期刊文献+
共找到1,355篇文章
< 1 2 68 >
每页显示 20 50 100
Low Complexity Minimum Mean Square Error Channel Estimation for Adaptive Coding and Modulation Systems 被引量:2
1
作者 GUO Shuxia SONG Yang +1 位作者 GAO Ying HAN Qianjin 《China Communications》 SCIE CSCD 2014年第1期126-137,共12页
Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio... Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances. 展开更多
关键词 adaptive coding and modulation channel estimation minimum mean square error low-complexity minimum mean square error
在线阅读 下载PDF
Recursive weighted least squares estimation algorithm based on minimum model error principle 被引量:2
2
作者 雷晓云 张志安 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期545-558,共14页
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri... Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness. 展开更多
关键词 minimum model error Weighted least squares method State estimation Invariant embedding method Nonlinear recursive estimate
在线阅读 下载PDF
Efficient Mean Estimation in Log-normal Linear Models with First-order Correlated Errors
3
作者 Zhang Song Wang De-hui 《Communications in Mathematical Research》 CSCD 2013年第3期271-279,共9页
In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original... In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original scale. We obtain two estimators which minimize the asymptotic mean squared error (MM) and the asymptotic bias (MB), respectively. Both the estimators are very easy to implement, and simulation studies show that they are perform better. 展开更多
关键词 log-normal first-order correlated maximum likelihood two-stage estimation mean squared error
在线阅读 下载PDF
Adaptive Linear Filtering Design with Minimum Symbol Error Probability Criterion 被引量:2
4
作者 Sheng Chen 《International Journal of Automation and computing》 EI 2006年第3期291-303,共13页
Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative ad... Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sample-by-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER filtering approach. 展开更多
关键词 Adaptive filtering mean square error probability density function non-Gaussian distribution Parzen window estimate symbol error rate stochastic gradient algorithm.
在线阅读 下载PDF
Convolutional Neural Network Auto Encoder Channel Estimation Algorithm in MIMO-OFDM System 被引量:2
5
作者 I.Kalphana T.Kesavamurthy 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期171-185,共15页
Higher transmission rate is one of the technological features of promi-nently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO–OFDM).One among an effec... Higher transmission rate is one of the technological features of promi-nently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO–OFDM).One among an effective solution for channel estimation in wireless communication system,spe-cifically in different environments is Deep Learning(DL)method.This research greatly utilizes channel estimator on the basis of Convolutional Neural Network Auto Encoder(CNNAE)classifier for MIMO-OFDM systems.A CNNAE classi-fier is one among Deep Learning(DL)algorithm,in which video signal is fed as input by allotting significant learnable weights and biases in various aspects/objects for video signal and capable of differentiating from one another.Improved performances are achieved by using CNNAE based channel estimation,in which extension is done for channel selection as well as achieve enhanced performances numerically,when compared with conventional estimators in quite a lot of scenar-ios.Considering reduction in number of parameters involved and re-usability of weights,CNNAE based channel estimation is quite suitable and properlyfits to the video signal.CNNAE classifier weights updation are done with minimized Sig-nal to Noise Ratio(SNR),Bit Error Rate(BER)and Mean Square Error(MSE). 展开更多
关键词 Deep learning channel estimation multiple input multiple output least square linear minimum mean square error and orthogonal frequency division multiplexing
在线阅读 下载PDF
LMMSE-based SAGE channel estimation and data detection joint algorithm for MIMO-OFDM system 被引量:1
6
作者 申京 Wu Muqing 《High Technology Letters》 EI CAS 2012年第2期195-201,共7页
A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE... A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance. 展开更多
关键词 multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) linear minimum mean square error (LMMSE) space-alternating generalized expectation-maximization (SAGE) ITERATION channel estimation data detection joint algorithm.
