1,miR-342-3p,and FoxM1 was tested by methylationspecific PCR and a respective luciferase reporter assay.RESULTS CCSLCs derived from the established HeLa cell lines displayed higher self-renewal-related stemness,including enhanced sphere and colony formation efficiency,increased CD133 and CD49f protein level,and heightened transcriptional quantity of stemness-related factors SRY-box transcription factor 2 and octamer-binding transcription factor 4 in vitro as well as a stronger tumorigenic potential in vivo compared to their parental cells.Moreover,quantitative PCR showed that the miR-342-3p level was downregulated in HeLa-derived CCSLCs compared to HeLa cells.Its mimic significantly decreased DNMT1 and FoxM1 mRNA expression levels in CCSLCs.Knockdown of DNMT1 or miR-342-3p mimic transfection suppressed DNMT1 expression,increased miR-342-3p quantity by promoter demethylation,and inhibited CCSLC self-renewal.Inhibition of FoxM1 by shRNA transfection also resulted in the attenuation of CCSLC self-renewal but had little effect on the DNMT1 activity and miR-342-3p expression.Furthermore,the loss of CCSLC self-renewal exerted by miR-342-3p mimic was inverted by the overexpression of DNMT1 or FoxM1.Furthermore,DNMT1 and FoxM1 were recognized as straight targets by miR-342-3p in HeLa-derived CCSLCs.CONCLUSION Our findings suggested that a novel DNMT1/miR-342-3p/FoxM1 signal axis promotes CCSLC self-renewal and presented a potential target for the treatment of CC through suppression of CCSLC self-renewal.However,this pathway has been previously implicated in CC,as evidenced by prior studies showing miR-342-3p-mediated downregulation of FoxM1 in cervical cancer cells.Additionally,research on liver cancer further supports the involvement of miR-342-3p in suppressing FoxM1 expression.While our study contributed to this body of knowledge,we did not present a completely novel axis but reinforced the therapeutic potential of targeting the DNMT1/miR-342-3p/FoxM1 axis to suppress CCSLC self-renewal in CC treatment.
基金Supported by Macao Science and Technology Development Fund,No.0086/2022/A and No.0097/2022/A2.
文摘In this article,we comment on the article by Huang et al.The urgent development of new therapeutic strategies targeting macrophage polarization is critical in the fight against liver cancer.Tumor-associated macrophages(TAMs),primarily of the M2 subtype,are instrumental in cellular communication within the tumor microenvironment and are influenced by various signaling pathways,including the wingless/integrated(Wnt)pathway.Activation of the Wnt signaling pathway is pivotal in promoting M2 TAMs polarization,which in turn can exacerbate hepatocarcinoma cell proliferation and migration.This manuscript emphasizes the burgeoning significance of the Wnt signaling pathway and M2 TAMs polarization in the pathogenesis and progression of liver cancer,highlighting the potential therapeutic benefits of inhibiting the Wnt pathway.Lastly,we point out areas in Huang et al’s study that require further research,providing guidance and new directions for similar studies.
文摘BACKGROUND Herlyn-Werner-Wunderlich(HWW)syndrome is a rare Müllerian duct anomaly,characterized by a combination of urogenital abnormalities.The occurrence of primary cervico-vaginal carcinomas in patients with HWW syndrome is excep-tionally rare,posing significant challenges for screening,early diagnosis,and effective management.CASE SUMMARY We report a rare case of primary clear cell carcinoma of the vagina complicated in a 40-year-old woman with HWW syndrome.The patient presented with irregular vaginal bleeding for 4 years.On gynecological examination,an oblique vaginal septum was suspected.Surgical resection of the vaginal septum revealed a com-municating fistula and a tumor on the left vagina and the left side of the septum,which was confirmed as clear cell carcinoma.One month later,she underwent a radical hysterectomy,vaginectomy,bilateral salpingo-oophorectomy,and pelvic lymph node dissection.Due to significant side effects,she completed only one course of chemotherapy.A year later,lung metastasis was detected and continued to grow.A thoracoscopic wedge resection of the right upper lobe was performed 4 years after the initial surgery.We also conducted a systemic review of the lite-rature on primary cervical or vaginal carcinoma in HWW syndrome to explore this rare entity.CONCLUSION Cervico-vaginal adenocarcinomas in patients with HWW syndrome are occult,and require early surgical intervention and regular imaging surveillance.