在线阅读 下载PDF
A time domain multiple-CFOs and CIRs estimation algorithm over wireless multimedia sensor networks
7
作者 姜建 《High Technology Letters》 EI CAS 2009年第3期294-300,共7页
Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate lo... Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate local oscillator and every transmitter to receiver link has individual carrier frequency offset (CFO) and channel impulse response (CIR) parameters. In order to reduce the computational complexity for MD optimization, a time domain CFOs and CIRs estimation algorithm over the OFDMA based wireless multimedia sensor networks (WMSN) is proposed in this paper. In this algorithm, the receiver station can decouple the signal from every node by correlation based on specially designed training sequences, so that the MD optimization problem is simplified to an 1-D optimal problem. It is proved that the multiple CFOs can be identified from the correlation result using the phase shift of the consecutive training se- quences. Based on the CFOs estimation result, the CIRs can then he estimated according to the minimum mean square error (MMSE) criterion. The theoretic analysis and simulation results show that the proposed algorithm can effectively decouple the signal from different user nodes and the bit error rate (BER) per- formance curves are close to the ideal estimation when the user number is not large. 展开更多
关键词 wireless multimedia sensor networks (WMSN) orthogonal frequency division multiple access (OFDMA) multiple carrier frequency offsets (CFOs) multiple channel impulse responses (CIRs) minimum mean square error (MMSE)
在线阅读 下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
8
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least square Method Robust Least square Method Synthetic Data Aitchison Distance Maximum Likelihood estimation Expectation-Maximization algorithm k-Nearest Neighbor and mean imputation
在线阅读 下载PDF
基于GWO-LMS-RSSD的旋转机械耦合故障分离及特征强化方法
9
作者 许文 施卫华 +3 位作者 李红钢 华如南 刘厚林 董亮 《机电工程》 北大核心 2025年第4期677-685,共9页
针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号... 针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号进行了滤波处理,使故障特征得到了初步强化;然后,根据耦合故障的不同共振属性,利用RSSD算法将故障耦合分解为高共振分量和低共振分量,完成了耦合故障分离;特别地,针对LMS算法中参数依赖人工经验、自适应差等问题,研究了基于灰狼优化算法(GWO)的参数自适应优化方法,设计了以信噪比和均方误差构成的优化目标;最后,对稀疏分解得到的信号进行了包络解调,完成了耦合故障分离及特征强化,同时,利用模拟信号和实验信号对该方法进行了验证分析。研究结果表明:GWO-LMS-RSSD算法能用于有效降低噪声干扰,分离旋转机械耦合故障及强化故障特征。该研究成果可为强噪声干扰下耦合故障的特征分离及强化提供一种新的思路。 展开更多
关键词 耦合故障诊断 旋转机械 共振稀疏分解 自适应滤波最小均方算法 灰狼优化算法 信噪比 均方误差
在线阅读 下载PDF
一种低复杂度的OTFS系统信号检测算法
10
作者 陈发堂 陈甲杰 +1 位作者 夏麒煜 黄梁 《电讯技术》 北大核心 2025年第2期205-213,共9页
针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系... 针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。 展开更多
关键词 正交时频空(OTFS) 信号检测 最小均方误差均衡 三角分解
在线阅读 下载PDF
LTE系统中的Mean-OTDOA定位算法 被引量:7
11
作者 陈亚军 彭建华 +1 位作者 黄开枝 罗文宇 《计算机应用研究》 CSCD 北大核心 2014年第6期1783-1786,共4页
由于LTE蜂窝网中远近效应的影响,终端测量到的邻近基站信号的定位参数会存在较大的偏差,导致OTDOA定位方法(到达时间差定位法)估计的终端位置存在较大误差。基于此,提出一种改进的Mean-OTDOA定位算法。首先估计终端与各基站的时延,然后... 由于LTE蜂窝网中远近效应的影响,终端测量到的邻近基站信号的定位参数会存在较大的偏差,导致OTDOA定位方法(到达时间差定位法)估计的终端位置存在较大误差。基于此,提出一种改进的Mean-OTDOA定位算法。首先估计终端与各基站的时延,然后对终端与多基站的距离测量值进行平均,作为OTDOA定位方法中的参考距离,最后利用泰勒级数展开法对终端位置进行估计。仿真结果表明,该算法可提高终端的定位精度,在基站数目为5、测量误差标准差为50 m时,本算法的均方根误差比OTDOA算法降低了5.2039 m,且随着基站数目的增加,定位精度的改善程度优于OTDOA算法。 展开更多
关键词 LTE系统 远近效应 mean-OTDOA定位算法 泰勒级数 均方根误差
在线阅读 下载PDF
高速移动环境下OTSMB-LMMSE-PIC迭代检测方法
12
作者 李国军 郑翔 王杰 《通信学报》 北大核心 2025年第1期13-22,共10页
为提升正交时序复用(OTSM)在高速移动环境下传输的可靠性,提出了一种基于并行干扰消除的分块线性最小均方误差(B-LMMSE-PIC)迭代检测方法。该方法在时域分块进行MMSE-PIC符号估计,并且使用诺伊曼(Neumann)级数逼近涉及的矩阵反演,将计... 为提升正交时序复用(OTSM)在高速移动环境下传输的可靠性,提出了一种基于并行干扰消除的分块线性最小均方误差(B-LMMSE-PIC)迭代检测方法。该方法在时域分块进行MMSE-PIC符号估计,并且使用诺伊曼(Neumann)级数逼近涉及的矩阵反演,将计算复杂度降为线性阶;随后在时延-序列域计算估计符号的均值与方差作为下一次迭代的先验信息。仿真结果表明,在移动速度为540km/h的场景下使用16QAM调制且误码率为10-4时,所提方法与目前广泛使用的基于最大比合并(MRC)的迭代rake检测方法相比有2.48dB的性能增益。 展开更多
关键词 正交时序复用 线性最小均方误差 并行干扰消除 诺伊曼级数
在线阅读 下载PDF
一种基于ZP-OTFS的低复杂度SSOR检测算法
13
作者 何茂恒 张薇 《电讯技术》 北大核心 2025年第2期223-230,共8页
针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩... 针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩阵呈块对角稀疏特性提出一种逐块迭代的对称逐次超松弛(Symmetric Successive over Relaxation, SSOR)迭代算法,在降低系统复杂度的同时获得与LMMSE检测近似的性能。仿真结果表明,与逐次超松弛(Successive over Relaxation, SOR)算法相比,所提算法对松弛参数不敏感且具有更快的收敛速度,在迭代次数为10次时误码性能几乎达到LMMSE误码性能,显著降低了检测器的复杂度。 展开更多
关键词 ZP-OTFS 线性最小均方误差(LMMSE) 信号检测 SSOR迭代检测
在线阅读 下载PDF
基于IPOA-SVR模型的边坡安全系数预测
14