基金funded by the Construction and Practice of Management Cloud Platform for Intravenous Therapy Specialist Alliance,Sichuan Provincial Health Commission of Sichuan Provincial(l9pj120).
文摘Background:Breast cancer(BC)is the most common cancer and the leading cause of cancer death in women.Immune features play an important role in improving the prognosis prediction of BC.However,while previous immune signatures consisted mainly of immune genes,immune cell-based signatures have been rarely reported.Methods:In this study,we report that a novel immune cell signature is effective in improving prognostic prediction by combining M2 macrophages.We identified 17 differentially infiltrating immune cells between cancer and normal groups.Prognostic features of the four immune cells identified by LASSO COX analysis showed good performance for survival risk stratification in both the training and validation datasets.Independent prognostic analysis showed that M2 macrophages were significantly associated with survival in BC patients and both the cells and the risk score were the main prognostic factors independent of survival in BC patients.Results:Therefore,we combined M2 macrophages and risk scores to create a nomogram with good prognostic predictive power.Finally,we attempted to study the effect of M2 on M2 macrophage progression in BC in vitro.BC cells cultured with M2 macrophage-conditioned medium exhibited distinct malignant features,including migration and invasion.Conclusion:The findings suggest that M2 macrophages are associated with poor prognosis in breast cancer patients possibly by promoting tumor invasion and migration.This work may provide a new strategy for prognostic prediction and immunotherapy in BC.
基金supported by the Natural Science Foundation of Fujian Province of China (No. 2011J05098)the Fundamental Research Funds for the Central Universities (No. 2011121055)+1 种基金Grants from the National Natural Science Foundation of China (No. 81202956)SRF for ROCS, SEM [2011]1568 and NSFC (No. 81102332)
文摘Objective: Squamous esophageal carcinoma is highly prevalent in developing countries, especially in China. Tu Bei Mu (TBM), a traditional folk medicine, has been used to treat esophageal squamous cell carcinoma (ESCC) for a long term. tubeimoside I (TBMS1) is the main component of TBM, exhibiting great anticancer potential. In this study, we investigated the mechanism of TBMS1 cytotoxic effect on EC109 cells. Methods: Comparative nuclear proteomic approach was applied in the current study and we identified several altered protein spots. Further biochemical studies were carried out to detect the mitochondrial membrane potential, cell cycle and corresponding proteins' expression and location. Results: Subcellular proteomic study in the nucleus from EC109 cells revealed that altered proteins were associated with mitochondrial function and cell proliferation. Further biochemical studies showed that TBMSl-induced molecular events were related to mitochondria-induced intrinsic apoptosis and P21-cyclin B 1/cdc2 complex-related G2/M cell cycle arrest. Conclusions: Considering the conventional application of TBM in esophageal cancer, TBMS1 therefore may have a great potential as a chemotherapeutic drug candidate for ESCC.
基金supported by the National Natural Science Foundation of China(No.31101866 and 31302058)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China Postdoctoral Science Foundation funded project(2015M581874)Jiangsu Planned Projects for Postdoctoral Research Funds(1501072A)
文摘Objective To examine the role of Cd-induced reactive oxygen species(ROS) generation in the apoptosis of neuronal cells. Methods Neuronal cells(primary rat cerebral cortical neurons and PC12 cells) were incubated with or without Cd post-pretreatment with rapamycin(Rap) or N-acetyl-L-cysteine(NAC). Cell viability was determined by MTT assay, apoptosis was examined using flow cytometry and fluorescence microscopy, and the activation of phosphoinositide 3’-kinase/protein kinase B(Akt)/mammalian target of rapamycin(m TOR) and mitochondrial apoptotic pathways were measured by western blotting or immunofluorescence assays. Results Cd-induced activation of Akt/m TOR signaling, including Akt, m TOR, p70 S6 kinase(p70 S6K), and eukaryotic initiation factor 4E binding protein 1(4E-BP1). Rap, an m TOR inhibitor and NAC, a ROS scavenger, blocked Cd-induced activation of Akt/m TOR signaling and apoptosis of neuronal cells. Furthermore, NAC blocked the decrease of B-cell lymphoma 2/Bcl-2 associated X protein(Bcl-2/Bax) ratio, release of cytochrome c, cleavage of caspase-3 and poly(ADP-ribose) polymerase(PARP), and nuclear translocation of apoptosis-inducing factor(AIF) and endonuclease G(Endo G). Conclusion Cd-induced ROS generation activates Akt/m TOR and mitochondrial pathways, leading to apoptosis of neuronal cells. Our findings suggest that m TOR inhibitors or antioxidants have potential for preventing Cd-induced neurodegenerative diseases.
基金supported by the Guangdong Grant Key Technologies for Treatment of Brain Disorders,China,No. 2018B030332001 (to GC)the Guangzhou Key Projects of Brain Science and Brain-Like Intelligence Technology,No. 20200730009 (to YX)the Guangdong Basic and Applied Basic Research Foundation,No. 2020A1515110898 (to WYC)。
文摘The onset of retinal degenerative disease is often associated with neuronal loss. Therefore, how to regenerate new neurons to restore vision is an important issue. NeuroD1 is a neural transcription factor with the ability to reprogram brain astrocytes into neurons in vivo. Here, we demonstrate that in adult mice, NeuroD1 can reprogram Müller cells, the principal glial cell type in the retina, to become retinal neurons. Most strikingly, ectopic expression of NeuroD1 using two different viral vectors converted Müller cells into different cell types. Specifically, AAV7 m8 GFAP681::GFP-ND1 converted Müller cells into inner retinal neurons, including amacrine cells and ganglion cells. In contrast, AAV9 GFAP104::ND1-GFP converted Müller cells into outer retinal neurons such as photoreceptors and horizontal cells, with higher conversion efficiency. Furthermore, we demonstrate that Müller cell conversion induced by AAV9 GFAP104::ND1-GFP displayed clear dose-and time-dependence. These results indicate that Müller cells in adult mice are highly plastic and can be reprogrammed into various subtypes of retinal neurons.
基金Supported by the National Institutes of Health,USA,R21AI59064,National Research Council Canada (A-base) and Dow AgroScience
文摘The gastrointestinal tract represents the largest mucosal membrane surface in the human body. The immune system in the gut is the first line of host defense against mucosal microbial pathogens and it plays a crucial role in maintaining mucosal homeostasis. Membranous or microfold cells, commonly referred to as microfold cells, are specialized epithelial cells of the gut-associated lymphoid tissues (GALT) and they play a sentinel role for the intestinal immune system by delivering luminal antigens through the follicle-associated epithelium to the underlying immune cells. M cells sample and uptake antigens at their apical membrane, encase them in vesicles to transport them to the basolateral membrane of M cells, and from there deliver antigens to the nearby lymphocytes. On the flip side, some intestinal pathogens exploit M cells as their portal of entry to invade the host and cause infections. In this article, we briefly review our current knowledge on the morphology, development, and function of M cells, with an emphasis on their dual role in the pathogenesis of gut infection and in the development of host mucosal immunity.