作者 张佳琳 王孝东 +4 位作者 吴雅菡 水宽 张玉 程玥淞 杜青文 《有色金属(矿山部分)》 2025年第1期115-123,共9页
安全系数是用来评估边坡稳定性的重要指标之一,复杂的边坡系统导致安全系数预测存在不确定性。因此,为了获得更加可靠的安全系数,同时解决鹈鹕算法(POA)随着迭代次数的增加易陷入局部最优的缺点,提出了一种融合多策略的鹈鹕算法(IPOA)... 安全系数是用来评估边坡稳定性的重要指标之一,复杂的边坡系统导致安全系数预测存在不确定性。因此,为了获得更加可靠的安全系数,同时解决鹈鹕算法(POA)随着迭代次数的增加易陷入局部最优的缺点,提出了一种融合多策略的鹈鹕算法(IPOA)与支持向量机(SVR)结合的回归模型来预测边坡安全系数。首先,融合多策略将原始的鹈鹕算法进行改进;再运用改进的鹈鹕算法与支持向量机结合,选取六个影响因素作为IPOA-SVR模型的输入层指标并对模型进行训练,得到IPOA-SVR边坡稳定性预测模型;最后,分别与KNN、RF和Adaboost模型对比,并计算各个模型在训练集和测试集上的均方误差(MSE),以此来验证IPOA-SVR模型的优越性。实验结果显示:与其他模型相比,IPOA-SVR模型寻优性能强,在测试集上的均方误差为0.030 9、相关系数为0.91,说明本文对POA算法所用策略的有效性,IPOA-SVR模型可以为边坡失稳灾害的相关预测提供坚实的技术基础。 展开更多
关键词 安全系数 鹈鹕算法 支持向量机 边坡稳定性 均方误差
在线阅读 下载PDF
MIMO场景下最小误差检测
15
作者 许天一 邹辉 《科技创新与应用》 2025年第6期43-47,共5页
该文研究多输入多输出(Multiple-Input Multiple-Output,MIMO)场景下的最小均方误差(MMSE)检测方法,旨在提升无线通信系统中的信号检测性能。通过仿真实验,在不同收发天线配置、发射功率和发送符号数量下,对正交相移键控(QPSK)和正交幅... 该文研究多输入多输出(Multiple-Input Multiple-Output,MIMO)场景下的最小均方误差(MMSE)检测方法,旨在提升无线通信系统中的信号检测性能。通过仿真实验,在不同收发天线配置、发射功率和发送符号数量下,对正交相移键控(QPSK)和正交幅度调制(16QAM)进行性能分析。结果表明,随着信噪比的增加,误码率逐渐降低;增加天线数量可以降低误码率,但需要平衡硬件复杂度与性能。在相同信噪比下,QPSK的误码率低于16QAM,且MMSE-ML联合检测方法优于单独的MMSE检测方法。该研究可为优化MIMO系统中的信号检测方法提供新的视角和参考。 展开更多
关键词 多输入多输出 正交相移键控 正交幅度调制 最小误差检测 最大似然检测
在线阅读 下载PDF
基于麻雀搜寻优化算法的代理购电用户用电量多维度协同校核
16
作者 周颖 乔婧 +4 位作者 陈宋宋 赵伟博 丁一 武亚杰 田宇 《电网技术》 北大核心 2025年第2期604-612,I0064-I0067,共13页
随着代理购电业务稳步推进,用电量预测在智能电网运行中发挥着至关重要的作用。现阶段研究大多侧重于通过算法来提高预测结果的准确度和可靠性,而这些方法缺乏对电力系统多维因素的全面考量和精确校核。因此,多维度且全面地对代理购电... 随着代理购电业务稳步推进,用电量预测在智能电网运行中发挥着至关重要的作用。现阶段研究大多侧重于通过算法来提高预测结果的准确度和可靠性,而这些方法缺乏对电力系统多维因素的全面考量和精确校核。因此,多维度且全面地对代理购电用户用电量进行预测是代理购电业务中面临的问题之一。对此,该文提出了计及多维度协同的用户用电量预测结果校核方法。首先,该文采用了偏差概率分布模型分析各个维度(区域、行业、电压等级)的有效偏差分布,进行各维度有效偏差识别;其次,以误差最小为目标采用改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化算法进行多维度权重优化配比,构建预测值和权重值组合加权的多维度协同校核模型;最后选取误差指标对多维度校核后的预测值进行误差指标评估。结合某省的代理购电用户用电量对上述算法进行了验证,结果表明,基于ISSA优化算法的多维度协同校核方法在平均绝对误差指标下较行业维度、区域维度及电压等级维度分别降低了51.9%、23.4%和19.1%,均方根误差指标下较行业维度、区域维度及电压等级维度分别降低了40.0%、15.0%和8.6%,具有良好的泛化性。 展开更多
关键词 代理购电 误差校核 ISSA优化算法 组合权重 均方根误差
在线阅读 下载PDF
基于约束优化模型的智能电表运行误差及日线损率联合估计方法
17
作者 吕玉玲 陈文礼 +3 位作者 程瑛颖 苏宇 陈飞宇 刘学文 《电网技术》 北大核心 2025年第3期1257-1265,共9页