文摘Hepatitis C virus(HCV) is the main cause of chronic liver disease and cirrhosis in Western countries. Over time, the majority of cirrhotic patients develop hepatocellular carcinoma(HCC), one of the most common fatal cancers worldwide- fourth for incidence rate. A high public health priority need is the development of biomarkers to screen for liver disease progression and for early diagnosis of HCC development, particularly in the high risk population represented by HCV-positive patients with cirrhosis. Several studies have shown that serological determination of a novel biomarker, squamous cell carcinoma antigen-immunoglobulins M(SCCA-Ig M), might be useful to identify patients with progressive liver disease. In the initial part of this review we summarize the main clinical studies that have investigated this new circulating biomarker on HCV-infected patients, providing evidence that in chronic hepatitis C SCCA-Ig M may be used to monitor progression of liver disease, and also to assess the virological response to antiviral treatment. In the last part of this review we address other, not less important, clinical applications of this biomarker in hepatology.
基金National Natural Science Foundation of China(No. 30600694)
文摘AIM: To investigate the effect of protein kinase C (PKC) on transforming growth factor-β2 (TGFβ2) and dopamine in retinal Müller cells of guinea pig myopic eye. METHODS: Myopia was induced by translucent goggles in guinea pig, whose retinal Müller cells were cultured using the enzyme-digesting method. Retinal Müller cells were divided into 5 groups: normal control, myopia, myopia plus GF109203X, myopia plus PMA, myopia plus DMSO. PKC activities were detected by the non-radioactive methods. TGFβ2 and tyrosine hydroxylase (TH) proteins were analyzed by Western Blotting in retinal Müller cells. Dopamine was determined by the high-performance liquid chromatography- electrochemical detection in suspensions. RESULTS: After 14 days deprived, the occluded eyes became myopic with ocular axle elongating. Müller cells of guinea pigs were obtained using enzyme digestion. Compared with normal control group, the increase in PKC activity and the up-regulation in TGFβ2 expression were found in retinal Müller cells of myopic eyes, with the decrease of TH and dopamine content (P <0.05). After PKC activated by PMA, TGFβ2 and TH content were up-regulated with the increase of dopamine content (P <0.05). While the PKC activities was inhibited by GF109203X, proteins of TGFβ2 and TH were down-regulated in the myopic eyes, with the decrease of dopamine content (P <0.05). CONCLUSION: TGFβ2 and dopamine are modulated by PKC in Müller cells of the myopic eyes in guinea pig.
基金National Natural Science Foundation of China (No.31140072)Doctoral Scientific Starting Foundation of Liaoning Medical University (No.Y2012B005)
文摘·AIM: To explore the effects and potential mechanisms of curcumin on retinal Müller cell in early diabetic rats. ·METHODS: Diabetic rats were induced by a single intraperitoneal injection of streptozotocin (STZ). Male Sprague-Dawley (SD) rats were randomly assigned into 4 groups: control group (nave SD rats administered with a single intraperitoneal injection of citric buffer), diabetic group (STZ -diabetic rats), dimethyl sulfoxide (DMSO) group (diabetic rats intraperitoneally administered with mixture of DMSO and normal saline, once a day) and curcumin group (diabetic rats intraperitoneally administered with curcumin, 80mg/kg, once a day). Three months after diabetes onset, malondialdehyde (MDA, indication of oxidative stress level) and reduced glutathione (GSH) in retina were detected with kits, glial fibrillary acidic protein (GFAP) in retina was revealed by immunohistochemistry and Western blot, and retinal glutamine synthetase (GS) were observed by Western blot. ·RESULTS: Compared with control group, retinal MDA was increased, and GSH was decreased in diabetic and DMSO groups ( 【0.05, respectively). While, retinal MDA and GSH in curcumin group showed no difference compared with control group ( 】0.05). Furthermore, upregulation of retinal GFAP and down-regulation of retinal GS were detected in diabetic and DMSO groups, and no alteration could be observed in curcumin group revealed with Western blot. Compared with control group, retinal Müller cells showed significant increase in GFAP immunochemistry staining in diabetic and DMSO groups. Moreover, GFAP -positive staining was decreased in curcumin group compared with diabetic group. · CONCLUSION: Curcumin inhibits diabetic retinal oxidative stress, protects Müller cell, and prevents the down -regulation of GS in diabetic retina. Therefore, curcumin has a therapeutic potential in the treatment of diabetic retinopathy (DR).
基金supported by the National Natural Science Foundation of China,No.81170877the National Basic Research Program of China,No.2007CB512203
文摘Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeoxycholic acid. Results from immunofluorescent co-localization experiments showed that both caspase-12 protein and c-Jun N-terminal kinase 1 phosphorylation levels significantly in- creased, which was associated with retinal ganglion cell death in diabetic retinas. The C/ERB ho- mologous protein pathway directly contributed to glial reactivity, and was subsequently responsible for neuronal loss and vascular abnormalities in diabetic retinopathy. Our experimental findings in- dicate that endoplasmic reticulum stress plays an important role in diabetes-induced retinal neu- ronal loss and vascular abnormalities, and that inhibiting the activation of the endoplasmic reticulum stress pathway provides effective protection against diabetic retinopathy.
基金the National Transgenic Breeding Project of China(2016ZX08009003006)National Natural Science Foundation of China(31672411)Discipline Innovative Engineering Plan(B12008)。
文摘Recent advances in avian transgenic studies highlight the possibility of utilizing lentiviral vectors as tools to generate transgenic chickens. However, low rates of gonadal chimerism and germ line transmission efficiency still limit the broad usage of this method in creating transgenic chickens. In this study, we implemented a simple strategy using modified lentiviral vectors targeted to chicken primordial germ cells(PGCs) to generate transgenic chickens. The lentiviral vectors were pseudotyped with a modified Sindbis virus envelope protein(termed M168) and conjugated with an antibody specific to PGC membrane proteins. We demonstrated that these optimized M168-pseudotyped lentiviral vectors conjugated with SSEA4 antibodies successfully targeted transduction of PGCs in vitro and in vivo. Compared with the control, 50.0%–66.7% of chicken embryos expressed green fluorescent protein(GFP) in gonads transduced by the M168-pseudotyped lentivirus. This improved the targeted transduction efficiency by 30.0%–46.7%. Efficient chimerism of exogenous genes was also observed. This targeting technology could improve the efficiency of germ line transmission and provide greater opportunities for transgenic poultry studies.
文摘AIM: To determine the effect of pirfenidone on the activated human Müller cells by platelet-derived growth factor-BB(PDGF-BB). METHODS: The primary human Müller cells were separated from retinal tissues and established the pathogenic model by stimulated with PDGF-BB. The Müller cells behaviour of normal group and the model group was measured by MTT assay, Trypan blue assay, cell migration assay, and collagen contraction assay. The expression of transforming growth factor(TGF)-β1,-β2, and pigment epithelium-derived factor(PEDF) was estimated with realtime polymerase chain reaction(PCR), Western blot and immunofluorescence analyses. RESULTS: A pathogenic/proliferative model of Müller cells was established by stimulating normal cultured Müller cells with 10 ng/mL PDGF-BB for 48 h. After treated with 0.2 and 0.3 mg/mL pirfenidone, the proliferation, migration and collagen contraction was statistically significantly depressed in the model group compared with the normal groups. The expression levels of TGF-β1 and TGF-β2 were significantly down-regulated, while the PEDF expression was significantly up-regulated after treated with 0.2 and 0.3 mg/mL pirfenidone in the model group. CONCLUSION: Pirfenidone effectively suppress the proliferation, migration and collagen contraction of the human Müller cells stimulated with PDGF-BB through down-regulation of TGF-β1/TGF-β2 and up-regulation of PEDF.
基金Innovation Fund Denmark,No.4108-00008BThe Bagenkop NielsensØjen-Fond,No.115227+2 种基金Hørslev-Fonden,No.116967Beckett Fonden,No.116936Velux Foundation,No.1179261001/2.