台区日线损率是影响智能电表运行误差估计的重要因素。在现有的智能电表误差估计方法中,或假设日线损率为常值,或与总供电量成正比,这些假设通常与真实日线损率的实际变化规律不符,也会降低智能电表误差估计方法的性能。该文提出一种基... 台区日线损率是影响智能电表运行误差估计的重要因素。在现有的智能电表误差估计方法中,或假设日线损率为常值,或与总供电量成正比,这些假设通常与真实日线损率的实际变化规律不符,也会降低智能电表误差估计方法的性能。该文提出一种基于约束优化模型的智能电表误差与日线损率联合估计方法。首先,为精准刻画能量守恒方程,建立以智能电表误差与日线损率为变量的线性方程组;然后,通过对实际台区数据进行分析,获得智能电表误差与日线损率波动的上下界,并以此构造约束优化模型;最后,根据模型特点推导高效的原始-对偶算法迭代寻找约束优化问题的最优解。通过实际数据验证发现,与现有方法相比,该文所提方法在智能电表误差与日线损率的估计上均有更好的效果。 展开更多
关键词 智能电表 误差估计 日线损率 约束最小二乘 原始-对偶算法
在线阅读 下载PDF
大规模MIMO系统中基于预处理的Richardson算法
18
作者 冯姣 刘思晴 《计算机与数字工程》 2025年第1期5-10,共6页
最小均方误差(Minimum Mean Square Error,MMSE)检测算法是大规模多输入多输出(massive MIMO)系统中能够实现接近最优检测性能的一种算法,但包含对高维矩阵的求逆运算,复杂度较高,因此不适合应用在实际工程中。针对这一问题,文章基于矩... 最小均方误差(Minimum Mean Square Error,MMSE)检测算法是大规模多输入多输出(massive MIMO)系统中能够实现接近最优检测性能的一种算法,但包含对高维矩阵的求逆运算,复杂度较高,因此不适合应用在实际工程中。针对这一问题,文章基于矩阵分块思想和理查德森(Richardson,RI)算法,提出了一种预处理的理查德森(Pretreatment-Richardson,P-RI)迭代算法,该算法首先基于矩阵分块思想构造了一种新形式的线性迭代,然后用此线性迭代对理查德森算法进行预处理,有效提升了算法的收敛速度。实验结果显示,与现有的RI算法相比,该算法的检测性能更好。 展开更多
关键词 massive MIMO 最小均方误差算法 矩阵分块 预处理 理查德森算法
在线阅读 下载PDF
基于非局部均值与线性最小均方误差估计的MRI去噪研究
19
作者 吴娟 荆斌 +2 位作者 荆钧尧 吴斌 孙娜娜 《中国医疗设备》 2025年第2期35-39,66,共6页
目的提出一种针对磁共振成像(Magnetic Resonance Imaging,MRI)图像的Rician噪声去除算法。方法首先利用局部方差统计估计MRI的噪声水平,接着采用线性最小均方误差估计及非局部均值滤波方法对图像进行复原,再根据估计的图像噪声水平决... 目的提出一种针对磁共振成像(Magnetic Resonance Imaging,MRI)图像的Rician噪声去除算法。方法首先利用局部方差统计估计MRI的噪声水平,接着采用线性最小均方误差估计及非局部均值滤波方法对图像进行复原,再根据估计的图像噪声水平决定是否进行迭代去噪。结果利用模拟的大脑MRI对提出的去噪方法进行定性与定量验证。结果显示,去噪算法在噪声方差为15时,不同切片的均方误差、峰值信噪比与信噪比平均值依次为70.07、29.78 dB、21.95 dB,非局部均值滤波的结果依次为82.17、29.11 dB、21.28 dB,而线性最小均方误差估计的结果依次为108.16、27.80dB、19.97dB,可以看出本文提出的算法优于其他算法。相比传统的非局部均值滤波,本文提出的算法在边缘等信息保护方面也有一定提高,同时提高了线性最小均方误差估计在高噪声水平时的去噪效果。结论本文提出的算法能够有效实现含噪MRI信号的复原,为后续图像处理及应用提供可靠保证。 展开更多
关键词 磁共振成像(MRI) 去噪 非局部均值 线性最小均方误差 Rician噪声 自适应 迭代
在线阅读 下载PDF
三种基于统计模型的单通道语音增强改进算法
20
作者 涂井先 覃桂茳 《宁德师范学院学报(自然科学版)》 2025年第1期17-22,44,共7页
针对算法计算复杂度高的问题,提出三种基于统计模型的单通道语音增强改进算法。利用每帧信号相邻多个频点共享相同增益函数的策略,达到降低算法计算复杂度的目的,并给出三种算法处理每帧信号乘除法运算次数关于共享频点个数的表格和函... 针对算法计算复杂度高的问题,提出三种基于统计模型的单通道语音增强改进算法。利用每帧信号相邻多个频点共享相同增益函数的策略,达到降低算法计算复杂度的目的,并给出三种算法处理每帧信号乘除法运算次数关于共享频点个数的表格和函数图。最后,选用三种经典的客观评价指标在Noizeus语料库和Noisex噪声库上进行测试。实验结果表明:当共享频点个数从1逐渐增大到10时,三种算法的计算复杂度呈现明显降低趋势,三种算法的去噪性能多数情况下会呈现缓慢降低的趋势。因此,三种算法以略微降低去噪性能为代价降低了算法的计算复杂度。 展开更多
关键词 语音增强 统计模型 计算复杂度 最小均方误差估计
在线阅读 下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部