文摘BACKGROUND Retinal organoids serve as excellent human-specific disease models for conditions affecting otherwise inaccessible retinal tissue from patients.They permit the isolation of key cell types affected in various eye diseases including retinal ganglion cells(RGCs)and Müller glia.AIM To refine human-induced pluripotent stem cells(hiPSCs)differentiated into threedimensional(3D)retinal organoids to generate sufficient numbers of RGCs and Müller glia progenitors for downstream analyses.METHODS In this study we described,evaluated,and refined methods with which to generate Müller glia and RGC progenitors,isolated them via magnetic-activated cell sorting,and assessed their lineage stability after prolonged 2D culture.Putative progenitor populations were characterized via quantitative PCR and immunocytochemistry,and the ultrastructural composition of retinal organoid cells was investigated.RESULTS Our study confirms the feasibility of generating marker-characterized Müller glia and RGC progenitors within retinal organoids.Such retinal organoids can be dissociated and the Müller glia and RGC progenitor-like cells isolated via magnetic-activated cell sorting and propagated as monolayers.CONCLUSION Enrichment of Müller glia and RGC progenitors from retinal organoids is a feasible method with which to study cell type-specific disease phenotypes and to potentially generate specific retinal populations for cell replacement therapies.
文摘AIM To investigate the role of macrophage colony-stimulating factor(M-CSF) in patients with hepatocellular carcinoma(HCC) after surgery. METHODS Expression of M-CSF, distribution of M2 macrophages(Mφs), and angiogenesis were assessed in the liver, including tumors and peritumoral liver tissues. The prognostic power of these factors was assessed. Mouse isolated hepatic Mφs or monocytes were cultured with media containing M-CSF. The concentration of vascular endothelial growth factor(VEGF) in media was assessed. Furthermore, the role of the M-CSF-matured hepatic Mφs on proliferation of the vascular endothelial cell(VEC) was investigated. RESULTS A strong correlation between the expressions of M-CSF and CD163 was observed in the peritumoral area. Also, groups with high density of M-CSF, CD163 or CD31 showed a significantly shorter time to recurrence(TTR) than low density groups. Multivariate analysis revealedthe expression of M-CSF or hepatic M2Mφs in the peritumoral area as the most crucial factor responsible for shorter TTR. Moreover, the expression of M-CSF and hepatic M2Mφs in the peritumoral area had better predictable power of overall survival. Values of VEGF in culture media were significantly greater in the hepatic Mφs compared with the monocytes. Proliferation of the VEC was greatest in the cells co-cultured with hepatic Mφs when M-CSF was present in media.CONCLUSION M-CSF increases hepatocarcinogenesis, most likely by enhancing an angiogenic factor derived from hepatic Mφ and could be a useful target for therapy against HCC.
基金supported by the Collaborative Innovation Engineering“5511”(XTCXGC2021002)the National Natural Science Foundation of China(U1805232)+1 种基金the Youth Program of National Natural Science Foundation of China(31301654)the Youth Program of Fujian Academy of Agricultural Sciences(YC2019004)。
文摘Serotonin is ubiquitous across all forms of life and functions in responses to biotic and abiotic stresses.In rice,the conversion of tryptamine to serotonin is catalyzed by Sekiguchi lesion(SL).Previous studies have identified an sl mutation(a null mutation of SL)in several rice varieties and confirmed its increase of resistance and cell death.However,a systematic understanding of the reprogrammed cellular processes causing cell death and resistance is lacking.We performed a multi-omics analysis to clarify the fundamental mechanisms at the protein,gene transcript,and metabolite levels.We found that cell death and Magnaporthe oryzae(M.oryzae)infection of the sl-MH-1 mutant activated plant hormone signal transduction involving salicylic acid(SA),jasmonic acid(JA),and abscisic acid(ABA)in multiple regulatory layers.We characterized the dynamic changes of several key hormone levels during disease progression and under the cell death conditions and showed that SA and JA positively regulated rice cell death and disease resistance.SL-overexpressing lines confirmed that the sl-MH-1 mutant positively regulated rice resistance to M.oryzae.Our studies shed light on cell death and facilitate further mechanistic dissection of programmed cell death in rice.